
TOPOLOGICAL CLASSIFICATIONS OF HYPERQUADRICS

Fundamental results in affine and projective geometry imply that every real or complex hyper-
quadric in n-space is affinely or projectively equivalent to an example from a finite and reasonably
short list of examples. Detailed proofs are given in the following documents:

http://math.ucr.edu/∼res/progeom/pgnotes07.pdf
http://math.ucr.edu/∼res/progeom/quadrics1.pdf

One natural and closely related question involves the classification of such hyperquadrics up to
homeomorphism or some closely related notion of equivalence. As indicated at the end of the
document quadrics1.pdf, it is not difficult to find (affine) quadric surfaces Σ1 and Σ2 in R

3 such
that Σ1 and Σ2 are not affinely equivalent but there is a diffeomorphism ϕ from R

3 to itself which
maps Σ1 onto Σ2. Our purpose here is to give systematic classifications for hyperquadrics in the
four basic cases:

Affine hyperquadrics in R
n.

Projective hyperquadrics in RP
n.

Affine hyperquadrics in C
n.

Projective hyperquadrics in CP
n.

We shall freely use background material on affine and projective geometry from the files in the
directory

http://math.ucr.edu/∼res/progeom
and we shall also freely use basic material in algebraic topology that can be found in nearly every
standard, comprehensive algebraic topology textbook. We shall also used the concept of diffeomor-
phism, which can be found in most standard graduate (or advanced undergraduate) level textbooks
on smooth manifolds or real analysis.

1. Affine hyperquadrics in R
n

It will be convenient to define a systematic indexing for the quadratic equations listed in
quadrics1.pdf.

(I.p .r) x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r = 0 (1 ≤ p ≤ r ≤ n, r ≥ 1, p ≥ 1
2

r)

(II.p .r) x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r + 1 = 0 (0 ≤ p ≤ r ≤ n, r ≥ 1)

(III.p .r) x2
1 + · · · +x2

p −x2
p+1 − · · · −x2

r +xr+1 = 0 (1 ≤ p ≤ r < n, r ≥ 1, p ≥ 1
2

r)

The Roman numeral in the first position will be called the type of the defining equation.

Given x = (x1, · · · , xn) ∈ R
n, for the first two cases types shall let u = (u1, · · · , xp) denote

the first p coordinates, we shall also let v = (vp+1, · · · , vr) denote the next r − p coordinates, and
finally we shall let w = (wr+1, · · · , wn) denote the last n − r coordinates. For the third type, we
modify the notation slightly by taking t = xr+1 and letting w denote the last n−r−1 coordinates.
In each case the number of coordinates of a given type may be zero (provided this is consistent
with the conditions on indices given above).
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The topological classification results are easiest for Type III and most difficult for Type I, so
we shall study the types in reverse order.

Type III. In this case, the quadratic hypersurface is the graph of a second degree polynomial
in n − 1 variables; specifically,

t = |u|2 − |v|2 .

Therefore the quadric hypersurfaces of these types are all homeomorphic — in fact, diffeomorphic
— to R

n−1.

Type II. In this case we may write the defining equation as

|u|2 − |v|2 + 1 = 0

or equivalently |u|2 − |v|2 = 1. There are two cases, depending upon whether p > 0 or p = 0
(we exclude the case p = r because the hyperquadric defined for this choice is empty). If p = 0
then the equation becomes |v|2 = 1 and the hyperquadric is given by Sr−1 × R

n−r. On the other
hand, if p > 0 then there is a diffeomorphism h from the hyperquadric Σ to S r−p−1 × R

n−r+p ∼=
Sr−p−1 × R

p × R
n−r given by

h(u,v,w) =

(
1√

1 + |u|2
, v, u, w

)
.

It follows that the hyperquadrics defined by equations (II.p .r) and (II.p′ .r′) are homeomorphic
if and only if p − r = p′ − r′, in which case they are diffeomorphic.

