
CHAPTER VII

HYPERQUADRICS

Conic sections have played an important role in projective geometry almost since the beginning of the

subject. In this chapter we shall begin by defining suitable projective versions of conics in the plane,

quadrics in 3-space, and more generally hyperquadrics in n-space. We shall also discuss tangents to such

figures from several different viewpoints, prove a geometric classification for conics similar to familiar

classifications for ordinary conics and quadrics in R
2 and R

3, and we shall derive an enhanced duality

principle for projective spaces and hyperquadrics. Finally, we shall use a mixture of synthetic and analytic

methods to prove a famous classical theorem due to B. Pascal (1623–1662)1 on hexagons inscribed in

plane conics, a dual theorem due to C. Brianchon (1783–1864),2 and several other closely related results.

1. Definitions

The three familiar curves which we call the “conic sections” have a long history ... It

seems that they will always hold a place in the curriculum. The beginner in analytic

geometry will take up these curves after he has studied the circle. Whoever looks at

a circle will continue to see an ellipse, unless his eye is on the axis of the curve. The

earth will continue to follow a nearly elliptical orbit around the sun, projectiles will

approximate parabolic orbits, [and] a shaded light will illuminate a hyperbolic arch. —

J. L. Coolidge (1873–1954)

In classical Greek geometry, conic sections were first described synthetically as intersections of
a plane and a cone. On the other hand, today such curves are usually viewed as sets of points
(x, y) in the Cartesian plane which satisfy a nontrivial quadratic equation of the form

Ax2 + 2Bxy + Cy2 + 2D + 2E + F = 0

where at least one of A, B, C is nonzero. In these notes we shall generally think of conics and
quadrics in such terms. Here are some online references which relate the classical and modern
approaches to these objects. The first contains some historical remarks, the second is a fairly
detailed treatment which shows the equivalence of the classical and modern definitions only using
material from elementary geometry, and the third contains a different proof that the definitions
are equivalent using standard results from trigonometry.

http://xahlee.org/SpecialPlaneCurves dir/ConicSections dir/conicSections.html

http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=196&bodyId=60

1Incidentally, he proved this result when he was 16 years old.
2This result was originally discovered without using duality.
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http://math.ucr.edu/∼res/math153/history04Y.pdf

The corresponding notion of quadric surface in R
3 is generally defined to be the set of zeros of

a nontrivial quadratic polynomial p(x, y, z) in three variables (nontriviality means that at least
one term of degree two has a nonzero coefficient). One can similarly define a hyperquadric in
R

n to be the set of zeros of a nonzero quadratic polynomial p(x1, · · · , xn). Such an equation
has the form

∑

i,j

ai,jxixj + 2 ·
∑

k

bkxk + c = 0

where at least one of the coefficients ai,j = 0.

One obvious question about our definitions is to give a concise but useful description of all the
different types of conics, quadrics or hyperquadrics that exist in R

n. Using linear algebra, in
each dimension it is possible to separate or classify such objects into finitely many types such
that

if Σ1 and Σ2 are hyperquadrics that are affinely equivalent (so that there is an
affine transformation T of R

n such that T [Σ1] = Σ2, then Σ1 and Σ2 have the
same type. — In fact, one can choose the affine transformation to have the form
T1

oT0, where T0 is a linear transformation and T1 is given by a diagonalizable

invertible linear transformation; in other words, there are nonzero scalars di such
that for each i we have T1(ei) = diei, where ei is the ith standard unit vector
in R

n.

For n = 2 and 3, the details of this classification are described explicitly in Section V.2 of the
following online document:

http://math.ucr.edu/∼res/math132/linalgnotes.pdf

The case of conics in R
2 is summarized in the table on page 82 of this document, and the case

of quadrics in R
3 is summarized in the table on page 83 of the same document. In particular,

there are fewer than 10 different types of possible nonempty figures in R
2 (including degenerate

cases of sets with one point or no points) and fewer than 20 different types of possible nonempty
figures in R

3 (also including an assortment degenerate cases). Later in this chapter we shall
describe the analogous classification for R

n (with n ≥ 3 arbitrary) in one of the exercises.

Projective extensions of hyperquadrics

We are now faced with an obvious question:

How does one define a hyperquadric in projective space?

Let us consider the analogous situation in degree one. The sets of solutions to nontrivial linear
equations p(x1, · · · , xn) = 0 are merely hyperplanes. If p(x1, · · · , xn)s =

∑

i aixi + b, then
this hyperplane is just the set of ordinary points in RP

n whose homogeneous coordinates satisfy
the homogeneous linear equation

n
∑

i=1

aixi + bxn+1 = 0 .

This suggests the following: Consider the quadratic polynomial

p(x1, · · · , xn) =
∑

i,j

ai,jxixj + 2 ·
∑

k

bkxk + c
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and turn it into a homogeneous quadratic polynomial by multiplying each degree 1 monomial
in the summation by xn+1 and multiplying the constant term by x2

n+1. We then obtain the
modified quadratic polynomial

p(x1, · · · , xn) =
∑

i,j

ai,jxixj + 2 ·
∑

k

bkxkxn+1 + cx2
n+1

which is homogeneous and has the following compatibility properties:

Theorem VII.1. (i) If X is a point in RP
n and ξ and ξ′ are homogeneous coordinates for X,

then p(ξ) = 0 if and only if p(ξ ′) = 0.

(ii) The set of zeros for p is equal to the set of ordinary points in RP
n whose homogeneous

coordinates are zeros of p.

Proof. We shall proof the two parts separately.

PROOF OF (i). Observe that p(kξ) = k2 · p(ξ) by direct computation. Therefore ξ ′ = kξ for
some k 6= 0 implies that p(ξ ′) = 0 if and only if p(ξ) = 0.�

PROOF OF (ii). If x ∈ R
n,1, then the transpose of (x1, · · · , xn, 1) is a set of homogeneous

coordinates for J(x) ∈ RP
n, and it is elementary to check that the solutions to the equa-

tion p = 0 contained in the intersection of the set of ordinary points and the points in RP
n

whose homogeneous coordinates are solutions to the equation p = 0 (in particular, we have
p(x1, · · · , xn) = p(x1, · · · , xn, 1)). Conversely, if p(x1, · · · , xn, xn+1) = 0 where xn+1 6= 0,
then we also have

0 =
1

x2
n+1

· p(x1, · · · , xn, xn+1) = p

(

x1

xn+1
, · · · , xn

xn+1
, 1

)

= p(x1, · · · , xn)

and hence the solutions to p = 0 in the image of J are all ordinary points which are solutions to
p = 0.�

All of the preceding discussion makes at least formal sense over an arbitrary field F; of course,
the mathematical value of the quadrics considered depends strongly upon the solvability of
quadratic equations within the given field.3 Define a hyperquadric Σ in FP

n to be the set of
zeros of a homogeneous quadratic equation:

n+1
∑

i,j=1

ai,jxixj = 0

In the study of hyperquadrics we generally assume that 1+1 6= 0 in F. This condition allows us
to choose the n2 coefficients ai,j so that ai,j = aj,i; for if we are given an arbitrary homogeneous
quadratic equation as above and set bi,j = 1

2(aj,i + ai,j), then it is easy to see that

n+1
∑

i,j=1

ai,jxixj = 0 if and only if

n+1
∑

i,j=1

bi,jxixj = 0

because we have

n+1
∑

i,j=1

bi,jxixj = 1
2





n+1
∑

i,j=1

ai,jxixj +
n+1
∑

i,j=1

aj,ixixj



 .

3All fields in this chapter are assumed to have commutative multiplications.
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For these reasons, we shall henceforth assume 1 + 1 6= 0 in F and ai,j = aj,i for all i and j.

It is natural to view the coefficients ai,j as the entries of a symmetric (n+ 1) × (n+ 1) matrix
A. If we do so and Σ is the hyperquadric in FP

n defined by the equation
∑

i,j ai,jxixj = 0,
then we may rewrite the defining equation for Σ as follows: A point X lies on Σ if and only if
for some (equivalently, for all) homogeneous coordinates ξ representing X we have

TξAξ = 0 .

If we have an affine quadric in F
n defined by a polynomial p as above, then an (n+ 1)× (n+ 1)

matrix defining its projective extension is given in block form by
(

A Tb
b c

)

where the symmetric matrix A = ( ai,j ) gives the second degree terms of p, the row vector 2 ·b
gives the first degree terms bi (note the coefficient!), and c gives the constant term.

Hypersurfaces of higher degree

The reader should be able to define projective hypercubics, hyperquartics, etc., as well as the
projective hyper—ic associated to an affine hyper—ic. Subsets of these types are generally called
projctive algebraic varieties; they have been studied extensively over the past 300 years and
have many interesting and important properties. The mathematical study of such objects has
remained an important topic in mathematics ever since the development of projective geometry
during the 19th century, but it very quickly gets into issues far beyond the scope of these notes.
In particular, the theory involves a very substantial amount of input from multivariable calculus
and the usual approaches also require considerably more sophisticated algebraic machinery than
we introduce in these notes. The rudiments of the theory appear in Sections V.4–V.6 of the
book by Bumcrot, and a more complete treatment at an advanced undergraduate level is given in
Seidenberg, Elements of the Theory of Algebraic Curves, as well as numerous other introductory
books on algebraic geometry.

Projective algebraic varieties also turn out to have important applications in various directions,
including issues in theoretical physics, the theory of encryption, and even the proof of Fermat’s
Last Theorem during the 1990s which was mainly due to Andrew Wiles (the word “mainly” is
included because the first complete proof required some joint work of Wiles with R. Taylor, and
Wiles’ work starts with some important earlier results by others). A reader who wishes to learn
more about some of these matters may do so by going to the final part of Section IV.5 in the
online document

http//:math.ucr.edu∼res/math133/coursenotes4b.pdf
and checking the traditional and electronic references cited there.

EXERCISES

1. Consider the conics in R
2 defined by the following equations:

(i) The circle defined by x2 + y2 − 1 = 0.

(ii) The hyperbola defined by xy − 1 = 2.

(iii) The parabola defined by y − x2 = 0.
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Show that the associated projective conics have 0, 1 and 2 points at infinity respectively, and
give homogeneous coordinates for these points.

2. Find which points (if any) at infinity belong to the projective conics associated to the conics
in R

2 defined by the following equations.

(i) x2 − 2y2 − 2xy = 0

(ii) 3x2 + 4y2 − 4x+ 2 = 0

(iii) x2 + y2 − 4y = 4

(iv) x2 − 4xy − 4y2 − 2y = 4

3. Find the points at infinity on the projective quadrics associated to the quadrics in R
3

defined by the following equations.

