
CLASSIFICATION RESULTS FOR HYPERQUADRICS

This document describes the contents of the files quadrics∗.pdf where ∗ = 1, 2, 3, 4. Ev-
erything in the first document is at the same level as the material in pg-all.pdf in terms of
prerequisites and mathematical complexity, and likewise for the contents of the third document
up to the final subheading (Application to conics in R

2); the latter also uses a variety of standard
concepts about conic sections which generally appear in calculus or precalculus courses but are not
discussed at length. In contrast, the fourth document also uses some input from advanced calculus
(both multivariable calculus and the more rigorous treatment of single variable calculus in various
upper level undergraduate courses and point set topology), and the second document relies heavily
on concepts from algebraic topology.

For the sake of completeness, in this document we shall also include some background material
on the topological aspects of real and complex projective spaces after summarizing the contents of
the other documents in this series.

Summary of the other documents on hyperquadrics

quadrics1.pdf This document describes the classification of hyperquadrics in R
n and C

n up to
affine equivalence; i.e., there is an affine transformation sending one hyperquadric to the other.

quadrics2.pdf The classification results for affine and projective hyperquadrics show that there
are only finitely many homeomorphism types of such objects; i.e., every hyperquadric in n-space is
topologically equivalent to one example from the finite list of examples in the projective and affine
classification theorems. It is a fairly simple exercise to give examples of projectively or affinely
inequivalent hyperquadrics which are topologically equivalent, and this document gives a complete
classification of affine or projective hyperquadrics in real or complex (affine or projective) n-space
up to topological equivalence. Clearly the study of such problems should require some input from
topology, and in fact the approach in this document requires a significant amount of basic material
from graduate level algebraic topology (roughly speaking, all but the final chapter of Hatcher,
Algebraic Topology).

quadrics3.pdf This document gives a complete classification of affine hyperquadrics in R
n up

to congruence and similarity, and it can be viewed as a continuation of the first document, both
in its level of exposition and in its approach. The final subheading considers the special case of
conic section curves in R

2, translating the algebraic classification data into classical, elementary
measurement data for conics.

quadrics4.pdf There are several reasons for expecting that a parabola and one branch of a
hyperbola in R

2 are not congruent or similar, and this document gives a rigorous proof that these
curves are not even affinely equivalent. The proof, which is fairly short, uses point set topology in
several ways; for example, the topological properties of real affine and projective n-spaces, the fact
that affine and projective equivalences are topological equivalences, and the “intuitively obvious”
fact that a circle is not topologically equivalent to a proper subset of itself. As stated above, more
details on the topological background are presented in the remaining pages of this document.
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TOPOLOGICAL ASPECTS OF PROJECTIVE SPACES

For the most part, the notes pg-all.pdf concentrate on the aspects of projective geome-
try which are closely related to linear algebra. However, for many purposes it is necessary to
view real and complex projective spaces as topological spaces; the contents of quadrics2.pdf and
quadrics4.pdf are standard examples of contexts in which topological structure is useful or indis-
pensable. The purpose of this discussion is to define the standard topological structures on RP

n

and CP
n and to establish some of their fundamental properties. In particular, we want to verify

that if F is the real or complex numbers then the set of ordinary points in FP
n is topologically

equivalent to F
n and that that projective collineations of FP

n are homeomorphisms with respect
to the standard topologies on these objects.

We shall use the following book as a reference for undergraduate level point set topology:
W. A. Sutherland. Introduction to Metric and Topological Spaces (Second Edition).
Oxford University Press, 2008.

There is also a companion website for this book

http://www.oup.com/uk/booksites/content/9780199563081/

which contains a great deal of useful supplementary material.

Digression on quotient spaces

It is often useful to think of the finite rings Zn of integers mod n as quotient rings of the
integers, viewing the elements of the former as the equivalence classes of integers with respect
to the relation x ≡ y mod n if and only if n evenly divides y − x. More generally, if we are
given an equivalence relation R on a set X, we may view the set X/R of equivalence classes as
a quotient set of X obtained by dividing out by the equivalence relation. There are many other
examples of this sort in mathematics, where factoring out by an equivalence relation yields a type
of quotient structure associated to the original object. In particular, since coordinate projective
n-spaces over a field are constructed by taking equivalence classes of nonzero vectors in F

n+1, we
can view projective spaces as quotient objects.

From this perspective it is natural to determine if there is some sort of topology on FP
n which

is a quotient of the standard topological structure on F
n+1 − {0}. In fact, if X is a topological

space and R is an equivalence relation on X, then Chapter 15 of Sutherland defines and studies a
canonical quotient topology on X/R.