Digression — cohomology of a space at a point

The affine hyperquadrics of Types II and III are topological (n − 1)-manifolds, and in fact
they are smooth hypersurfaces in R

n. In contrast, the hyperquadrics of Type I are not topological
manifolds, and our analysis of their homeomorphism types depends upon having a way of recogniz-
ing that certain spaces are NOT topological manifolds. We shall do this using local cohomology
groups of a space at a point. The basic idea goes back at least to the classic textbook of Seifert
and Threlfall (see pages 123–124 in the English translation, Textbook of Topology).

Definition. Let X be a topological space, and let x ∈ X. Then the (local) cohomology of X at
x is given by

H∗(X,X − {x})

where we generally take singular cohomology with coefficients in the integers (the default choice)
or some field.

One advantage of using singular cohomology is the following localization result:

LEMMA 1. Suppose we are using singular cohomology and that X is a Hausdorff space with
an open subset U such that x lies in U . Then the restriction map from H ∗(X,X − {x}) to
H∗(U,U − {x}) is an isomorphism.

The proof applies the excision property of singular theory the decomposition X = (X −{x})∪
U .

We also have the following topological invariance property:
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LEMMA 2. Let X and Y be topological spaces, and suppose that h : X → Y is a homeomorphism
such that h(x) = y. Then f defines an isomorphism from H∗(Y, Y − {y}) to H∗(X,X − {x}).

Given a compact metric space X, the open cone C open(X) on X is defined to be the quotient
of X × [0,∞) obtained by collapsing the closed subspace X × {0} to a point. It is straightforward
exercises to prove that C open(X) is homeomorphic to a separable metric space (we can isometrically
embed X in a normed vector space W and use this to embed C open(X) into the product space
W ×R). The point of C open(X) corresponding to the subset X ×{0} will frequently be called the
vertex point of the cone and denoted by e.

We shall need the following basic fact:

THEOREM. Suppose that X is a compact metric space, let {e} be the vertex point of C open(X),

and let w ∈ R
q be arbitrary. Then H∗(C open(X),C open(X)−{e}) is isomorphic to H̃∗−1(X) and

H∗(C open(X) × R
n−r, C open(X) × R

n−r − {(e,w)}) ∼= H̃∗−q(X) .

COROLLARY. In the setting of the preceding result, suppose that M is a topological (m − 1)-
manifold such that H∗(M) is not isomorphic to H∗(Sm−1). Let U be an open neighborhood of
(e,w) in C open(X) × R

q , where e is the vertex of the cone. Then U is not a topological (m + q)-
manifold.

COROLLARY. In the situation of the preceding corollary, the subset (C open(X) − {(e} )×R
q is

an open dense subset, and it contains every open subset V which is a topological (m+ q)-manifold.

The crucial observation behind these corollaries is that if N is a topological d-manifold then
we have an isomorphism H∗(N,N − {p}) ∼= H̃∗(Sd).

Application to Type I hyperquadrics

We begin by showing that the hyperquadrics of this type are open cones on manifolds. Let Σ
be a hyperquadric defined by an equation of type (I.p .r); by definition we have p ≥ r − p, and we
shall exclude the case where r = p because Σ = {0} when this happens. In the more substantial
cases where r > p and p > 0, there is a homeomorphism

h : C open
(
Sp−1 × Sr−p−1

)
× R

n−r −→ Σ

sending
(
[t;x,y],w

)
to (tx, ty, tw) in Σ, where the later is viewed as a subset of R

n = R
p ×

R
r−p × R

n−r. Furthermore, if e denotes the cone vertex as before, then h maps the complement
of {e} × R

n−r diffeomorphically to the set of all points (u, v, w) in Σ such that u and v are both
nonzero.

All spaces of the form C open(X) are contractible; specifically, a contracting homotopy to the
vertex point e is given by

D
(
s, [t, x]

)
= [(1 − s)t, x] .

It follows that all hyperquadrics of Type I are contractible and hence these spaces cannot be
distinguished topologically by their cohomology groups. However, we can do this using the local
cohomology groups which have been defined.

