
APPENDIX E

ADDITIONAL MATERIAL ON HYPERQUADRICS

This Appendix discusses two issues that were mentioned in Section VII.2. The first relates the
notion of tangent space in Section VII.2 to the standard concepts of tangent lines and planes
that one encounters in single variable and multivariable calculus. In particular, we show that
nonsingularity in the sense of the notes is equivalent to the usual nonsingularity conditions in
calculus which are given by the nonvanishing of certain Jacobian determinants, and the tangent
hyperplanes defined in these notes coincide with the notions of tangent hyperplanes that one
sees in calculus courses, provided the points in question are nonsingular (there is some difference
between the notion of tangent space in these notes and standard notions of tangents at singular
points, but a discussion of such matters is beyond the scope of these notes). One reference for
background material in multivariable calculus is the following standard textbook:

J. E. Marsden and A. J. Tromba. Vector Calculus. (5th Ed.). W. H.
Freeman & Co., New York NY, 2003. ISBN: 0–7147–4992–0.

The second topic in this Appendix concerns the determination of which matrices define the same
hyperquadric. By Theorem VII.6, in many cases (including all nonsingular hyperquadrics) two
symmetric matrices define the same projective hyperquadric if and only if one is a nonzero scalar
multiple of the other. In Section E.2 we extend this theorem to some other cases and indicate
how it fails in others.

DEFAULT HYPOTHESIS. As in Chapter VII, unless stated otherwise we assume that F is a
(commutative) field such that 1 + 1 6= 0 in F.

1. Tangent hyperplanes and differential calculus

We begin by discussing nonsingularity for affine hyperquadrics from the viewpoint of multivari-
able calculus. More generally, if we are given a smooth function f : R

n → R (i.e., continuous
partial derivatives), and V ⊂ R

n is the set of solutions to the equation f(x) = 0, we want
to formulate a mathematical condition which means that x is not a singular (or exceptional or
special) point of V . For example, we expect this to mean that V has no corners or branches at
x.

EXAMPLE 1. Let f(u, v) = v3 − u2, and let x = (0, 0). Then x has a 180◦ corner — or cusp
— at x

 
 

 

Figure E.1
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EXAMPLE 2. Let f(u, v) = v2 − u2, and let x = (0, 0). Then f has two branches (i.e., a
node) at x

 

 

Figure E.2

In both examples, the curve is regular — or nonsingular — everywhere else.

In each of the preceding examples, the singular points are precisely the points x ∈ V for which
the gradient ∇f(x) is equal to 0, and in fact the vanishing of the gradient turns out to be
the condition for singularity. The reason of this comes from the Implicit Function Theorem
of multivariable calculus (see Section 3.5 of the book by Marsden and Tromba mentioned at
the beginning of this Appendix). By this theorem, if x ∈ V and ∇f(x) 6= 0, then for points
close to x one of the coordinates u or v can be expressed as a smooth function of the other (in
other words, one can solve for one of the coordinates in terms of the other). Thus if we restrict
to points that are sufficiently close to x the curve V looks locally like the graph of a smooth
function and hence is extremely regular. In the figure below we have

∂F

∂v
(x) 6= 0

and near x we can solve for v in terms of u.
 

 

Figure E.3

It is not always possible to solve globally for one coordinate in terms of the other. The simplest
example is the circle Γ defined by the equation f(u, v) = u2 + v2 − 1 = 0. It is nonsingular at
every point because x ∈ Γ imples that x 6= 0 and ∇f(u, v) = (2u, 2v). However, since many
vertical and horizontal lines meet the circle in two points, there is no way that we can view the
circle globally as the graph of a reasonable (single valued) function.



207

Suppose now that V ⊂ R
n is the set of all x such that f(x) = 0, where f is a function with

continuous first partial derivatives. We shall say that x is an analytically singular point of V if
∇f(x) = 0 and x is an analytically nonsingular point otherwise.

Throughout this discussion, if x is a vector in R
n then we shall denote its coordinates by

x1 , · · · , xn.