(i) x2 + y2 − z2 = 1

(ii) x2 + y2 − z2 − 6x− 8y = 0

(iii) x2 + y2 = 2z

(iv) x2 − y2 − z2 = 1

(v) x2 + y2 = z

(vi) x2 + y2 = z2

4. For each of the following affine quadrics σ in R
3, find a symmetric 4 × 4 matrix such that

the projective extension P(Σ) of Σ is defined by the equation TξAξ = 0.

(i) Σ is defined by the affine equation 4x2 + 3y2 − z2 + 2x+ y + 2z − 1 = 0.

(ii) Σ is defined by the affine equation 3x2 + y2 + 2z2 + 3x+ 3y + 4z = 0.

(iii) Σ is defined by the affine equation 2x2 + 4z2 − 4x− y − 24z + 36 = 0.

(iv) Σ is defined by the affine equation 4x2 + 9y2 + 5z2 − 4xy + 8yz + 12xz + 9z − 3 = 0.
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2. Tangents

Tangent lines to circles play an important role in classical Euclidean geometry, and their
generalizations to other conics were also known to classical Greek mathematicians such as
Archimedes4(287 B. C. E. – 212 B. C. E.) and Apollonius of Perga5 (c. 262 B. C. E. – c. 190
B. C. E.). In modern mathematics they are generally defined using concepts and results from
single variable or multivariable differential calculus. Of course, the latter is designed to work
primarily in situations where the coordinates are real or complex numbers, and since we want
to consider more general coordinates we need to develop an approach that is at least somewhat
closer to the classical viewpoint.

In these notes we shall concentrate on the following two ways of viewing tangents to conics in
R

2 or quadrics in R
3.

1. SYNTHETIC APPROACH. A line is tangent to a hyperquadric if and only if it lies wholly
in the hyperquadric or has precisely one point of intersection with the hyperquadric.

2. ANALYTIC APPROACH. Let X ∈ Σ ∩ L, where Σ is a hyperquadric and L is a line.
Then L is tangent to Σ if and only if there is a differentiable curve γ : (a; b) → R

n lying
totally in Σ such that γ(t0) = x for some t0 ∈ (a; b) and L is the line x + R · γ ′(t0).

For our purposes the first viewpoint will be more convenient; in Appendix E we shall show
that the analytic approach is consistent with the synthetic viewpoint, at least in all the most
important cases. Actually, the viewpoint of calculus is the better one for generalizing tangents
to cubics, quartics, etc., but a correct formulation is too complicated to be given in these notes.

We begin with a result on solutions to homogeneous quadratic equations in two variables:

Theorem VII.2. Suppose that F is a field in which 1 +1 6= 0, and (x1, y1), (x2, y2), (x3, y3) are
solutions to the homogeneous quadratic equation

ax2 + bxy + cy2 = 0 .

Then either a = b = c = 0 or else one of (x1, y1), (x2, y2), (x3, y3) is a nonzero multiple of
another.

Proof. If the hypothesis holds, then in matrix terminology we have












x2
1 x1y1 y2

1

x2
2 x2y2 y2

2

x2
3 x3y3 y2

3













·













a

b

c













=













0

0

0













.

4
Archimedes of Syracuse is well known to be one of the most important figures in Greek mathematics;

his contributions to physics and engineering innovations are also well known.
5
Apollonius of Perga is particularly known for his extensive study of conic sections, which goes far beyond

anything previously written. He is also known for other contributions to mathematics and astronomy.
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Suppose not all of a, b, c are nonzero. Then the given 3 × 3 matrix is not invertible and hence
has a zero determinant. But the determinant of such a matrix may be computed directly, and
up to a sign factor it is equal to

∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

·
∣

∣

∣

∣

x1 y1

x3 y3

∣

∣

∣

∣

·
∣

∣

∣

∣

x2 y2

x3 y3

∣

∣

∣

∣

The vanishing of this determinant implies that one of the 2×2 determinants in the factorization
must be zero, and the latter implies that the rows of the associated 2×2 matrix are proportional
to each other.�

The preceding result has the following important geometric application:

Theorem VII.3. Let Σ be a hyperquadric in RP
n, let X ∈ Σ, and let L be a line containing X.

Then Σ ∩ L is either {X}, two points, or all of L.

Proof. Let Y 6= X where Y ∈ L, let ξ and η denote homogeneous coordinates for X and Y

respectively, and suppose that Σ is defined by the equation

TωAω = 0

where A is a symmetric (n+ 1) × (n+ 1) matrix and ω represents W ∈ RP
n.

If Z ∈ L and is represented by the homogeneous coordinates ζ, then ζ = uξ + vη for some
u, v ∈ F that are not both zero. By construction, Z ∈ Σ if and only if

0 = TζAζ = T(uξ + vη)A(uξ + vη) =

u2TξAξ + 2uv TηAξ + v2TηAη = u2p + 2uvq + v2q

for suitable constants p, q, r. We claim that Σ ∩ L has at least three points if and only if
L ⊂ Σ. The “only if” implication is trivial, so we shall focus on the “if” direction. — Suppose
that Z1, Z2, Z3 are points on Σ∩L, and take homogeneous coordinates ζi = uiξ + viη for Zi.
By Theorem 2, either p = q = r = 0 (in which case L ⊂ Σ) or else one of the pairs (ui, vi) is
proportional to the other, say (uj , vj) = m(uk, vk) for some m 6= 0. In this case we have that
Zj = Zk and hence Z1, Z2, Z3 are not distinct.�

Definition. Let Σ be a hyperquadric, let X ∈ Σ, and let L be a line containing X. We shall
say that L is a tangent line to Σ at X if either Σ ∩ L− {X} or L ⊂ Σ. In the remaining case
where Σ∩L consists of two points, we shall say that L is a secant line through X. The tangent
space to Σ at X is equal to the union of all tangent lines to Σ at X.

Singular and nonsingular points

If we consider the conic in R
2 defined by the eqution x2 − y2 = 0 we see that the structure of

the conic at the origin is different than at other points, for the conic is given by a pair of lines
which intersect at the origin. Some words which may be used to describe this difference are
exceptional, special or singular. A concise but informative overview of singular points for plane
curves appears in the following online reference:

http://mathworld.wolfram.com/SingularPoint.html

There are corresponding theories of singularities for surfaces in R
3, and more generally for

hypersurfaces in R
n. Not surprisingly, if one is only interested in hyperquadrics as in these

notes, then everything simplifies considerably. We shall explain the relationship between the
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theory of singular and nonsingular points for hyperquadrics and the general case in Appendix
E.

We have given a purely synthetic definition of the tangent space to a hyperquadric Σ ⊂ FP
n at

a point X ∈ Σ. The first step is to give an algebraic description of the tangent space in terms
of homogeneous coordinates.

Theorem VII.4. Let F and Σ ⊂ FP
n be as above, and let X ∈ Σ. Then the tangent space

to Σ at X is either a hyperplane in FP
n or all of FP

n. In the former case, X is said to be a
nonsingular point, and in the latter case X is said to be a singular point. Furthermore, if Σ is
defined by the symmetric matrix A and ξ is a set of homogeneous coordinates for X, then in the
nonsingular case TξA is a (nonzero) set of homogeneous coordinates for the tangent hyperplane,
but in the singular case we have TξA = 0.

EXAMPLES. Suppose we consider the projectivizations of the circle x2 + y2 = 1, the hyperbola
x2 − y2 = 1, the parabola y = x2, and the pair of intersecting lines x2 = y2. Then the
corresponding projective conics are defined by the following homogeneous quadratic equations:

x2
1 + x2

2 − x2
3 = 0, x2

1 − x2
2 − x2

3 = 0

x2
1 − x2x3 = 0, x2

1 − x2
2 = 0

In the first three cases the associated 3×3 symmetric matrix A is invertible, and hence TξA 6= 0
for all nonzero ξ, so that every point of these projective conics will be a nonsingular point. — On
the other hand, in the fourth example, the symmetric matrix A is not invertible, and in fact its
kernel (either on the left or right side!) consists of all vectors whose first and second coordinates
are equal to zero. This implies that all points on the conic except J(0) are nonsingular but
J(0) is singular. These examples are all consistent with our intuition that the first three curves
behave regularly (or are nonsingular) at all points and the fourth curve behaves regularly at all
points except the origin.

Proof. In the proof of the preceding theorem, we noted that if Y ∈ FP
n with homogeneous

coordinates η and Z ∈ XY has homogeneous coordinates ζ = uξ + vη, then Z ∈ Σ if and only
if

u2
(

TξAξ
)

+ 2uv
(

TξAη
)

+ v2
(

TηAη
)

= 0

and the number of points on XY ∩ Σ depends upon the equivalence classes of solutions to this
equation, which we shall call the INTERSECTION EQUATION.

CLAIM: The line XY is tangent to Σ if and only if TξAη = TηAξ = 0.

Suppose first that XY is tangent to Σ. If XY is contained in Σ, then we have

TξAξ = TηAη = T(ξ + η)A(ξ + η) = 0

and elementary manipulations of these equations show that 2 ·TηAξ = 0. On the other hand, if
XY ∩Σ = {X}, then TηAη = 0 and the only solutions to the Intersection Equation in the first
paragraph of the proof are pairs (u, v) which are nonzero scalar multiples of (1, 0). Therefore,
the Intersection Equation evaluated at (1, t) is equal to zero if and only if t = 0. However, it is
easy to check that the ordered pair

(

1, −
TξAη
TηAη

)
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solves the Intersection Equation because

TξAξ = 0

and therefore we must have TξAη = TηAξ = 0.�

Conversely, suppose that TξAη = TηAξ = 0. Since TξAξ = 0, the Intersection Equation
reduces to

v2
(

TηAη
)

= 0 .

This equation means that either TηAη = 0, in which case we have L ⊂ Σ, or else v = 0,
in which case every solution (u, v) of the Intersection equation is proportional to the known
solution (1, 0), so that Σ ∩XY = {X}.

To conclude the proof, we have shown that the tangent space at X is the set of all points Y
such that TξAη = 0. If TξA = 0, this is all of FP

n, and if TξA 6= 0, this is the hyperplane
with homogeneous coordinates TξA.�

We shall say that a hyperquadric Σ is nonsingular if for each X ∈ Σ the tangent space at X
is a hyperplane (algebraically, this means that if ξ represents X then TξA 6= 0.