Formal Definition. If F = R or C, then the standard topology on FP
n is the quotient topology

on the latter obtained from the usual topology on F
n+1−{0} and the quotient projection π to FP

n

viewed as the equivalence classes of the relation x ∼ y if and only if y is a nonzero scalar multiple
of x.

Proposition 15.10 in Sutherland (see pp. 161–164) describes several alternative characteriza-
tions of the standard topology on RP

2; this result has a straightforward generalization to RP
n for

all positive integers n (except for part (e), whose generalization is more complicated but also less
useful).

At various points in our discussion we shall need general results about quotient spaces beyond
those in Sutherland, so we shall state and prove them here.
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In set theory, there is a simple 1–1 correspondence between equivalence relations on a set X
and onto functions from X to some other set Y . If we have an equivalence relation R, then the
projection X → X/R — which sends x ∈ X to its equivalence class — is onto by construction. On
the other hand, if we have an onto function f : X → Y , then we can define an equivalence relation
R(f) with x ∼ y if and only if f(x) = f(y), and it is an elementary exercise to check that there is a
1–1 correspondence between X/R(f) and Y which sends the equivalence class [x] of x to f(x). By
construction, if π : X → X/R is the projection from x ∈ X to its equivalence class [x], then π is
continuous if X/R is equipped with the quotient topology, and in the study of quotient topologies
it is often necessary to consider the following converse question:

Recognition Problem for quotient topologies. Suppose that we are given a continuous onto
mapping f : X → Y , and define Rf as above. What sorts of conditions on f are sufficient to
guarantee that the 1 − 1 correspondence from X/R(f) to Y is a homeomorphism?

The first step in analyzing such questions is to observe that the map from X/R(f) to Y is
always continuous.

PROPOSITION 1. Let g : X → W be a continuous mapping of topological spaces, let R be
an equivalence relation on X, let π : X → X/R be the mapping sending x to its equivalence class
[x] with respect to R, and assume that if x ∼ y with respect to R then g(x) = g(y). Then there is
a unique continuous function g : X/R → Y such that g = g oπ.

Proof. This can be extracted from two results in Sutherland. The existence of a unique mapping
of sets g : X/R → Y follows from Proposition 15.3 (see p. 155), and the continuity of g follows
from Proposition 15.8 (see p. 157) and the continuity of g.

COROLLARY 2. In the setting of the Recognition Problem, the 1 − 1 correspondence from
X/R to Y is continuous.

This follows because the 1–1 correspondence is given by the map f associated to f in the
proposition.

It is not difficult to give examples where the 1–1 correspondence f is not a homeomorphism;
one trivial way of doing so is to take the equivalence relation E on X given by x = y and to define
f to be the identity map from X with the discrete topology to X with the indiscrete topology (so
that f is not a homeomorphism if X has more than one element). It is a routine exercise to verify
that the quotient space projection from X to X/E is a homeomorphism (the latter is essentially X
with the discrete topology), and this implies that the map f cannot be a homeomorphism.

One can also construct examples of onto maps f : X → Y where X and Y are subsets of
R

n but f is not a homeomorphism. Perhaps the simplest example is the map f from [0, 1) to the
unit circle S1 in R

2 which sends t to (cos 2πt, sin 2πt) with R given by the equality relation E such
that t ∼ t′ ⇔ t = t′ (in which case π is again a homeomorphism and f again does not have a
continuous inverse). However, there are many instances in which additional information about f
will guarantee that f is a homeomorphism, and here is a simple but extremely useful result along
these lines:

PROPOSITION 3. Suppose that f : X → Y is continuous and onto, and suppose in addition
that f is EITHER an open mapping (images of open subsets are open) OR a closed mapping (images
of closed subsets are closed). Then the canonical continuous mapping f is a homeomorphism.

As suggested by Definition 15.6 in Sutherland (see p. 157), a continuous mapping satisfying
the conclusion of Proposition 3 is frequently called a quotient map of topological spaces.
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Proof. We need to prove that f
−1

is continuous, and since the f is 1–1 and onto we can do this
by showing that either (i) f sends open subsets of X/R to open subsets of Y , or (ii) f sends closed
subsets of X/R to closed subsets of Y . By construction of the quotient topology a subset of X/R
is open or closed if and only if its inverse image in X is open or closed respectively (the openness
statement is true by definition, and the statement about closed subsets is Exercise 15.7 on page
172 of Sutherland), and the arguments for the two cases will parallel each other.