Theorem E.1. Let Σ be the hyperquadric in R
n defined by f(x) = 0, where

f(x) =
∑

i,j

ai,jxixj + 2 ·
∑

k

bkxk + c .

Then Σ is analytically singular at x if and only if
(

A Tb

b c

)

·
(

x

1

)

= 0

where A is the matrix of second degree coefficients of f , b is the row vector of first degree
coefficients, and c is the constant term.

Proof. Direct computation shows that the ith coordinate of ∇f(x) is equal to
∑

j

2ai,jxj + 2bi

so that x is an analytically singular point of Σ if and only if each of these expressions is equal
to zero.

If the condition on matrix products
(

A Tb

b c

)

·
(

x

1

)

= 0

is true, then by construction and the formula of the previous paragraph we know that ∇f(x) is
twice the vector whose coordinates are the first n entries of the right hand side, and therefore
we have ∇f(x) = 0, proving the “if” implication in the theorem.

Conversely, suppose that x is an analytically singular point. Then the same reasoning as before
shows that the first n entries of

(

A Tb

b c

)

are zero, so the proof of this implication reduces to showing that the last entry equals zero,
which translates to

∑

i bixi + c = 0. We already know that
∑

j

ai,jxj + bi = 0

for each i, and if we multiply each such equation by the associated coordinate xi and sum over
i we obtain

∑

i,j

ai,jxixj + bixi = 0

and if we subtact this from the given equation f(x) = 0 we obtain the desired equation
∑

i bixi + c = 0.�
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Theorem E.2. The affine hyperquadric in the previous theorem is totally analytically nonsin-
gular if and only if the last column of the matrix

(

A Tb

b c

)

is not expressible as a linear combination of the preceding ones.

Proof. Suppose first that the hyperquadric has a singular point. Let x be the singular point,
and let ki be the ith column of the matrix in the theorem. Then we have

kn+1 = −
∑

i

xiki .

Conversely, suppose that the last column is a linear combination of the others, so that (say) we
have kn+1 =

∑

i yiki. Then
(

A Tb

b c

)

·
(

−y

1

)

= 0

Explicitly, these imply that

(Ai)
∑

ai,j(−yj) + bi = 0,
(B)

∑

bj(−yj) + c = 0 .

In particular we have 0 =
∑

(Ai)(−yi) + (B), which is just the equation

0 =
∑

i,j

ai,j(−yi)(−yj) + 2 ·
∑

k

bk(−yk) + c .

Therefore −y ∈ Σ. Since the ith coordinate of ∇f(−y) is the left hand side of 2(Ai), it follows
also that ∇f(−y) = 0, and therefore −y is a singular point of Σ.�

Using the concepts of Section VII.2, we may reinterpret the preceding results as follows:

Let Σ be an affine hyperquadric in R
n, and let P(Σ) denote its projective exten-

sion. Then the set of singular points of Σ∗ ∩ J(Rn) in the sense of Section VII.2
is equal to the set of analytically singular points of Σ as defined above.

EXAMPLE. There are nonsingular affine quadrics Σ such that Σ has no singular points but
the projective extension Σ∗ has singular points. In particular, the cylinder Σ ⊂ R

3 defined by
the equation x2 + y2 = 1 has no singular points, but its projective extension has a unique
singular point; namely, the ideal point on the z-axis. For this example, the singular point is the
intersection of Σ∗ with the ideal plane.

Tangent spaces and tangents to curves

We begin by recalling the analytic definition of tangent line to a hyperquadric Σ in R
n. Namely,

it was given by x+ R · γ ′(t0), where γ is a smooth curve lying totally in Σ such that γ(t0) = x.
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Theorem E.3. Let Σ ⊂ R
n be a nonsingular hyperquadric, let x ∈ Σ, and let Σ be a line

through x. Then the following are equivalent:

(i) The line L is tangent to Σ in the analytic sense.

(ii) The line L lines on the affine hyperplane of R
n defined by the equation

∑

i,j

ai,jxiuj +
∑

k

bk(vk + xk) + c = 0 .