Theorem VII.5. If Σ is a hyperquadric defined by the symmetric matrix A, then Σ is nonsingular
if and only if A is invertible.

Proof. Suppose first that A is invertible. Then ξ 6= 0 implies that TξA is nonzero, and by the
preceding result it follows that the tangent space at every point must be a hyperplane.�

Conversely, suppose that A is not invertible. Then there is some ξ 6= 0 such that TξA = 0,
and if ξ represents X it follows that X ∈ Σ and X is a singular point of Σ.�

By definition, each symmetric matrix A determines a hyperquadric ΣA. This is not a 1–1
correspondence, for if c is a nonzero scalar then clearly ΣA = ΣcA. We shall now use the notion
of tangent hyperplane to show that, in many cases, this is the only condition under which two
matrices can define the same hyperquadric. Further discussion of this question is given in Section
2 of Appendix E.

Theorem VII.6. Let A and B be symmetric (n+1)× (n+1) matrices over the field F in which
1+1 6= 0, and suppose they define the same nonempty hyperquadric in FP

n. Assume that Σ has
at least one nonsingular point. Then B is a scalar multiple of A.

Proof. We are given that Σ has a nonsingular point X; let ξ be a set of homogeneous
coordinates forX. Then both TξA and TξB define the same hyperplane and hence TξA = k·TξB
for some nonzero scalar k.

Suppose now that Y does not lie on this tangent hyperplane, and let η be a set of homogeneous
coordinates for Y . Then the line XY meets Σ in a second point which has homogeneous
coordinates of the form uξ + η for some u ∈ F. This scalar satisfies the following equations:

2uTξAη + TηAη = 0, 2uTξBη + TηBη = 0

Since TξA = k · TξB the equations above imply that

TηAη = k · TηBη
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for all Y whose homogeneous coordinates satisfy TξAη 6= 0 (i.e., all vectors in F
n+1,1 except

those in the n-dimensional subspace defined by the tangent hyperplane to Σ and X).

To prove that TηAη = k ·TηBη if Y lies in the tangent hyperplane at X, let Z be a point which
is not on the tangent hyperplane. Then

TωAω = k · TωBω

for ω = ζ, η + ζ, η − ζ. Let C = A or B, and write ΨC(γ, δ) = TγCδ. We then have the
following:

ψC(η, ζ) = 1
4ΨC(η + ζ, η + ζ) − 1

4ΨC(η − ζ, η − ζ)

ΨC(η, η) = ΨC

(

(η + ζ) − ζ, (η + ζ) − ζ
)

By the first of these and the preceding paragraph, we have ΨA(η, ζ) = k ·ΨB(η, ζ). Using this,
the second equation above and the preceding paragraph, we see that ΨA(η, η) = k ·ΨB(η, η) if η
represents a point Y in the tangent hyperplane to Σ at X. Applying this and the first displayed
equation to arbitrary nonzero vectors η, ζ ∈ F

n+1,1, we see that ΨA(η, ζ) = k ·ΨB(η, ζ). Since
ci,j is the value of ΨC(ei, ej) if ei and ej are the standard unit vectors (the kth coordinate of
ek is 1 and the rest are 0), we see that ai,j = k · bi,j for all i and j, and hence we see that
B = k ·A.�

Intersections of two conics

Earlier in this section we noted that a line and a quadric intersect in at most two points. This
may be viewed as a generalization of a standard fact from elementary algebra; namely, if we are
given a system of two equations in two unknowns, with one linear and the other quadratic, then
the system of two equations has at most two solutions. There is a similar principle which states
that two quadratic equations in two unknowns have at most four solutions. In terms of analytic
geometry, this means that two conics have at most four points in common. A geometrical
derivation of the latter result for projective conics appears in Exercise II.6.11, and in the note
following this exercise the statement about solutions to systems of quadratic equations is also
discussed.

EXERCISES

In all these exercises F denotes a (commutative) field in which 1 + 1 6= 0.

1. Find the singular points (if any) of the projective conics given in Exercise 3 of the previous
section.

2. Find the equations of the tangent lines to the following conics in RP
2 at the indicated

points:

(i) The conic defined by x2
1 + 2x1x2 + 4x1x3 + 3x2

2 − 12x1x3 + 2x2
3 = 0 at the points





1
1
1



 and





1
1
3



 .
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(ii) The conic defined by x2
1 − 2x1x2 + 4x2

2 − 4x2
3 = 0 at the points





2
2

−1



 and





2
0
1



 .

Definition. Let Σ be a hyperquadric in FP
n defined by the (n+ 1) × (n + 1)

matrix A such that Σ has at least one nonsingular point. Two points X and
Y in FP

n are said to be conjugate with respect to Σ if they have homogeneous
coordinates ξ and η respectively such that TξAη = 0. By Theorem 6, this
definition does not depend upon any of the choices (including A). Moreover, a
point is self-conjugate if and only if it lies on Σ.

3. In the setting above, assume that X 6∈ Σ and Y is conjugate to P with respect to Σ.
Suppose that XY ∩Σ consists of two points, say A and B. Prove that XR(X,Y,A,B) = −1.

Note. If Σ is nonsingular and nonempty (hence A is invertible by Theorem
5) and X ∈ FP

n, then a hyperplane with homogeneous coordinates TξA is called
the polar hyperplane of X with respect to Σ. The map P sending X to its polar
hyperplane is a collineation from FP

n to its dual
(

FP
n
)∗

is called a polarity,
and it has the property that the composite

FP
n P−−−−→

∼=
(FP

n)∗
P
∗

−−−−→
∼=

(FP
n)∗∗

is the identity.

4. Let Σ be an affine hyperquadric in F
n, where n ≥ 3, and suppose that L is a line in F

n such
that L ⊂ Σ. Denote the projective extension of Σ by Σ∗. Prove that the ideal point L∞, and in
fact the entire projective line

J[L] ∪ {L∞}
is contained in Σ∗. [Hint: The field F contains at least three elements. What does this imply
about the number of points on L, and how does this lead to the desired conclusion?]

5. Prove the determinant identity stated in the proof of Theorem 2 (when each yi = 1 this is
the classical Vandermonde determinant).6

6. Consider the conic in FP
2 defined by the equation x1x2 − x2

3 = 0. What are the tangent
lines to this curve at its points of intersection with the line at infinity defined by x3 = 0? [Hint:
If F = R then this conic is the projective extension of the hyperbola with equation xy = 1.]

7. Answer the corresponding question for the conic defined by the equation x2
1 − x2x3 = 0.

[Hint: If F = R then this conic is the projective extension of the parabola with equation y = x2.]

6See http://www.math.duke.edu/∼johnt/math107/vandermonde.pdf for more on this topic. Alexandre

Théophile Vandermonde (1735–1796) is known for his work on the roots of polynomial equations and his
fundamental results on determinants.
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3. Bilinear forms

At this point it is convenient to discuss a topic in linear algebra which is generally not covered
in first courses on the subject. For the time being, F will be a (commutative field with no
assumption on whether or not 1 + 1 = 0 or 1 + 1 6= 0.

Definition. Let V be a vector space over F. A bilinear form on F is a function

Φ : V × V −→ F

with the following properties:

(Bi–1) Φ(v + v′,w) = Φ(v,w) + Φ(v′,w) for all v, v′, w ∈ V .

(Bi–2) Φ(v,w + w′) = Φ(v,w) + Φ(v,w′) for all v, w, w′ ∈ V .

(Bi–3) Φ(c · v,w) = c · Φ(v,w) = Φ(v, c · w) for all v, ,w ∈ V and c ∈ F.

The reader will notice the similarities between the identities for Φ and the identities defining
the dot product on R

n. Both are scalar valued, distributive in both variables, and homogeneous
(of degree 1) with respect to scalars. However, we are not assuming that Φ is commutative —
in other words, we make no assumption about the difference between Φ(v,w) and Φ(w,v) —
and we can have Φ(x,x) = 0 even if x is nonzero.

EXAMPLES. 1. Let F = R and V = R
2, and let Φ(x,y) = x1y2 − x2y1, where by convention

a ∈ R
2 can be written in coordinate form as (a1, a2). Then Φ(y,x) = −Φ(x,y) for all x and

y and we also have Φ(z, z) = 0 for all z ∈ R
2.

2. Let F and V be as above, and Φ(x,y) = x1y1−x2y2. In this case we have the commutativity
identity Φ(y,x) = Φ(x,y) for all x and y, but if z = (1, 1), or any multiple of the latter, then
Φ(z, z) = 0.

3. Let A be an n×n matrix over F, and let V be the vector space of all n×1 column matrices.
Define a bilinear form ΦA on V by the formula

ΦA(x,y) = TxAy .

Examples of this sort appeared frequently in the preceding section (see also Appendix E). Actu-
ally, the first two examples are special cases of this construction in which A is given as follows:

(

0 1
−1 0

) (

1 0
0 −1

)

In fact, the following theorem shows that, in principle, the preceding construction gives all
possible bilinear forms on finite-dimensional vector spaces.

Theorem VII.7. Let v be ann-dimensional vector space over F, and let A = {a1, · · · ,an}
be an ordered basis for V . If Φ is a bilinear form over F, let [Φ]A be the n × n matrix whose
(i, j) entry is equal to Φ(ai,aj). Then the map sending Φ to [Φ]A defines a 1−1 correspondence
between bilinear forms over V and n× n matrices over F.
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The matrix [Φ]A is called the matrix of Φ with respect to the ordered basis A.

Proof. The mapping is 1 − 1. Suppose that we are given two bilinear forms Φ and Ψ such
that Φ(ai,aj) = Ψ(ai,aj) for all i and j (this is the condition for [Φ]A and [Ψ]A to be equal).
If v, w ∈ V , express these vectors as linear combinations of the basis vectors as follows:

v =
∑

i

xiai w =
∑

j

yjbj

Then by (Bi–1) — (Bi–3) we have

Φ(v,w) =
∑

i,j

xiyjΦ(ai,aj) =
∑

i,j

xiyjΨ(ai,aj) = Ψ(v,w)

and since v and w are arbitrary we have Φ = Ψ.�

The mapping is onto. If B is an n×n matrix and v, w ∈ V are as in the preceding paragraph,
define

fB,A =
∑

i,j

xiyjbi,j .