THEOREM. Let Σ be the hyperquadric defined by the equation (I.p .r), and let N (Σ) be
the unique maximal open dense subset which is a topological (n − 1)-manifold. Then N (Σ) is
homeomorphic to Sp−1 × Sp−r−1 × R

n−r+1.
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This is true because the complement of N (Σ) is corresponds to {e} ×R
n−r under the homeo-

morphism between Σ to C open(Sp−1 × Sr−p−1) × R
n−r.

We can now finish the classification of affine hyperquadrics.

Type I. Suppose that the hyperquadrics Σ and Σ′ defined by (I.p .r) and (I.p′ .r′) are
homeomorphic. Then N (Σ) and N (Σ′) are also homeomorphic, which implies an isomorphism
between the homology groups of Sp−1 × Sr−p−1 and Sp′

−1 × Sr′
−p′

−1. The highest dimensions
with nontrivial cohomology for these spaces are r − 1 and r ′ − 1 respectively, so we must have
r = r′. Similarly, the lowest dimensions with nontrivial cohomology are r − p − 1 and r ′ − p′ − 1
respectively, so these numbers must also be equal. Combining this with r = r ′, we see that p = p′.
Therefore different equations of Type I yield nonhomeomorphic hyperquadrics.

Now that we have classified hyperquadrics defined by equations of the same type, we need to
finish things by considering cases where the equations have different types. The following summa-
rizing result does this and restates our previous conclusions.

THE COMPLETE CLASSIFICATION. (0) Different types of equations yield nonhome-
omorphic hyperquadrics.

(1) The hyperquadrics defined by (I.p .r) and (I.p′ .r′) are homeomorphic if and only if p = p′

and r = r′.

(2) The hyperquadrics defined by (II.p .r) and (II.p′ .r′) are homeomorphic if and only if
r − p = r′ − p′.

(3) The hyperquadrics defined by (III.p .r) and (III.p′ .r′) are all homeomorphic to each other.

We have verified everything except assertion (0). To see that no hyperquadric defined by
an equation of Type I is not homeomorphic to a hyperquadric defined by an equation of another
type, it suffices to note that the hyperquadrics of the other types are topological (n− 1)-manifolds
while a hyperquadric defined by a Type I equation is not a topological (n − 1)-manifold. To see
that the homeomorphism types from Type II and III equations are mutually exclusive, note that
a hyperquadric defined by an equation of Type III is homeomorphic to R

n−1 while a hyperquadric
defined by an equation of Type II is homotopy equivalent to a sphere, so hyperquadrics defined by
equations of the two types have nonisomorphic cohomology groups. This completes the proof that
different types of equations define nonhomeomorphic hyperquadrics.

In fact, one has a slightly stronger conclusion.

COMPLEMENT. If two hyperquadrics Σ and Σ′ in R
n are homeomorphic, then there is a

diffeomorphism ϕ of R
n such that ϕ[Σ] = Σ′.

Proof. We begin with a general observation: If T is an orthogonal transformation (hence
diffeomorphism) which permutes the coordinates of R

n and Σ0 is a hyperquadric, then Σ0 and T[Σ0]
are in fact affinely equivalent. Therefore it will suffice to prove the assertion in the Complement for
hyperquadrics obtained from Σ and Σ′ by permuting coordinates. Also, we might as well assume
that both Σ and Σ′ are defined by equations in our standard lists of examples.

As usual, we need to consider the different equation types separately. If Σ and Σ′ are both
defined by Type III equations, then we may reorder the coordinates so that Σ and Σ′ are respectively
given by graphs xn = f(x1, · · · , xn−1) and xn = g(x1, · · · , xn−1), where f and g are homogeneous
quadratic polynomials. We can now define a diffeomorphism ϕ on R

n ∼= R
n−1 × R by the formula

ϕ(y, t) =
(
y, t + g(y) − f(y)

)
.
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It follows immediately that ϕ maps Σ onto Σ′.

Now assume we are given two hyperquadrics defined by Type II equations. This means that,
up to permutation of coordinates, there is a splitting of R

n into four pieces, with a corresponding
decomposition of vectors in R

n into ordered quadruples (u,v,y, z) such that Σ is defined by an equa-
tion of the form |v|2−|u|2 = 1 and Σ′ is defined by an equation of the form |v|2−

(
|u|2 + |y|2

)
= 1.