The second property tells us that the set of points on tangent lines in the analytic sense is
a hyperplane whose projective extension has homogeneous coordinates

∑

ai,jxj + bj and
∑

bkxk + c; i.e., its homogeneous coordinates are given by the following vector:

(

Tx 1
)

·
(

A Tb

b c

)

Note that these are just the homogeneous coordinates for the tangent hyperplane to Σ∗ at J(x)
as defined in Section VII.2.

Proof of the theorem. The fist condition implies the second. For each i let xi(t) denote
the ith coordinate of γ(t), where γ satisfies the conditions in (i). Then by our assumptions we
have

∑

i,j

ai,jxi(t)xj(t) + 2
∑

k

bkxk(t) + c = 0 .

Differentiation with respect to t implies that

2
∑

i,j

xi(t)x
′

j(t) + 2
∑

k

x′

k(t) = 0 .

Let γ′(t0) = (u1, · · · , un) and evaluate the expression above at t = t0. This implies the
equation

2
∑

ai,jxiuj +
∑

k

bkuk = 0 .

To show that L = x + R · u lies in the set defined by the equation in (ii), it suffices to show
that v = x + u lies in this subset. If we divide the equation above by 2 and add

f(x) =
∑

i,j

ai,jxixj + 2 ·
∑

k

bkxk + c

to it, the resulting equation is the one displayed in (ii). To see that this equation is a hyperplane,
observe that ∇f(x) = 0 implies that

∑

ai,jxj + bi 6= 0 for some i.�

Proof that the second condition implies the first. This is a consequence of the following corollary
to the Implicit Function Theorem:

If f is a smooth function of n variables with f(x) = 0 but ∇f(x) 6= 0, then there
is a smooth curve γ such that γ(t) lies in the zero seto of f for all t, and we also
have γ(t0) = x, γ′(t0) = v.

(See Marsden and Tromba, pp. 248–250, for more about this.)

Since ∇f(x) 6= 0 if Σ is nonsingular, the statement above is applicable.�
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2. Matrices defining the same singular hyperquadric

By Theorem VII.6 we know that if Σ is a nonempty nonsingular hyperquadric in FP
n which is

defined by the nonzero symmetric matrices A and B, then A and B are nonzero scalar multiples
of each other. In fact, we know this is also the case if Σ has at least one nonsingular point.
It is natural to ask whether the existence of such a point is needed to prove such a result on
symmetric matrices defining the same quadric. We shall show that the answer depends upon
the algebraic properties of the field F. In particular, one can drop the assumption about a
nonsingular point if F is the complex numbers, but one cannot drop the assumption if F is the
real numbers or the finite field Zp, where p is an odd prime.

At certain points in this section we shall use results from Section VII.4, and Theorem E.7 also
uses some basic facts about fields.

The first result of this section shows that Theorem VII.6 generalizes if F is the field C of complex
numbers.

Theorem E.4. Let F be a field which satisfies the Default Hypothesis, and assume that F is
closed under taking square roots, so that for each a ∈ F there is some b ∈ F such that b2 = a.
Let Σ be a nonempty quadric in FP

n, and let A and B be nonzero symmetric matrices such that
ΣA = Σ = ΣB. Then B is a nonzero scalar multiple of A.

By Theorem VII.6, the proof of this theorem reduces to showing the following result.

Theorem E.5. Let F be a field which satisfies the Default Hypothesis, assume that F is closed
under taking square roots, and let Σ be a nonempty quadric in FP

n. Then Σ has a nonsingular
point.

Proof. By the same argument employed to classify quadrics over the complex numbers
in Section VII.4, there is a projective collineation T of FP

n such that T [Σ] is defined by a
homogeneous quadratic equation of the form

x2
1 + · · · + x2

r = 0

where 2 ≤ r ≤ n + 1 (the proof of Theorem VII.15 only used the existence of square roots and
1 + 1 6= 0). If we can prove the theorem for these special examples of hyperquadrics, then the
general case will follow because T defines a 1–1 correspondence between the nonsingular points
of Σ and the nonsingular points of T [Σ].