This is well-defined because the coefficients of v and w with respect to A are uniquely deter-
mined. The proof that fB,A satisfies (Bi–1) — (Bi–3) is a sequence of routine but slightly
messy calculations, and it is left as an exercise. Given this, it follows immediately that B is
equal to [fBA]A.�

CHANGE OF BASIS FORMULA. Suppose we are given a bilinear form Φ on an n-dimensional
vector space V over F, and let A and B be ordered basis for V . In several contexts it is useful
to understand the relationship between the matrices [Φ]A and [Φ]B. The equation relating these
matrices are given by the following result:

Theorem VII.8. Given two ordered bases A and B, define a transition matrix by the form

bj =
∑

i

pi,jai .

If Φ is a bilinear form on V as above, then we have

[Φ]B = TP [Φ]A P .

Proof. We only need to calculate Φ(bi,bj); by the equations above, we have

Φ(bi,bj) = Φ

(

∑

k

pk,iak,
∑

m

pm,jam

)

=

∑

k

(

pk,i

(

∑

m

pm,k Φ(ak,am)

) )

.

However, the coefficient of pk,i is just the (k, j) entry of [Φ]A P , and hence the entire summation

is just the (i, j) entry of TP [Φ]A P , as claimed.�

Definition. A bilinear form Φ is symmetric if Φ(x,y) = Φ(y,x) for all x and y.

Theorem VII.9. Let Φ and A be as in Theorem 7. Then Φ is symmetric if and only if [Φ]A is
a symmetric matrix.
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Proof. Suppose that Φ is symmetric. Then Φ(ai,aj) = Φ(aj,ai) for all i and j, and this
implies that [Φ]A is a symmetric matrix.

Conversely, if [Φ]A is symmetric and v, w ∈ V (the same notation as in Theorem 7), then by
Theorem 7 we have

Φ(v,w) =
∑

i,j

([Φ]A)i,j xiyj Φ(w,v) =
∑

i,j

([Φ]A)j,i xiyj .

Since [Φ]A is symmetric, the two summations are equal, and therefore we must have

Φ(y,x) = Φ(x,y)

for all x and y.�

We have introduced all of the preceding algebraic machinery in order to prove the following
result:

Theorem VII.10. Let F be a field in which 1 + 1 6= 0, and let A be a symmetric n× n matrix
over F. Then there is an invertible matrix P such that TPAP is a diagonal matrix.

This will be a consequence of the next result:

Theorem VII.11. Let Φ be a symmetric bilinear form on an n-dimensional vector space V

over a field F for which 1 + 1 6= 0. Then there is an ordered basis v1, · ,vn of V such that
Φ(vi,vj) = 0 if i 6= j and Φ(vi,vi) = di for suitable scalars di ∈ F.

Proof that Theorem 11 implies Theorem 10. Define a bilinear form ΦA as in Example
1 above. By construction [ΦA]U = A, where U is the ordered basis obtained of standard unit
vectors. On the other hand, if V is the ordered basis obtained from Theorem 11, then [ΦA]V is
a diagonal matrix. Apply Theorem 8 with Φ = ΦA, A = U , and B = V.�

Proof of Theorem 11. If dimV = 1, the result is trivial. Assume by induction that the
result holds for vector spaces of dimension n− 1.

CASE 1. Suppose that Φ(x,x) = 0 for all x. Then Φ(x,y) = 0 for all x and y because we
have

Φ(x,y) = 1
2Φ(x + y,x + y) − Φ(x,x) − Φ(y,y)

and consequently [Φ]A = 0 for every ordered basis A.�

CASE 2. Suppose that Φ(v,v) 6= 0 for some v. Let W be the set of all x ∈ V such that
Φ(x,v) = 0.7 We claim that W + F · v = V and W ∩F · v = {0}. — The second assertion
is trivial because Φ(v, c · v) = 0 implies that c · Φ(v,v) = 0. Since Φ(v,v) 6= 0, this can
only happen if c = 0, so that c · v = 0. To prove the first assertion, we must observe that for
arbitrary v ∈ V the vector

Π(x) = x − Φ(x,v)

Φ(v,v)
v

7If Φ is the usual dot product on R
n, then this is the hyperplane through 0 that is perpendicular to the line

0v.
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lies in W (to verify this, compute Φ
(

Π(x), v
)

explicitly).8 The conditions on W and F · v
together with the dimension formulas imply that dimW = n− 1.

Consider the form Ψ obtained by restricting Φ to W ; it follows immediately that Ψ is also
symmetric. By the induction hypothesis there is a basis w1, · · · ,wn−1 for W such that
Φ(wi,wj) = 0 if i 6= j. If we adjoin v to this set, then by the conditions on W and F · v we
obtain a basis for V . Since Φ(v,wj) is zero for all j by the definition of W , it follows that the
basis for V given by v together with w1, · · · ,wn−1 will have the desired properties.�

The proof above actually gives and explicit method for finding a basis with the required proper-
ties: Specifically, start with a basis v1, · · · ,vn for V . If some vi has the property Φ(vivi) 6= 0,
rearrange the vectors so that the first one has this property. If Φ(vi,vi) = 0 for all i, then either
Φ = 0 or else some value Φ(vi,vj) is nonzero (otherwise Φ = 0 by Theorem 10). Rearrange
the basis so that Φ(v1,v2) 6= 0, and take a new basis { vi } with v′

1 = v1 + v2 and v′
i = vi

otherwise. Then Φ(v′
1,v

′
1) 6= 0, and thus in all cases we have modified the original basis to one

having this property.

Now we modify v′
i such that v′′

1 = v′
1 and Φ(v′′

i ,v
′′
1) = 0 if i > 1. Specifically, if i ≥ 2 let

v′′
i = v′

i − Φ(v′
i,v

′
1)

Φ(v′
1,v

′
1)

v′
1 .

Having done this, we repeat the construction for w1, · · · ,wn−1 for W with wi = v′′
i+1. When

computing explicit numerical examples, it is often convenient to “clear the denominator of
fractions” and multiply v′′

i by Φ(v′
1,v

′
1). This is particularly true when the matrix Φ(vi,vj) are

integers (as in Exercise 2 below).

EXERCISES

1. Prove that the map sending bilinear forms to matrices in Theorem 7 is surjective.

2. Find an invertible matrix P such that TPAP is diagonal, where A is the each of the following
matrices with real entries:





1 0 1
0 0 1
1 1 1









1 0 1
0 1 1
1 1 2









2 1 3
1 0 1
3 1 1









0 1 0
0 1 1
0 1 1



 .

3. A symmetric bilinear form Φ on an n-dimensional vector space V over a field F is said to be
nondegenerate if for each nonzero x ∈ V there is some y ∈ V such that Φ(x,y) 6= 0. Given an
ordered basis A for V , show that Φ is nondegenerate if and only if the matrix [Φ]A is invertible.
[Hint: Suppose that x satisfies Bx = 0, where B is the matrix in the previous sentence, and
let v =

∑

i xiai. If w =
∑

j yjzj , explain why TyBx = Φ(x,y) and how this is relevant.]

8If Φ is the ordinary dot product, then Π(x) is the foot of the perpendicular dropped from x to the plane
determined by W , and hence 0Π(x) is perpendicular to W .
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4. Projective classification of hyperquadrics

A standard exercise in plane and solid analytic geometry is the classification of conics and
quadrics up to changes of coordinates given by rotations, reflections and translations. Stated
differently, the preceding is the classification up to finding a rigid motion sending on to the other.
An account of the classification for arbitrary dimensions appears on pages 257–262 of Birkhoff
and MacLane, Survey of Modern Algebra (3rd Ed.). A related classification (up to finding
an affine transformation instead of merely a rigid motion) is discussed in Exercise 4 below.
In this section we are interested in the corresponding projective problem involving projective
hyperquadrics and (projective) collineations.

Throughout this section we assume that F is a field in which 1+1 6= 0. Furthermore, if Σ ⊂ FP
n

is a hyperquadric, then we shall use SingSet(Σ) to denote its subset of singular points.

We shall begin with an important observation.

Theorem VII.12. Let g be a projective collineation of FP
n. Then a subset Σ ⊂ FP

n is a
hyperquadric if and only if g[Σ] is. Furthermore, the singular sets of these hyperquadrics satisfy

g [ SingSet(Σ) ] = SingSet (T [Σ] )

and if TangX(Σ) denotes the tangent hyperplane to Σ at a nonsingular point X, then

g [ TangX(Σ) ] = Tangg(X) ( T [Σ] ) .

Proof. Let A be a symmetric (n+ 1) × (n+ 1) matrix which defines the hyperquadric Σ.

According to Theorem VI.14, there is an invertible linear transformation C of F
n+1,1 such that

T (F · ξ) = F · C(ξ) for all nonzero vectors ξ ∈ F
n+1,1. Let B be the matrix of C in the

standard basis. Then X lies in T [Σ] if and only if T −1(X) lies in Σ. If ξ is a set of homogeneous
coordinates for X, then the conditions in the preceding sentence are equivalent to

TξTB−1AB−1ξ − 0

and the displayed equation is equivalent to saying that X lies on the hyperquadric associated to
the (symmetric) matrix TB−1AB−1.

To check the statement about singular points, note that a point X lies on SingSet(Σ) if and only
if X has homogeneous coordinates ξ such that TξA = 0, and the latter is equivalent to

TξTBTB−1AB−1 = 0

which in turn is equivalent to
T(Bξ) ·

(

TB−1AB−1
)

= 0 .

To check the statement on tangent hyperplanes, note that Y lies on the tangent hyperplane to Σ
at X if and only if there are homogeneous coordinates ξ for X and η for Y such that TξAη = 0,
and the latter is equivalent to

TξTBTB−1AB−1Bη = 0

which in turn is equivalent to
T(Bξ) ·

(

TB−1AB−1
)

η) = 0 .
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The latter is equivalent to saying that T (Y ) is in the tangent hyperplane to T [Σ] at T (X).�

Definition. Two hypequadrics Σ and Σ′ are projectively equivalent if there is a projective
collineation T such that T [Σ] = Σ′. We sometimes write this relation as Σ ∼ Σ′. It is clearly
an equivalence relation, and the main goal of this section is to understand this relation when F

is the real or complex numbers.

We shall first describe some necessary and sufficient conditions for the projective equivalence of
hyperquadrics.

Theorem VII.13. Let Σ be a hyperquadric in FP
n, and let T be a projective collineation of FP

n.
Then the following hold:

(i) The dimensions of the geometrical subspaces of singular points of Σ and T [Σ] must be equal.

(ii) If Σ contains no geometrical subspace of dimension r, then neither does T [Σ].