In this case the diffeomorphism given by

ϕ(u,v,y, z) =

(
u,

√
1 + |u|2 + |y|2√

1 + |u|2
· v, y, z

)

will send Σ to Σ′; note that this is a generalization of the diffeomorphism appearing at the end of
quadrics1.pdf.

2. Projective hyperquadrics in RP
n

We shall find it extremely useful to look at the inverse image of a hyperquadric in RP
n or CP

n

with respet to the quotient map π from Sn to RP
n or from S2n+1 to CP

n, and the folloowing result
will play an important role in setting up unified approaches.

THEOREM 1. Let F = R or C, let d = dimR(F), and let π : Sdn+d−1 → FP
n be the

quotient projection. Suppose we are given a nonconstant homogeneous polynomial f(x0, · · · , xm)
of some degree g > 0 where m < n, and let Vm ⊂ FP

m and Vn ⊂ FP
n be the sets of points whose

homogeneous coordinates satisfy the homogeneous equation(s) h = 0. If V ′

m and V ′

n denote the
inverse images of Vm and Vn under the corresponding projections, then V ′

n is homeomorphic to the
join V ′

m ∗ Sn−m−1.

Sketch of proof. Split F
n+1 into F

m+1 × F
n−m. Then a nonzero ordered pair (u,v) in the

latter is a set of homogeneous coordinates for a point in Vn if and only if u is a set of homogeneous
coordinates for a point in Vm or u = 0 (in which case v 6= 0). If we now restrict attention to
nonzero points on the unit sphere in F

n+1 ∼= F
m+1 × F

n−m, which is homeomorphic to the join
Sdm+d−1 ∗ Sd(n−m)−1, we see that the homogeneous coordinates for points of Vn correspond to
classes [a, t,b] where a lies in V ′

m.

As shown in the previously cited document pgnotes07.pdf, every nontrivial hyperquadric in
RP

n is projectively equivalent to a unique example defined by an equation from the following list:

(P.p .r) x2
0 + · · · + x2

p − x2
p+1 − · · · − x2

r = 0 (0 ≤ p ≤ r ≤ n, r ≥ 1, p + 1 ≥ r − p)

Our goal is to show the following:

THEOREM 2. Two nontrivial real projective hyperquadrics in RP
n are homeomorphic if and

only if they are projectively equivalent.

The nonsingular cases

There is an extensive discussion of singular and nonsingular points for hyperquadrics in the
file pgnotes07.pdf, but for our purposes in this document the working definition of a nonsingular
hyperquadric will be one definable by an equation in which r = n. Let Q0(p, n) be the nonsingular
hyperquadric in RP

n defined by equation (P.p .r), and let Q′

0(p, n) be its inverse image in Sn under
the usual projection mapping π.
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LEMMA. The restriction of π to Q′

0(p, n) is a 2-sheeted regular covering space projection, and
Q′

0(p, n) is homeomorphic (in fact, diffeomorphic) to the manifold Sp × Sn−p−1. Furthermore, the
covering space involution of Q′

0(p, n) is given by multiplication by −1 on each factor.

Sketch of proof. Write a vector in R
n+1 ∼= R

p+1 × R
n−p as (y, z). Then the defining equation

for Q′

0(p, n) is |y|2 − |z|2 = 0, and if we combine this with the unit sphere equation |y|2 + |z|2 = 1
we see that |y| = |z| = 1/

√
2, from which the identification in the Lemma follows.

We can use the preceding to compute the cohomology of Q0(p, n) with Z2 coefficients:

THEOREM 3. There is an isomorphism

Hi
(
Q0(p, n); Z2

) ∼= Hi(RP
n; Z2) ⊕ Hi−p(RP

n; Z2)

for all i. In particular, the nonsingular hyperquadrics Q0(p, n) and Q0(p
′, n′) are homotopy equiv-

alent if and only if n = n′ and p = p′.