Finding a nonsingular point for one of the special hyperquadrics is elementary; specifically, take
the point with x1 = 1, x2 =

√
−1, and all other coordinates equal to zero.�

Although the field of complex numbers is closed under taking square roots, many fields —
including the real numbers — do not have this property, and for such fields the conclusion of
the preceding theorem is almost never valid. More precisely, we have the following result:

Theorem E.6. Let F be a field satisfying the Default Condition at the beginning of this section,
and assume further that at least one element in F is not a perfect square but F is not isomorphic
to Z3. Then for each n ≥ 2 there is a nonempty hyperquadric Σ ⊂ FP

n and symmetric nonzero
(n + 1)× (n + 1) matrices A and B such that ΣA = Σ = ΣB (i.e., Σ is defined by both A and
B),but A and B are not multiples of each other.
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The proof of this theorem depends upon the following purely algebraic result:

Theorem E.7. Let F be a field such that F contains exactly one element which is not a perfect
square. Then F is isomorphic to Z3.

Two comments about this theorem and its proof are worth noting: (i) The proof of the theorem
also goes through if 1+1 = 0 in F. (ii) If F is isomorphic to Z3, then −1 is not a perfect square,
and it is the only element with this property.

Proof of Theorem E.7. Let F
× be the multiplicative abelian group of nonzero elements of

F, let Γ be the quotient of F
× by the subgroup of nonzero elements that are perfect squares in

F, and let θ : F
× → Γ be the canonical projection homomorphism. By construction, if α ∈ Γ

then α2 = 1. Let K be the kernel of θ. By our assumption on F, we know that K is a proper
subgroup of F

×. Let a ∈ F
× be the unique element which does not lie in K.

We claim that the subgroup K is trivial; if this were not the case and b2 is a nontrivial element
of K, then a and ab2 would be distinct elements of F

× that do not lie in K. Combining this
with the discussion in the previous paragraph, we see that every element c ∈ F

× satisfies c2 = 1.

Standard results on roots of polynomials over fields imply that the nontrivial quadratic poly-
nomial x2 − 1 over a field F has at most two roots in F. Since the preceding paragraph shows
that the square of every element of F

× is equal to 1, it follows that F
× contains at most two

elements and hence F contains either two or three elements. It is an elementary exercise to show
that every field of this type is isomorphic to Z2 or Z3 depending upon whether F has two or
three elements. If the field has two elements, then every element is a perfect square, so the only
remaining possibility is that F is isomorphic to Z3.�

Proof of Theorem E.6. By Theorem E.7, one can find distinct elements c, d ∈ F such that
neither is a perfect square in F. Consider the matrices

A =





1 0 0

0 −c 0

0 0 0n−1



 B =





1 0 0

0 −d 0

0 0 0n−1





where 0n−1 is an (n− 1) × (n− 1) zero matrix. It is straightforward to show that both ΣA and
ΣB are equal to the (n−2)-plane in FP

n whose homogeneous coordinates satisfy x1 = x2 = 0.
However, the matrices A and B are not multiples of each other.�

EXAMPLES. 1. If F is the real or rational numbers and a is a negative integer, then a is not
a perfect square in F.

2. More generally, suppose that r < n, and consider sequences α of positive (real or rational)
numbers a2, · · · , ar+1 in F. For each such sequence α let D(α) be the (n+1)× (n+1) diagonal
matrix with diagonal entries

1, a2, · · · , ar+1, 0, · · · , 0 .