Proof. (i) By definition, SingSet(Σ) is the set of all X whose homogeneous coordinates ξ
satisfy TξA = 0, and hence SingSet(Σ) is a geometrical subspace. Now Theorem 12 implies
that T [SingSet(Σ)] = SingSetT [Σ], and hence

dimSingSet(Σ) = dimT [SingSet(Σ)] = dim
(

SingSetT [Σ]
)

.�

(ii) Suppose Q ⊂ T [Σ] is an r-dimensional geometrical subspace. Since T −1 is also a projective
collineation, the set

T−1[Q] ⊂ T−1 [T [Σ] ] = Σ

is also an r-plane.�

Theorem VII.14. Suppose that Σ and Σ′ are hyperquadrics which are defined by the symmetric
matrices A and B respectively. Assume that there is an invertible matrix C and a nonzero
constant k such that B = TCAC. Then Σ and Σ′ are projectively equivalent.

Proof. Let T be the projective collineation defined by C−1, and if X ∈ FP
n let ξ be a set of

homogeneous coordinates for X. Then by Theorem 12 we have

T [Σ] = { x | TξTCACξ = 0 } = { x | Tξ(k−1B)ξ = 0 } = { x | k−1
(

TξBξ
)

= 0 } = Σ′ .�

NOTATION. Let Dr be the n× n diagonal matrix (n ≥ r) with ones in the first r entries and
zeros elsewhere, and let Dp,q denote the n×n diagonal matrix (n ≥ p+ q) with ones in the first
entries, (−1)’s in the next q entries, and zeros elsewhere.

REMARKS. 1. IfA is a symmetric matrix over the complex numbers, then for some invertible
matrix P the product TPAP is Dr for some r. For Theorem 10 guarantees the existence of an
invertible matrix P0 such that A1 = TP0AP0 is diagonal. Let P1 be the diagonal matrix whose
entries are square roots of the corresponding nonzero diagonal entries of A1, and ones in the
places where A1 has zero diagonal entries. Then the product P = P0 P

−1
1 has the desired

properties. This uses the fact that every element of the complex numbers C has a square root
in C, and in fact the same argument works in every field F which is closed under taking square
roots.
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2. If A is a symmetric matrix over the complex numbers, then for some invertible matrix P

the product TPAP is Dp,q for some p and q. As in the preceding example, choose an invertible

matrix P0 such that A1 = TP0AP0 is diagonal. Let P1 be the diagonal matrix whose entries
are square roots of the absolute values of the corresponding nonzero diagonal entries of A1,
and ones in the places where A1 has zero diagonal entries. Then the product P = P0 P

−1
1 has

the desired properties. The need for more complicated matrices arises because over R one only
has square roots of nonnegative numbers, and if x ∈ R then either x or −x is nonnegative.

The preceding remarks and Theorems 12–14 yield a complete classification of hyperquadrics in
FP

n up to projective equivalence if F is either R or C. We shall start with the complex case,
which is easier.

Theorem VII.15. Let Γr ⊂ CP
n defined by the matrix Dr described above. Then every nonempty

hyperquadric in CP
n is projectively equivalent to Γr for some uniquely determined value of r.

Proof. By Remark 1 above and Theorem 14, we know that Σ is projectively equivalent to Γr

for some r. It suffices to show that if Γr and Γs are projectively equivalent then r = s.

By the preceding results we know that dimSingSet(Γr) is the dimension of the subspace of all
X whose homogeneous coordinates ξ satisfy TξDr = 0, and the dimension of that subspace
is equal to n − r + 1. Therefore, if Γr and Γs are projectively equivalent then we must have
n− r + 1 = n− s+ 1, which implies that r = s, so there is only one such hyperquadric that
can be equivalent to Σ and thus uniqueness follows.�

The preceding argument goes through if C is replaced by an arbitrary field F which is closed
under taking square roots.

Over the real numbers, the classification is somewhat more complicated but still relatively simple.

Theorem VII.16. Let Γp,q ⊂ RP
n defined by the diagonal matrix Dp,q described above. Then

every nonempty hyperquadric in RP
n is projectively equivalent to Γp,q for some uniquely deter-

mined values of p and q such that p ≥ q.

Proof. As in the proof of the preceding theorem, by Theorem 14 and Remark 1 we know
that an arbitrary projective hyperquadric is projectively equivalent to Γp,q for some p and q.
This hyperquadric is represented by Dp,q; if we permute the homogeneous coordinates, we see
that Γp,q is projectively equivalent to the hyperquadric defined by the matrix −Dq,p, and since
the negative of this matrix defines the same hyperquadric it follows that Γp,q is projectively
equivalent to Γq,p. Since either p ≥ q or q ≥ p, it follows that every hyperquadric is projectively
equivalent to Γu,v for some u ≥ v.

To complete the proof, it will suffice to show that if Γp,q is projectively equivalent to Γu,v where
p ≥ q and u ≥ v, then p+q = u+v and p = u. To see the first equality, note that the dimension
of SingSet(Γa,b) is equal to n− (a+ b) + 1 by the argument in the preceding theorem, and as in
that proof we conclude that p+ q = u+ v.

To see the second equality, we shall characterize the integer p in Γp,q as follows.
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(‡) The hyperquadric Γp,q contains a geometric subspace of dimension n− p but
no such subspace of higher dimension.

This and the second part of Theorem 13 will combine to prove that if Γp,q is projectively
equivalent to Γu,v where p ≥ q and u ≥ v, then we also have p = u.

An explicit geometrical subspace S of dimension N − p is given by the equations

xi − xp+i = 0 1 ≤ i ≤ q,

xi = 0 q ≤ i ≤ p .

Consider the geometrical subspace T defined by

xp+1 = xp+2 = · · · = xn+1 = 0 .

This geometrical subspace is (p− 1)-dimensional. Furthermore, if X ∈ T ∩ Σ has homogeneous
coordinates (x1, · · · , xn+1) we have xi = 0 for i > p, so that

∑

i≤p

x2
i = 0 .

The latter implies that xi = 0 for i ≤ p, and hence it follows that xi = 0 for all i; this means
that the intersection T ∩ Σ is the empty set.

Suppose now that S ′ ⊂ Σ is a geometrical subspace of dimension ≥ n−p+1. Then the addition
law for dimensions combined with dim(S ′ ? T ) ≤ n shows that S ′ ∩ T 6= ∅, and since S ′ ⊂ Σ
we would also have Σ ∩ T 6= ∅. But we have shown that the latter intersection is empty, and
hence it follows that Σ cannot contain a geometrical subspace of dimension greater than (n−p),
which is what we needed to show in order to complete the proof.�

COMPUTATIONAL TECHNIQUES. Over the real numbers, there is another standard method
for finding an equivalent hyperquadric defined by a diagonal matrix. Specifically, one can use the
following diagonalization theorem for symmetric matrices to help find a projective collineation
which takes a given hyperquadric to one of the given type:

Let A be a symmetric matrix over the real numbers. Then there is an orthogonal
matrix P (one for which TP = P−1) such that TPAP is a diagonal matrix.
Furthermore, if λi is the ith entry of the diagonal matrix, then the ith column of
P is an eigenvector of A whose associated eigenvalue is equal to λi.�

This statement is often called the Fundamental Theorem on Real Symmetric Matrices,
and further discussion appears on pages 51–52 of the following online notes:

http://math.ucr.edu/∼res/math132/linalgnotes.pdf

If we combine the Fundamental Theorem on Real Symmetric Matrices with other material from
this section, we see that the construction of a projective collineation taking the hyperquadric
ΣA defined by A to a hyperquadric defined by an equation of the form

Σi dix
2
i = 0

reduces to finding the eigenvalues and eigenvectors of A. This approach is probably the most
effective general method for solving problems like those in Exercise 3 below.

SPECIALIZATION TO THE REAL PROJECTIVE PLANE. We shall conclude this section by
restating a special case of Theorem 16 that plays a crucial role in Section 6.
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Theorem VII.17. All nonempty nonsingular conics in RP
2 are projectively equivalent. In fact,

they are equivalent to the affine unit circle which is defined by the homogeneous coordinate
equation x2

1 + x2
2 − x2

3 = 0.

Proof. We must consider all Γp,q with p ≥ q and p + q = 3 (this is the condition for the
singular set to be empty). The only possibilities for (p, q) are (2, 1) and (3, 0). However, Γ3,0 —
the set of points whose homogeneous coordinates satisfy x2

1 +x2
2 +x2

3 = 0 — is empty, so there
is a unique possibility and it is given by Γ2,1, which is the affine unit circle.�

EXERCISES

1. For each projective quadric in Exercise VII.1.3, determine the quadric in RP
3 to which it is

projectively equivalent.

2. Show that the number of projective equivalence classes of hypequadrics in RP
n is equal to

1
4(n+ 2)(n+ 4) if n is even and 1

4(n+ 3)2 if n is odd.

3. For each example below, find a projective collineation of RP
2 that takes the projectivizations

of the following affine conics into the unit circle (with affine equation x2 + y2 = 1).

(i) The hyperbola xy = 4.

(ii) The parabola y = x2.

(iii) The ellipse 4x2 + 9y2 = 36.

(iv) The hyperbola 4x2 − 9y2 = 36.

4. (a) What should it mean for two affine hyperquadrics in R
n to be affinely equivalent?

(b) Prove that every affine hyperquadric in R
n is equivalent to one defined by an equation from

the following list:

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r = 0 (r ≤ n)

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r + 1 = 0 (r ≤ n)

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r + xr+1 = 0 (r < n)

See Birkhoff and MacLane, pp. 261–264, or Section V.2 of the online notes

http://math.ucr.edu/∼res/math132/linalgnotes.pdf
for further information on the classification of affine hyperquadrics.

5. Let Γ be a nonempty nonsingular conic in RP
2. Prove that there are infinitely many points

X such that no line through X is tangent to Γ, but if a point X 6∈ Γ lies on a tangent line to
Γ then there is also a second tangent line to Γ through X, and there is also a line through X

which does not meet Γ. [Hint: Why does it suffice to prove these for the unit circle, and why
are the statements true in that case? Note that for each point at infinity there is a tangent line
to the unit circle.]
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5. Duality and projective hyperquadrics

In this section we shall show that the duality properties for geometrical subspaces of coordinate
projective spaces are part of a larger pattern of duality which includes hyperquadrics. As in
most other sections of these notes, F will denote a (commutative) field in which 1 + 1 6= 0.

Definition. A hypersurface of the second class in (FP
n)∗ is the set F of all hyperplanes H

whose homogeneous coordinates θ satisfy a homogeneous quadratic equation

θBTθ = 0.