Sketch of proof. This uses a significant amount of algebraic topology; it is also possible to give
arguments using less algebraic-topological input, but (not surprisingly) they tend to be longer and
more complicated.

Projection onto the last n − p − 1 homogeneous coordinates yields a continuous mapping
Q0(p, n) → RP

n−p−1 which is a fiber bundle whose fiber is Sp. Since p ≥ n − p − 1 (this is
important!), we can use the Gysin sequence to show that the cohomology is given as in the statement
of the theorem.

If two hyperquadrics are homotopy equivalent, then their mod 2 cohomology groups are iso-
morphic. However, one can check directly that the mod 2 cohomology groups of Q0(p, n) and
Q0(p

′, n′) are isomorphic if and only if n = n′ and p = p′.

The singular cases

We shall combine the preceding result with the first theorem of this section to study examples
for which r < n. Let Q(p, r;n) denote the hyperquadric in RP

n defined by the equation (P.p .r),
and let Q′(p, r;n) denote its inverse image in RP

n. By definition we have Q(p, n;n) = Q0(p, n) and
Q′(p, n;n) = Q′

0(p, n). One major idea in our analysis will be to compare the singular Q(p, r;n)
and Q′(p, r;n) with the nonsingular hyperquadrics Q0(p, r) and Q′

0(p, r).

Theorem 1 implies that if r < n then the inverse image of Q′(p, r, n) of Q(p, r, n) in Sn is
homeomorphic to (

Sp × Sr−p−1
)

∗ Sn−r−1

and we also know that the latter is a double covering space of the original hyperquadric. We shall
begin by showing that the displayed join is not a topological (n − 1)-manifold; it will follow that
Q(p, r, n) also cannot be a topological (n − 1)-manifold if r < n.

LEMMA. If r < n then the complement of Sn−r−1 in

Q′(p, r, n) ∼=
(
Sp × Sr−p−1

)
∗ Sn−r−1

is the unique maximal open subset which is a topological (n−1)-manifold, and the local cohomology
of this space at a point of Sn−r−1 is isomorphic to

H̃n−r
(
Sp × Sr−p−1

)
.
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In particular, neither Q′(p, r, n) nor Q(p, r, n) is a topological (n − 1)-manifold if r < n.

It follows that Q(p, r, n) and Q(p′, r′, n) cannot be homeomorphic if r = n and r′ < n.

Sketch of proof. This follows because the complement of Sn−r−1 is homeomorphic to Sp ×
Sr−p−1 × R

n−r and every point of Sn−r−1 has an open neighborhood which is homeomorphic to
the product of R

n−r−1 with the open cone on Sp × Sr−p−1.

COROLLARY. If as before we let N
(
Q(p, r, n)

)
be the unique maximal open subset which is an

(n− 1)-manifold, then N
(
Q(p, r, n)

)
is homeomorphic to the total space of an (n− r)-dimensional

vector bundle over the nonsingular hyperquadric Q0(p, r, n) in RP
r. In particular, N

(
Q(p, r, n)

)

is homotopy equivalent to the nonsingular hyperquadric Q0(p, r, n).

This follows because the covering space involution on the subspace Sp × Sr−p−1 × R
n−r is

multiplication by −1 on each of the three factors.

PROOF OF THE CLASSIFICATION THEOREM. Suppose that the hyperquadrics associated to the
equations (P.p .r) and (P.p′ .r′) are homeomorphic; our previous observations imply that we need
only consider cases where r < n. We then know that the sets N

(
Q(p, r, n)

)
and N

(
Q(p′, r′, n)

)

must also be homotopy equivalent, so that the nonsingular hyperquadrics Q0(p, r) and Q0(p
′, r′)

must be homotopy equivalent. However, we have already seen that the latter happens if and only
if r = r′ and p = p′.

3. Projective hyperquadrics in CP
n

This is similar to the real case, but the discussion is simpler because the classification of complex
hyperquadrics involves much shorter lists of examples. Specifically, the nontrivial, projectively
inequivalent examples in the complex case are given by the equations

z2
0 + · · · + z2

r = 0 (1 ≤ r ≤ n) .