Suppose first that f is open. If A is open in X/R, then π−1[A] ⊂ X is open, and therefore

f [A] = f
[

π−1[A]
]

will be an open subset of Y . On the other hand, if f is closed, the same reasoning (with “closed”
replacing “open” everywhere) shows that if A is closed in X/R then f [A] will be a closed subset of
Y .

Finally, if we are given a continuous mapping of topological spaces h : X1 → X2 and equivalence
relations Ri on Xi for i = 1 or 2, then we shall need a criterion for concluding that h passes to a
continuous mapping of quotient spaces from X1/R1 to X2/R2.

PROPOSITION 4. Suppose that h : X1 → X2 is a continuous mapping of topological spaces,
let R2 and R2 be equivalence relations on X1 and X2 respectively, and let pii : Xi → Xi/Ri be
the quotient projection. If for all u and v such that u R1 v we also have h(u) R1 h(v), then there
is a unique continuous mapping h∗ from X1/R1 to X2/R2 such that π2

oh = h∗ oπ1.

Proof. Apply Proposition 1 to g = π2
oh.

COMPLEMENT TO PROPOSITION 4. The mapping h∗ is also the unique mapping of
sets such that π2

oh = h∗ oπ1.

This follows from the argument proving Proposition 4 and the purely set-theoretic Proposition
15.3 in Sutherland which was cited earlier.

Continuity and projective collineations

One justification for the definitions of the topologies on the projective spaces FP
n is that

projective collineations from FP
n to itself are always continuous. In fact, one can say substantially

more.

THEOREM 5. If F is R or C, and n is a positive integer, then every projective collineation T
from FP

n to itself is a homeomorphism.

Proof. We shall derive this as a consequence of the Fundamental Theorem of Projective Geometry
(see Chapter VI in pg-all.pdf) and Proposition 4 together with its complement.

By the Fundamental Theorem of Projective Geometry the projective collineation T is defined
by an invertible (n + 1) × (n + 1) matrix A over F. Specifically, if X ∈ FP

n has homogeneous
coordinates ξ, then T (X) has homogeneous coordinates Aξ. In the framework of Proposition 4 and
its complement, if π : F

n+1 − {0} → FP
n is the quotient projection and L(A) is the map from

F
n+1 − {0} to itself given by A, then π oL(A) = T oπ. Therefore we can use Proposition 4 and its

complement to conclude that T is continuous. By definition we know that a projective collineation
is 1–1 onto, so all that remains is to verify that T −1 is continuous. But this follows immediately
because T−1 is also a projective collineation.
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Topological properties of projective spaces

Recall that the standard inclusion j of affine n-space in projective n-space is given as follows: If
θ : F

n → F
n+1−{0} is the map which sends a vector with coordinates (t1, · · · , tn) to (t1, · · · , tn, 1)

then j = π oθ.

PROPOSITION 6. If F is R or C, and n is a positive integer, then the mapping j is 1 − 1,
continuous and open (and hence j maps F

n homeomorphically onto its image, which is open).

Proof. The results of pg-all.pdf imply that j is 1–1, and the factorization j = π oθ implies that
j is a composite of continuous maps and hence continuous itself, so it only remains to show that j
is sends open subsets to open subsets.

Suppose that U ⊂ F
n is open; we want to show that

π−1
[

j[U ]
]

= π−1
[

π[U × {1}]
]

= {(x, t) ∈ F
n × (F − {0}) | t−1x ∈ U}

is open in F
n+1 − {0}. For simplicity of notation we shall denote the displayed subset by W , and

we shall construct a homeomorphism of the open set

F
n × (F − {0}) ⊂ F

n+1 − {0}

to itself such that W is the image of the open subset U × (F − {0}). We can define such a
homomorphism by ϕ(x, t) = (tx, t); its inverse is the map sending (y, t) to (t−1y, t). Since ϕ is a
homeomorphism which sends the open subset U × F− {0}, to W , it follows that the latter is open
and hence the mapping j is open.

In particular, Proposition 6 implies that the set of points at infinity in FP
n is a closed subset.

However, if we combine this proposition with the preceding theorem, we obtain a much stronger
conclusion.

PROPOSITION 7. If F is R or C, and n is a positive integer, then every hyperplane H ⊂ FP
n

is a closed subset. Furthermore, if H is a hyperplane then its complement is dense.