If we write θ = (u1, · · · , un+1) and B has entries bi,j, this is equivalent to the scalar equation
∑

i,j bi,juiuj = 0.

The dual of a tangent line is a cotangent (n−2)-subspace V contained in a hyperplane H which
belongs to the hypersurface F. The cotangent condition becomes an assertion that exactly one
of the following two statements is valid:

(i) H is the only hyperplane in F containing V .

(ii) Every hyperplane in F contains V .

In the first case we say that H is a nonsingular hyperplane in F, and in the second we say that
H is a singular hyperplane in F.

By duality the set of all cotangent (n − 2)-spaces at a nonsingular hyperplane is the set of all
(n−2)-spaces through a point called the point of contact of F at H. This point has homogeneous
coordinates BTθ.

Nonsingular hyperquadrics and nonsingular hypersurfaces of the second class satisfy the following
useful interrelationship:

Theorem VII.18. (i) The set of all hyperplanes TΣ tangent to a nonsingular hyperquadric Σ
is a hypersurface of the second class.

(ii) The set of all points of contact KF to a nonsingular hypersurface F of the second class is a
nonsingular hyperquadric.

(iii) In the setting of the preceding two statements, we have KTΣ = Σ and TKF = F.

Proof. (i) Suppose Σ is defined as the set of all X whose homogeneous coordinates satisfy
TξAξ = 0. We claim that H lies in TΣ if and only if its homogeneous coordinates θ satisfy
θA−1 Tθ = 0.

Suppose that H ∈ TΣ. Let X be a point such that H is the tangent hyperplane to X, and let
θ and ξ be homogeneous coordinates for H and X respectively. Then we have θ = TξA, and
hence

θA−1Tθ =
(

TξA
)

θA−1(Aξ) = TξAξ = 0

which is what we wanted to prove.

Conversely, suppose that homogeneous coordinates θ for H satisfy the equation

θA−1 Tθ = 0 .



164 VII. HYPERQUADRICS

Let ξ = A−1Tθ, and let X have homogeneous coordinates ξ. Then θ = TξA and
TξAξ = TξAA−1Aξ = θA−1 Tθ = 0

so that H lies in TΣ.

Finally, note that TΣ is nonsingular because it is defined by the invertible matrix A−1.�

(ii) The statement about KF follows by duality. It remains to show that KTΣ = Σ. Howver,
if Σ is defined by the invertible matrix A, then TΣ is defined by the inverse matrix A−1, and
therefore by duality it follows that KTΣ is defined by the matrix

(

A−1
)−1

= A

and hence it must be equal to Σ.

Finally, the assertion TKF = F follows by duality.�

Extending duality to nonsingular hyperquadrics. The preceding theorem implies the
following general principle:

Augmented Principle of Duality. A statement about coordinate projective n-spaces over
fields remains true if — in addition to the previously specified interchanges involving geomet-
rical subspaces — one interchanges the phrases point on a nonsingular hyperquadric and tangent

hyperplane to a nonsingular hyperquadric.�

Important examples of this extended dualization will be given in the next (and final) section of
these notes.

EXERCISES

1. Find the equations defining the tangent lines to the projectivizations of the following affine
conics:

(i) The parabola y2 = 4ax.

(ii) The ellipse a2x2 + b2y2 = a2b2.

(iii) The hyperbola a2x2 − b2y2 = a2b2.

(iv) The hyperbola xy = a.

2. Find the equation defining the conic in RP
2 whose tangent lines satisfy the equation

u2
1 − 2u1u2 + u2

2 2u2u3 + 2u1u3 + u2
3 = 0 .

[Hint: Look at the proof of Theorem 18.]

3. Write out the plane dual to the following statements about conics in the projective plane
P:

(i) At the points X and Y on the nonsingular conic Γ, the respective tangent lines L and M

meet at a point Z.

(ii) No three points of the nonsingular conic Γ are collinear.
(iii) There are two lines in the (projective) plane P that are tangent to both of the nonsingular
conics Γ1 and Γ2.
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6. Conics in the real projective plane

Projective conics have a great many interesting properties, the most famous of which is Pas-
cal’s Theorem (see Theorem 24 below). A thorough discussion of projective conics appears in
Coolidge, A History of the Conic Sections and Quadric Surfaces. In this section we shall limit
ourselves to proving a few of the more important and representative theorems in the subject.

Throughout this section we shall be considering coordinate projective planes over a fixed field F

in which 1 + 1 6= 0. We shall also assume that F is not isomorphic to Z3 after Theorem 22. Of
course, this means that all the results in this section are valid in the real and complex projective
planes.

Theorem VII.19. Given any five points in FP
2, no three of which are collinear, there is a unique

conic containing them. Furthermore, this conic is nonsingular.

Proof. Let A, B, C, D, E, V be five points, no three of which are collinear. We shall first
prove the result in a special case and then prove that it holds more generally.

Case 1. Suppose that homogeneous coordinates α, β, γ, δ for A, B, C, D are given by
standard values:

α =





1
0
0



 β =





0
1
0



 γ =





0
0
1



 δ =





1
1
1





Since no three of the five points are collinear, homogeneous coordinates for V are given by
a0α+b0β+c0γ, where none of a0, b0, c0 is equal to zero. Dividing by a0, we can find homogeneous
coordinates ψ for V such that ψ = α + bβ + cγ. Since V 6∈ AD, the scalars b and c must be
distinct.

Suppose there is a conic Γ containing A, B, C, D, E, V and that it is defined by the symmetric
3 × 3 matrix P . We need to determine the entries pi,j from the equations TξPξ = 0, which
should hold for ξ = α, β, γ, δ, ψ. If ξ = α, then direct substitutions implies that p1,1 = 0.
Likewise, if we make the substitutions ξ = β and ξ = γ we find that p2,2 = p3,3 = 0. Continuing
in this manner, if we make the substitution ξ = δ and use the previously derived values for the
diagonal entries, we find that

2 · (p1,2 + p2,3 + p1,3) = 0

and if we follow this with the substitution ξ = ψ we also obtain the equation

2 · (b p1,2 + bc p2,3 + c p1,3) = 0 .

Thus the entries of the symmetric matrix P satisfy the following conditions:

p1,1 = p2,2 = p3,3 = 0

p1,2 =
(1 − b)c

b− c
p2,3 p1,3 =

(1 − c)b

c− b
p2,3
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Therefore the coefficients of P are uniquely determined up to a scalar multiple, and it follows
that there is at most one conic containing the given five points. On the other hand, if we set

P =





0 (1 − b)c b(c− 1)
(1 − b)c 0 b− c

b(c− 1) b− c 0





then the preceding calculations show that the given five points lie in the conic defined by P .

To prove that the conic is nonsingular, it suffices to show that the determinant of the matrix
P defined above is nonzero. First note that V 6∈ CD and V 6∈ BD imply b 6= 1 and c 6= 1
respectively. Thus the determinant of P , which is

2 (1 − b)c(b − c)b(b− 1)

must be nonzero, proving that the conic is nonsingular.�

Case 2. Suppose that A, B, C, D, E, V are arbitrary. By the Fundamental Theorem of
Projective Geometry, there is a projective collineation Φ such that

Φ(A), Φ(B), Φ(C), Φ(D), Φ(E), Φ(V )

satisfy the conditions of Case 1. Let Γ0 be the unique nonsingular conic given by Case 1; then
Γ = Φ−1[Γ0] is a nonsingular conic containing A, B, C, D, E, V by Theorem 12, proving
existence. To show uniqueness, suppose that Γ′ is another conic containing the given five points;
then Φ[Γ′] is a conic containing Φ(A), Φ(B), Φ(C), Φ(D), Φ(E), Φ(V ) and therefore by Case
1 we have Φ[Γ′] = Γ0. Consequently, we have Γ′ = Φ−1 oΦ[Γ′] = Φ−1[Γ0] = Γ.�

If F is not isomorphic to Z3 then there is a converse to the preceding theorem; namely, every
nonsingular conic contains at least five points (see Theorem 21). In fact, no three of these points
can be collinear, for the noncollinearity of three arbitrary points on a nonsingular conic will be
a consequence of the next result.

Theorem VII.20. No three points on a nonsingular conic are collinear.

Proof. Let A, B, C be three collinear points. We claim that every conic containing all three
of them is singular. By the Fundamental Theorem of Projective Geometry and Theorem 12, it
suffices to consider the case in which homogeneous coordinates α and β for A and B are the
first two unit vectors in F

3,1.

By Theorem V.7, homogeneous coordinates γ for C may be chosen so that γ = α+ c γ, where
c 6= 0. If the conic Γis defined by the symmetric 3 × 3 matrix P , then computations like those
of Theorem 19 imply that p1,1 = p2,2 = 0 and 2c p1,2 = 0. Thus P has the following form:

P =





0 0 p1,3

0 0 p2,3

p1,3 p2,3 p3,3





However, direct computation shows that such a matrix is not invertible, and therefore the conic
Γ is singular by Theorem 5.�

Here is the other result we need to establish a converse to Theorem 19:
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Theorem VII.21. Let Γ be a nonempty conic in FP
2 containing at least one nonsingular point,

and assume that the field F contains at least n distinct elements. Then Γ contains at least (n+1)
distinct points.

In particular, if F is not isomorphic to Z3, then Γ contains at least five distinct points (note that
F cannot be isomorphic to Z2 because we are assuming that 1 + 1 6= 0 in F).

Proof. Let X ∈ Γ be a nonsingular point, and let L be the tangent line through X. Then
there are at least n other lines through X, say L1, · · · , Ln. Since each Li is not a tangent line
and X ∈ Li ∩ Γ, there must be a second point Xi ∈ Li ∩ Γ. 

 
 

 

Figure VII.1

If i 6= j, then Xi 6= Xj because otherwise Li and Lj would have two points in common and we
know these lines are distinct. Therefore the points X, X1, · · · , Xn must be distinct points of
Γ.�

A synthetic approach to conics

The theorem above give an incidence-theoretic characterization of nonsingular conics and suggest
that synthetic methods might be useful in the study of conics. The next two theorems give a
completely synthetic characterization of nonsingular conics due to J. Steiner.9

From this point on, unless stated otherwise, we shall assume that the field F is not isomorphic
to Z3.

Theorem VII.22. Let A and B be distinct points in FP
2, and let Φ be a projective collineation

of FP
2 sending A to B. Then

K = {X ∈ FP
2 | X = A or X ∈ Φ(L) ∩ L for some line L through A}

is a conic. (Notice that B ∈ K, for we may take L = AB in the definition).