For all possible choices of α the hyperquadric ΣD(α) is the same subset of FP
n — namely the

(n − r)-plane defined by xr+1 = · · · = xn+1 = 0 — but no two of the matrices D(α) can be
scalar multiples of each other (since the entries in the first row and first column are always 1, it
follows that the only possible choice of scalar is 1, and this is impossible if the two sequences of
numbers are different).
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3. Also, if F = Zp where p is a prime not equal to 2 or 3, then there are 1
2(p− 1) elements of F

which are not perfect squares in Zp. For example, if p = 5 then 2 and 3 are not perfect squares,
while if p = 7 then 3, 5 and 6 are not perfect squares, and if p = 11 then 2, 6, 7, 8 and 10 are
not perfect squares. Similarly, if p = 13 then 2, 5, 6, 7, 8 and 11 are not perfect squares, and if
p = 17 then 3, 5, 6, 7, 10, 11, 13 and 14 are not perfect squares. Further discussion of the general
case can be found in the books by Davenport (pp. 62–68) and LeVeque (pp. 45–46) cited at the
end of this Appendix.

Final remarks

We shall conclude this section with three very loosely related observations. The first provides
still further examples of real symmetric matrices which define the same hyperquadric but are not
multiples of each other. The second shows that the conclusion to Theorem E.6 is also valid if F

is isomorphic to Z3; this yields a converse to Theorem E.4: If a field F is not closed under taking
square roots, then some nonempty hyperquadric in FP

n (n ≥ 2) is defined by two symmetric
matrices that are not scalar multiples of each other. In contrast, the third observation shows
that if a hyperquadric is definable by two such matrices, then it is a “degenerate hyperquadric”
which is equal to a k-plane for some positive integer k.

1. If F = R, then additional examples as in Theorem 6 are given by the matrix pairs

A =





1 0 0

0 1 0

0 0 0n−1



 B =





1 1 0

1 d 0

0 0 0n−1





where 0n−1 is as above and d > 1. This is true because x2
1 + 2x1x2 + dx2

2 = 0 if and only if
x1 = x2 = 0.

2. For similar reasons, if F = Z3 the matrices given by

A =





1 0 0

0 1 0

0 0 0n−1



 B± =





1 ± 1 0

± 1 −1 0

0 0 0n−1





define the same hyperquadric — namely, the (n−2)-plane in Z3P
n given by the linear equations

x1 = x2 = 0 — even though none of these three matrices is a scalar multiple of another.
In particular, this means that Theorem 6 extends to the case where F is isomorphic to Z3, and
thus it is true for all fields F such that 1 + 1 6= 0 in F but F is not closed under taking square
roots.�

3. By Theorem VII.6, if Σ is a quadric defined by two matrices A and B which are not
multiples of each other, then then every point of Σ is singular. The next to last result of this
section implies that such quadrics are in fact (projective) geometrical subspaces of FP

n.

Theorem E.8. Suppose that the symmetric matrix A defines a hyperquadric Σ ⊂ FP
n such that

every point of Σ is singular. Let W ⊂ F
n+1,1 be the kernel of (left multiplication by) A. Then

Σ is equal to S1(W ), and hence is a (dimW − 1)-plane in FP
n.

Proof. Given X ∈ FP
n, let ξ be a set of homogeneous coordinates for X. If X ∈ S1(W ), then

Aξ = 0 and hence TξAξ = Tξ ·0 = 0, so that X ∈ Σ. Conversely, if X ∈ Σ, then since every
point of Σ is singular we must have TξA = T0, and since A is symmetric this is equivalent to
Aξ = 0, so that ξ ∈ W and X ∈ S1(W ).�
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If we combine his result with Theorem VII.6, we obtain the following conclusion, which yields a
fairly definitive statement on the relationship between hyperquadrics and their defining matrices:

Theorem E.9. Let F be a field in which 1+1 6= 0, let n ≥ 2, and let Σ ⊂ FP
n be a hyperquadric

which is nondegenerate in the sense that it is NOT a (projective) geometrical subspace of FPn.
Suppose that A and B are symmetric (n+1)×(n+1) matrices over F such that ΣA = Σ = ΣB.
Then B and A are (nonzero) scalar multiples of each other.�

In other words, every nondegenerate hyperquadric is defined by a matrix which is unique up to
multiplication by a nonzero scalar.
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