Proof. As noted above, the hyperplane H∞ of points at infinity, which is the complement of the
image of j, is an open subset because j is an open mapping, and as such its image is open. But
if H is an arbitrary hyperplane, then there is a projective collineation of FP

n to itself which sends
H∞ to H. Since a projective collineation is a homeomorphism and homeomorphisms map closed
subsets to closed subsets, it follows that H is a closed subset of FP

n.

To prove that the complement of H is dense, we need to show that if X ∈ FP
n then every open

neighborhood of X contains a point in the complement. As in the preceding discussion, the idea
will be to prove this in selected cases and then to extend the result to the general situation using
projective collineations. Since the statement in the first sentence is clearly true if X ∈ FP

n −H, it
will be enough to verify the result when X ∈ H.

Consider the special case where X = j(0) and H is the projective extension of the ordinary
hyperplane defined by the linear equation x1 = 0. Suppose that U is an open neighborhood of X in
FP

n, and let V = U∩Image(j). For this example there clearly are points in (FP
n − H)∩V = V −H;

it is only necessary to take a point of the form j(t e1) where |t| is sufficiently small.

Turning to the general situation, let X0 and H0 be the examples in the preceding paragraph.
By the Fundamental Theorem of Projective Geometry there is a projective collineation T such that
T (X0) = X and T [H0] = H. Since T is a homeomorphism, it follows that given X ∈ H and an open
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neighborhood U of X then the intersection (FP
n − H)∩U will be nonempty because U0 = T−1[U ]

is an open neighborhood of X0 and by the preceding paragraph (FP
n − H0) ∩ U0 is known to be

nonempty.

The power of Theorem 5 combined with the Fundamental Theorem of Projective Geometry is
also apparent in the next result, which concerns topological properties of the spaces FP

n.

THEOREM 8. If F is R or C, and n is a positive integer, then FP
n is compact and Hausdorff.

Proof. We shall prove compactness first. Let d = 1 or 2 depending upon whether F = R or C,
so that Sdn+d−1 is the unit sphere in F

n+1. Since every nonzero vector in F
n+1 can be represented

as a product cu where u lies on the unit sphere and c is a positive real number, it follows that the
restriction π|Sdn+d−1 maps onto FP

n. Since Sdn+d−1 is compact, it follows that its image, which
is FP

n, must also be compact.

We shall now prove that the Hausdorff condition is satisfied; as noted in Exercise 15.6 from
Sutherland (pp. 171–172), a quotient space of a metric space need not be Hausdorff, so this is a
nontrivial issue.

Given two points X and Y in FP
n we need to construct disjoint open neighborhoods for them.

If both points lie in the image of j, then this is easy because F
n is Hausdorff, and by Proposition

6 its image must also be Hausdorff. Consequently, if x and y satisfy j(x) = X and j(y) = Y ,
then one can find disjoint neighborhoods U ′ and V ′ of x and y, and their images U = j[U ′] and
V = j[V ′] will be disjoint open neighborhoods of X and Y in FP

n.

Suppose now that X and Y are arbitrary points. By the conclusions of the preceding paragraph
it will be enough to find a projective collineation which maps X and Y to points in the image of
j; i.e., neither X nor Y lies on the hyperplane at infinity. Since there are projective collineations
taking this hyperplane to all the other hyperplanes, it will be enough to show that given two distinct
points in FP

n, there is a hyperplane H which contains neither of them.

We can prove the assertion in the preceding sentence as follows. If ξ and η are homogeneous
coordinates for X and Y respectively, then ξ and η are linearly independent because X 6= Y .
Choose vectors α1, · · · , αn−1 so that B = {α1, · · · , αn−1, ξ, η} is a basis for F

n+1. Then the
vectors α1, · · · , αn−1 and ξ + η are linearly independent (verifying this is an elementary exercise
based upon the linear independence of B, and therefore there is a unique hyperplane H containing
the the associated points π(α1), · · · , π(αn−1) and π(ξ+η). We claim that neither X nor Y lies in H.
If, say, X ∈ H then the set of vectors B′ = {α1, · · · , αn−1, ξ +η, ξ} is linearly dependent; however,
the linear independence of B implies the linear independence of B ′ (this is another elementary
exercise), and therefore we must have X 6∈ H. Similar considerations imply that Y 6∈ H. As
indicated earlier, this suffices to complete the proof that FP

n is Hausdorff.