9
Jakob Steiner (1796–1863) is known for his work on projective geometry from a strongly synthetic view-

point and for results in other branches of geometry.
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Proof. Let P be an invertible 3 × 3 such that if ξ is a set of homogeneous coordinates for X,
then Φ(X) = F · Pξ. Also, let α be a set of homogeneous coordinates for A, and let β be a set
of homogeneous coordinates for B such that β = P · α.

We need to find a homogeneous quadratic equation which defines K. By Exercise V.1.5, if L is a
line in FP

2 and has homogeneous coordinates λ, then the line Φ[L] has homogeneous coordinates
λP−1. Thus X ∈ K if and only if X = A or its homogeneous coordinates ξ satisfy

ξ = T
(

λP−1
)

× Tλ

for some line L whose homogeneous coordinates λ satisfy λ · α = 0. Equivalently, we have
X ∈ K if and only if X = A or

λP−1ξ = λ · ξ = λ · α = 0 .

It follows that X ∈ K if and only if α, ξ and p−1ξ are linearly dependent (the case X 6= A

is immediate from the preceding three equations, while the case X = A is trivial). Since P
defines an invertible linear transformation, the vectors α, ξ and P −1ξ are linearly independent if
and only if β = P ·α, P · ξ and ξ = P P−1ξ are linearly independent. The linear dependence
of the latter is in turn equivalent to the vanishing of the determinant [ξ, P ξ, β]. But the latter
expression is a homogeneous quadratic polynomial in the entries of ξ and hence it is the defining
equation of a conic.�

Conversely, every nonsingular conic is defined by a projective collineation as in Theorem 22.

Theorem VII.23. (Steiner) Let Γ be a nonsingular conic in FP
2 containing at least five

distinct points, and let A and B be distinct points of Γ. Then there is a projective collineation
Φ of FP

2 sending A to B such that

Γ = {X ∈ FP
2 | X = A or X ∈ Φ(L) ∩ L for some line L through A} .

Proof. Let X, Y, Z be three points of Γ which are distinct from A and B. By Theorem
20, no three of the points A, B, X, Y, Z are collinear. Thus there is a unique projective
collineation Φ sending A to B and X, Y, Z to themselves. By Theorem 22, the points A, B
and the collineation Φ determine a conic Γ′ defined by the formula above. By construction the
three points X, Y, Z lie on Γ′, and therefore Γ = Γ′ by Theorem 12.�

NOTATION. If Γ is a conic and A, B ∈ Γ, then the collineation Φ of Theorem 23 is called a
Steiner collineation associated to A, B and Γ. We note that this collineation is not unique, for
different choices of the three points X, Y, Z yield different collineations.

Conics and inscribed polygons

Definition. Let P1, · · · , Pn be n ≥ 3 points in FP
2 such that no three are collinear. The

simple (projective) n-gon P1 · · · Pn is defined to be

P1P2 ∪ · · · ∪ Pn−1Pn ∪ PnP1 .

Dually, if L1, · · · , Ln is a set of n ≥ 3 lines such that no three are concurrent, the dual of a
simple n-gon is the finite set of points determined by the intersections Li ∩ Li+1 and Ln ∩ L1

(i.e., a set of n points such that no three are collinear), and the union of the lines is the simple
n-gon determined by these n points.
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The following result due to B. Pascal10 is one of the most celebrated theorems in projective
geometry:

Theorem VII.24. (Pascal’s Theorem) Suppose that Γ is a nonsingular conic in FP
2 and let

the simple hexagon A1 · · · A6 be inscribed in Γ (in other words, Ai ∈ Γ for all i). Let

X ∈ A1A2 ∩ A4A5 , Y ∈ A2A3 ∩ A5A6 , Z ∈ A3A4 ∩ A6A1 .

Then X, Y and Z are collinear.

The line containing these three points is called the Pascal line of the hexagon.

 

 
 

Figure VII.2

We have stated Pascal’s Theorem for nonsingular conics, but a version of the result is also true
for singular conics given by the union of two lines, provided the hexagon is degenerate in the
sense that {A1, A3, A5} lie on one line and {A2, A4, A6} lie on the other. In such a situation,
the conclusion of Pascal’s Theorem reduces to the conclusion of Pappus’ Theorem, and hence
one can view Pappus’ Theorem as a special case of Pascal’s Theorem.11

SPECIAL CASE. Suppose that Γ in RP
2 is given by the ordinary unit circle and A1 · · · A6

is a regular hexagon which is inscribed in Γ. Then it is clear that A1A2||A4A5, A2A3||A5A6

and A3A4||A6A1 (see the illustration below — note that A1, A2, A3, A4, A5, A6 correspond
to A, B, C, D, E, F in the drawing), so that X, Y and Z are all ideal points and the Pascal
line is equal to the line at infinity.

10
Blaise Pascal (1623–1662) is known for contributions to a wide range of areas in the mathematical and

physical sciences as well as philosophy. Aside from the theorem appearing here, he is particularly recognized for
scientific work on fluid mechanics, probability theory, a counting machine which was the prototype for devices
like mechanical odometers, as well as the philosophy of science. Most of his philosophical writings were highly
religious in nature.

11And this is why French and German writers often use phrases translating to “Pascal’s Theorem” when
referring to the result known as Pappus’ (Hexagon) Theorem in the English language.
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Figure VII.3

Proof of Pascal’s Theorem (= Theorem 24). By Steiner’s Theorem there is a projective
collineation Φ such that Φ(A1) = A5 and Φ also has the following properties:

Φ[A1A4] = A5A4 Φ[A1A2] = A5A2 Φ[A1A3] = A5A3

Φ[A1Z = A1A6] = A5A6 = A5Y

As suggested by Figure VII.2, we define B1 to be the point at which A2A3 meets A4A5, and we
define B2 to be the point at which A3A4 meets A1A2. Since Φ is a projective collineation, by
Exercise VI.3.3 we have the following cross ratio equations:

XR (A1A4, A1A3, A1B2, A1Z) = XR ( Φ[A1A4], Φ[A1A3], Φ[A1B2], Φ[A1Z] ) =

XR (A5B1, A5A3, A5A4, A5Y )

By construction, the points Z and B2 are on A3A4, and the points Y and B1 are on A − 2A3.
Therefore Theorem V.14 implies that the first cross ratio in the displayed equation is equal to
XR(A4, A3, B2, Z) and the second is equal to XR(B1, A3, A2, Y ), so that

XR(A4, A3, B2, Z) = XR(B1, A3, A2, Y ) .

Since A4B1 = A4A5 and B2A2 = A1A2 it follows that X ∈ A4B1 ∩ A3X ∩ B2A2. Thus
we also have

XR(B1, A3, A2, Y ) = XR(A4, A3, B2,W )

where W ∈ A3A4 ∩XY . But the right hand side of the equation is also equal to the cross ratio
XR(A4, A3, B2,W ), and therefore W = Z by Theorem V.10. In particular, this implies that

Z ∈ A3A4 ∩ XY

so that X, Y and Z are collinear.�

If we now apply the Augmented Principle of Duality formulated in Section V, we immediately
obtain the following result (Brianchon’s Theorem),12 which was originally established without
using duality:

12
Charles Julien Brianchon (1783–1864) worked in mathematics and chemistry; in mathematics he is

known for rediscovering Pascal’s Theorem and proving the result which bears his name.
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Theorem VII.25. (Brianchon’s Theorem) Suppose that Γ is a nonsingular conic in FP
2 and

let the simple hexagon A1 · · · A6 be circumscribed about Γ (in other words, the lines AiAi+1 are
tangent to Gamma for all i, and likewise for A6A1). Then the lines A1A4, A2A3 and A2A3 are
concurrent.�

The point of concurrency is called the Brianchon point.

SPECIAL CASE. Suppose that Γ in RP
2 is given by the ordinary unit circle and A1 · · · A6

is a regular hexagon which is inscribed in Γ. Then the Brianchon point is the center of the circle. 
 

 

Figure VII.4

There is also a converse to Pascal’s Theorem (and hence, by duality, there is also a converse to
Brianchon’s Theorem).

Theorem VII.26. Let A1 · · · A6 be a simple hexagon, and let X, Y, Z be defined as in Pascal’s
Theorem. If these three points are collinear, then there is a conic Γ such that Ai ∈ Γ for all i.

By Theorem 19, if there is a conic containing the given six points, then it must be nonsingular.

Proof. Let Γ be the unique nonsingular conic containing the first five points A1, · · · , A5 and
let Φ be the Steiner collineation for Γ with Φ(A1) = A5 and Φ[A1Aj ] = A5Aj for j = 2, 3, 4.
It will suffice to prove that Φ[A1A6] = A5A6. Let B1 and B2 be defined as in the proof of

Pascal’s Theorem. Since {A4, A3, B2, Z} and {B1, A3, A2, Y } are quadruples of collinear points
and

X ∈ A4B1 ∩ A3 ∩ A2B2 ∩ Y Z

Theorem V.14 implies that

XR(A4, A3, B2, Z) = XR(B1, A3, A2, Y ) .

This in turn implies the following equation:

XR(A1A4, A1A3, A1B2, A1Z) = XR(A5B1, A5A3, A5A2, A5Y )



172 VII. HYPERQUADRICS

Since A1B2 = A1A2, A1Z = A1A6, A5B1 = A5A4 and A5Y = A5A6, the equation above
may be rewritten as follows:

XR(A1A4, A1A3, A1A2, A1A6) = XR(A5A4, A5A3, A5A2, A5A6)

On the other hand, since Φ is a projective collineation, the right hand side is equal to the
following:

XR
(

Φ[A1A4], Φ[A1A3], Φ[A1A2], Φ[A1A6]
)

= XR(A5A4, A5A3, A5A2,Φ[A1A6] )

Therefore it follows that Φ[A1A6] = A5A6, which is what we needed to verify in order to
complete the proof.�

The statement of the dual theorem to Theorem 26 is left to the reader (see the exercises).�

Degenerate cases of Pascal’s Theorem

There are analogs of Pascal’s Theorem for inscribed simple n-gons where n = 3, 4, 5 (and by
duality there are similar analogs of Brianchon’s Theorem). Roughly speaking, these are limiting
cases in which two consecutive vertices merge into a single point and the line joining the two
points converges to the tangent line at the common point. The proofs of these theorems require
a simple observation about Steiner collineations.

Theorem VII.27. Let Γ be a nonsingular conic, let A and B be points of Γ, and let Φ be a
Steiner collineation for Γ such that Φ(A) = B. If TA is the tangent line to Γ at A, then
Φ[TA] = AB; if TB is the tangent line to Γ at B, then Φ[AB] = TB.