COROLLLARY 9. (Compare Sutherland, Proposition 15.10.(a) and (b), page 161.) If F is R

or C, and n is a positive integer, then FP
n is homeomorphic to the quotient of the unit sphere in

F
n+1, which is Sdn+d−1 modulo the equivalence relation x ∼ y if and only if there is some z ∈ F

such that |z| = 1 and x = z y.

Recall that if F = R then the set of all z satisfying |z| = 1 is {1,−1}, and if F = C then this
set is all complex numbers of the form cos θ + i sin θ for some θ.

Proof of Corollary 9. In the proof of the theorem we noted that q = π|Snd+d−1 is onto, and
one can check directly that if x,y ∈ Snd+d−1, then π(x) = π(y) if and only if there is some z ∈ F

such that |z| = 1 and x = z y (this uses the length identity |cv| = |c| · |v|). Therefore, if A is the
quotient of the unit sphere described in the theorem, there is a continuous 1–1 onto mapping from
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A to FP
n. Since A is (the continuous image of) a compact space and FP

n is Hausdorff, it follows
from Proposition 13.26 in Sutherland (pp. 135–136) that this map is a homeomorphism.

Remark. Using more advanced material from point set topology or differential geometry,
one can prove that FP

n is metrizable. — Here is a proof using point set topology (the necessary
background is not given here, but it can be found in nearly every graduate level point set topology
textbook): By the Urysohn Metrization Theorem, a compact Hausdorff space is metrizable if and
only if it is second countable. By construction FP

n is a union of finitely many metrizable sets;
namely, the complements of the hyperplanes defined by the homogeneous linear equations xi = 0,
where 1 ≤ i ≤ n + 1. Since it is an elementary exercise to prove that if a space X is a union of
finitely many second countable open subsets, then X itself is second countable, this means that
FP

n is second countable (and hence metrizable).

We have seen that a hyperplane in FP
n is closed, and by continuity we know that the zero

set of a nontrivial polynomial in n variables is a closed subset of F
n. We shall use the preceding

results to prove a similar result for the zero sets of homogeneous polynomials in FP
n. Recall that if

f(x1, · · · , xn+1) is a homogeneous polynomial (a sum of monomials with the same degree d > 0,
so that f(cx) = cd f(x) for all c and x) and its zero set is V (p) ⊂ F

n+1, then W = V (p) − {0}
satisfies W = π−1

[

π[W ]
]

, and hence we can think of V proj(p) = π[W ] as the projective zero set
for the polynomial p. Of course, if p has degree 2 then this set is a hyperquadric.

PROPOSITION 10. In the setting described above, V proj(p) is a closed subset of FP
n.

Proof. By Exercise 15.7 in Sutherland, it suffices to prove that the inverse image of V proj(p) =
π[W ] is closed in F

n+1 − {0}, and this follows because

π−1
[

V proj(p)
]

= π−1
[

π[W ]
]

= W = V (p) − {0}

and V (p) is a closed subset of F
n+1.

We also have an analog of the Sparseness Theorem in quadrics1.pdf:

PROPOSITION 11. In the setting described above, if p is a nonzero homogeneous polynomial
of positive degree, then the interior of V proj(p) in FP

n is empty, and FP
n − V proj(p) is dense in

FP
n.

Proof. (This argument will use the Sparseness Theorem cited above.) The density statement
follows from the emptiness of the interior exactly as in the proof of the Sparseness Theorem, so it
will suffice to prove that the interior of V proj(p) in FP

n is empty.

Suppose that U is a nonempty open subset of FP
n which is contained in V proj(p). Since π is

onto and continuous, it follows that π−1[U ] is a nonempty open subset of F
n+1 which is contained

in V (p) = π−1[V proj(p)] ∪ {0}. Therefore the Sparseness Theorem from quadrics1.pdf implies
that p is the zero polynomial.

Of course, both of the preceding results apply to hyperquadrics in FP
n.

FINAL REMARKS. One can define a similar topology on FP
n if F is the quaternions, and

everything through Corollary 9 can be generalized; however, since multiplication in the quaternions
is not commutative it is necessary to be work with right vector spaces over a division ring rather
than vector spaces over a field (see the first appendix in pg-all.pdf for a discussion of linear algebra
over a division ring). There is also a minor complication involving the Fundamental Theorem of
Projective Geometry: If F is a field, then this result states the existence of a unique projective
collineation with certain properties, but if F is only a division ring (i.e., the multiplication is not
commutative) then one still has an existence statement because the latter only involves concepts
from linear algebra. Fortunately, we only need existence and not uniqueness in the arguments given
above.
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