Proof. Since B ∈ Φ[TA], we know that Φ[TA] = BC for some point C. If D ∈ Φ[TA] ∩ BC,
then D ∈ Γ by construction. But the only point in TA ∩ Γ is A itself, and therefore we must
have BC = BA. Since Φ−1 is a Steiner collineation for Γ taking B to X, it follows that
Φ−1[TB ] = AB, which is equivalent to the desired equation Φ[AB] = TB.�

Here are the analogs of Pascal’s Theorem for inscribed pentagons and quadrilaterals; note that
there are two separate analogs for quadrilaterals.

Theorem VII.28. Suppose that Γ is a nonsingular conic in FP
2 and let the simple pentagon

A1 · · · A5 be inscribed in Γ. Let

X ∈ A1A2 ∩ A4A5 , Y ∈ A2A3 ∩ A5A1 , Z ∈ A3A4 ∩ TA1
.

Then X, Y and Z are collinear.

Theorem VII.29. Suppose that Γ is a nonsingular conic in FP
2 and let the simple quadrilateral

A1 · · · A4 be inscribed in Γ. Let

X ∈ TA1
∩ A2A4 , Y ∈ A1A2 ∩ A3A4 , Z ∈ TA2

∩ A1A3 .

Then X, Y and Z are collinear.

Theorem VII.30. Suppose that Γ is a nonsingular conic in FP
2 and let the simple quadrilateral

A1 · · · A4 be inscribed in Γ. Let

D ∈ A1A3 ∩ A2A4 , E ∈ A1A4 ∩ A2A3 , F ∈ TA1
∩ TA2

.

Then D, E and F are collinear.
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The proofs of these theorems are easy variants of the proofs of Pascal’s Theorem and are left to
the reader as exercises.�

Similarly, formulations and proofs of the duals to all these results are left to the reader as
exercises.�

The final degenerate case of Pascal’s Theorem requires a special argument. As noted in Appendix
A, the cross product of vectors in F

3 satisfies the following condition known as the Jacobi Identity
(see Theorem A.21):

a× (b× c) + b× (c × a) + c × (a × b) = 0 .

Theorem VII.31. Let ABC be a (projective) triangle inscribed in the nonsingular conic Γ. Let

D ∈ TA ∩ BC , E ∈ TB ∩ AC , F ∈ TC ∩ AB .

Then D, E and F are collinear.

Proof. By Theorems 5, 10 and 14, the nonsingular conic Γ is projectively equivalent to one
defined by an equation of the form ax2 + by2 + cz2 = 0 where none of the coefficients a, b, c
is equal to zero. Dividing these by a suitable constant, we may assume c = −1. Therefore it
suffices to prove the result for conics defined by equations of the form ax2 + by2 − z2 = 0.

Let ρ be the 1 × 3 matrix (0 0 − 2). If X ∈ Γ and has homogeneous coordinates

ξ = T(x1 x2 x3)

then homogeneous coordinates for the tangent line TX to Γ at X are given by ξ# = Tξ + x3 ρ.

Let α, β, γ denote homogeneous coordinates for A, B, C, and let α#, β#, γ# denote corre-
sponding homogeneous coordinates for the tangent lines TA, TB and TC . It will suffice to show
that the vectors

α# × (β × γ) , β# × (γ × α) , γ# × (α× β)

are linearly dependent. However, their sum is equal to
[

α × (β × γ) + β × (γ × α) + γ × (α× β)
]

+

Tρ ×
(

a3 (β × γ) + b3 (γ × α) + c3 (α× β)
)

and we claim that this sum vanishes. The term in square brackets vanishes by the Jacobi
Identity; to analyze the remaining term(s), we may use the “back–cab formula”

Tρ × (η × ζ) = (ρ · ζ)η − (ρ · η)ζ = 2(z3 η − y3ζ)

to see that the expression
Tρ ×

(

a3 (β × γ) + b3 (γ × α) + c3 (α× β)
)

is a sum of six terms that cancel each other in pairs.�

As before, the formulation of the dual theorem is left to the reader as an exercise.�



174 VII. HYPERQUADRICS

EXERCISES

1. Prove that the conclusion of Theorem 21 is still valid if Γ is completely singular, provided
it contains at least two points. [Hint: The set of singular points is a geometrical subspace.]

2. Find the equations of the conics in RP
2 which pass through the following five points: with

the following homogeneous coordinates:

(i) The five points with the following homogeneous coordinates:
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(ii) The five points with the following homogeneous coordinates:
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3. Let Φ be the collineation of RP
2 sending the point with homogeneous coordinates T(1 1 2)

to T(2 2 1), and the lines with homogeneous coordinates

(2 0 − 1) (1 − 1 0) (1 1 − 1)

to the lines with homogeneous coordinates

(1 0 − 2) (1 1 − 4) (1 2 − 6)

respectively. Find the equation of the conic Γ for which Φ is a Steiner collineation (using
Theorem 22).

4. Let Γ be the ellipse defined by the affine equation x2 + 3y2 = 4 in R
2 (hence its

projectivization has no ideal points). If T is the unique projective collineation of RP
2 sending

J(±2, 0) and J(0,− 2
3

√
3) to themselves, and sending J(−1, 1) to J(1, 1), then T is a Steiner

collineation for Γ. Likewise, if S is the unique projective collineation of RP
2 sending J(±2, 0)

and J(0, 2
3

√
3) to themselves, and sending J(−1, 1) to J(1, 1), then S is also a Steiner collineation

for Γ. Show that S and T must be distinct projective collineations. [Hint: If S = T , then this
map fixes the four points on Γ where it meets the x- and y-axes. What does the Fundamental
Theorem of Projective Geometry imply about S = T in this case?]

5. State the duals of Theorems 19, 21 and 27–31 (the duality principle implies that these dual
results are automatically valid).

6. Prove Theorems 27–30 and their converses.

7. In each of Theorems 27–31, find the line containing the given intersection points if the
simple polygon is a regular polygon in the Euclidean plane. Similarly, in the duals of Theorems
27–31, find the points of concurrency for the same polygons.

8. Let Γ be a nonsingular conic in FP
2, and let {A,B,C} and {A′, B′, C ′} be two disjoint

noncollinear sets of points on Γ. Prove that the lines AA′, BB′ and CC ′ are concurrent. — A
drawing and hints appear on the next page.
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Figure VII.5

[Hint: Define X, Y, Z and X ′, Y ′, Z ′ as suggested in the figure. First prove that AA′, XX ′

and Y Y ′ are concurrent using Pascal’s Theorem. Clearly corresponding results hold for BB ′

and CC ′. Let U ∈ C ′Y ∩BX ′, and prove that Z ′, U and Q are collinear by Pappus’ Theorem.
Also show that ZU , BB ′ and CC ′ are concurrent using Pappus’ Theorem for {C ′, X ′, B} and
{B, Y,C}. Finally, apply Pascal’s Theorem to AB ′C ′A′BC to show that BB ′, CC ′ and ZZ ′

are concurrent. Using similar results for XX ′ and Y Y ′ and the previous concurrency relations
involving AA′, BB′ and CC ′, prove that all six lines are concurrent.]

What is the dual of the preceding result?

9. Let Γ, {A,B,C} and {A′, B′, C ′} be as in Exercise 8. Prove that the six lines determined
by the triangles ABC and A′B′C ′ form the sides of a hexagon that is tangent to another conic.
[Hint: The hexagon is Y ′X ′ZYXZ ′. Apply the converse to Brianchon’s Theorem.]

10. Show that a set of six points on a nonsingular conic Γ determines sixty simple hexagons (in
general these sixty hexagons have distinct Pascal lines, and the footnote on page 152 of Fishback
contains further information on the totality of all such configurations).

A conic in FP
2 is said to be nondegenerate if it is not equal to a line or a point

and degenerate otherwise.

11. Suppose that the field F satsifies 1 + 1 6= 0 and contains at least four elements, and let
Γ1 and Γ2 be distinct nondegenerate conics in FP

2. Prove that Γ1 and Γ2 consists of at most
four points. [Hint: If both are nonsingular, explain why the conclusion follows from Theorems
19 and 20. On the other hand, if a conic is singular, why is it equivalent to a conic defined
by a homogeneous quadratic equation of the form x2

1 + dx2
2 = 0? Explain why such a conic

is nondegenerate if and only if −d is a nonzero perfect square in F, and in this case it is a
pair of intersecting lines. What is the maximum number of points in which a nonsingular conic
intersects a union of two lines, and what is the maximum number of points in (L1∪L2)∩(L3∪L4)
if the sets Li are all lines?]
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NOTE. Among other things, this justifies a basic principle in high school alge-
bra regarding solutions of systems of two quadratic equations in two unknowns;
namely, systems of two independent equations have at most four simultaneous
solutions.

Generalizations of the preceding exercise. There are generalizations in two directions.
One can consider n independent polynomial equations in n unknowns, and one can consider
polynomials of arbitrary positive degrees. Furthermore, it is also possible to consider projec-
tivized versions of the question with n independent equations that are homogeneous polynomials
of n + 1 variables (in other words, the degrees of all the monomial summands are the same);
the previously discussed situations may be viewed as specializations of the projective equations
in which the last homogeneous coordinate is set equal to 1. A general version of a result called
Bézout’s Theorem 13 implies that the number of solutions for such a system is at most d1 · · · dn,
where di is the degree of the ith polynomial. Our result for two quadratic equations required
an assumption that 1 + 1 6= 0 in the field F, and for equations of higher degree it is generally
necessary to make an assumption on the characteristic of F, which is either the least positive
integer k such that a sum of k copies of 1 with itself is zero or else it is 0 if no such sum is
equal to zero (as is the case for the rationals, real numbers and complex numbers). Further
information on Bézout’s Theorem is contained in the following online reference:

http://en.wikipedia./org/wiki/B%C3%A9ezout’s theorem

The classical version of Bézout’s Theorem is also covered book by Bumcrot in the bibliography,
and the general case is covered in the book by Blum, Cucker, Shub and Smale.14

13The name is pronounced “bay-zoo.” Étienne Bézout (1730–1783) is mainly known for the theorem
bearing his name, and he also wrote several texts that were widely used.

14
Stephen Smale (1930–), pronounced “smail,” is known for fundamental work in geometric topology, the

qualitative behavior of solutions to ordinary differential equations, and the theory of computability for solutions
to mathematical problems.