Our goal in this section is to show the following:

THEOREM 1. Two nontrivial complex projective hyperquadrics in CP
n are homeomorphic if

and only if they are projectively equivalent.

The nonsingular cases

As in the real case, for our purposes in this document the working definition of a nonsingular
hyperquadric will be one definable by an equation in which r = n. Let Q0(n) be the nonsingular
hyperquadric in CP

n defined by homogeneous quadratic equation

n∑

k=0

z2
k = 0

and let Q′

0(n) be its inverse image in S2n+1 ⊂ C
n+1 under the usual projection mapping π.

We shall begin by showing that Q′

0(n) can be identified with an object which arises frequently
in topology and geometry:
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THEOREM 2. The restriction of π to Q′

0(n) is a principal S1-bundle projection, and Q′

0(n) is
homeomorphic (in fact, diffeomorphic) to the real Stiefel manifold Vn+1,2 of orthonormal 2-frames
in R

n+1. In particular, the cohomology groups Hk
(
Q′

0(n); Z
)

are given as follows:

(i) If n is odd, then Hk is trivial unless k = 0, n− 1, n or 2n− 1, while Hk ∼= Z in these cases.

(ii) If n is even, then Hk is trivial unless k = 0, n or 2n − 1, while Hk ∼= Z if k = 0 or 2n − 1,
and Hn ∼= Z2.

Formally, the Stiefel manifold Vn+1,2 consists of all ordered pairs of unit vectors (x, y) ∈
Sn × Sn such that x and y are perpendicular.

Proof. Given a typical vector z = (z0, · · · , zn) ∈ C
n+1, express it in the form x + iy where x

and y are in R
n+1. Then the equation Σ z2

k = 0 can be rewritten in the form

0 =
(
|x|2 − |y|2

)
+ 2 i 〈x, y〉

and if we equate the real and imaginary parts of the two sides of this equation we see that |x|2 = |y|2
and 〈x, y〉 = 0.

A vector z lies on Q′

0(n) if and only if it lies on the unit sphere and satisfies the equations
in the preceding paragraph. Since the defining equation for the unit sphere can be written in the
form

1 = |z|2 = |x|2 + |y|2

and if we combine this with the previously defined equations we see that the defining equations for
Q′

0(n) are |x| = |y| = 1/
√

2 and 〈x, y〉 = 0. The required diffeomorphism from Q′

0(n) to Vn+1,2 is
given by sending z = (x, y) to (

√
2x,

√
2y).

The formulas for the cohomology groups follow by applying the Gysin sequence to the fiber
bundle

Sn−1 −→ Vn+1,2 −→ Sn .

We should note that this sphere bundle is equal to the unit sphere bundle for the tangent bundle
of Sn, and in fact this observation can be used to compute the cohomology of Vn+1,2.

We can use the preceding and the Gysin sequence for the bundle

S1 −→ Q′

0(n) −→ Q(n)

to compute the cohomology of Q0(n) with Z coefficients:

THEOREM 3. Given n ≥ 2, let m = 1
2
(n − 2) if n is even and 1

2
(n − 1) if n is odd. Then for

all i there is an isomorphism

Hi
(
Q0(n); Z

) ∼= Hi(CP
m; Z) ⊕ Hi−p(CP

m; Z)

where p = 2n − 2m − 2. In particular, the nonsingular hyperquadrics Q0(n) and Q0(n
′) are

homotopy equivalent if and only if n = n′.

More broadly based computations of these cohomology groups and further information on the
topology of Q0(n) are also contained in the following papers:

J. Ewing and S. Moolgavkar. On the signature of Fermat surfaces. Michigan
Mathematical Journal 22 (1975), 257–268.
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R. S. Kulkarni and J. C. Wood. Topology of nonsingular complex hypersurfaces.
Advances in Mathematics 35 (1980), 239–263.

The singular cases

We shall combine the preceding result with the first theorem of this section to study examples
for which r < n. Let Q(r;n) denote the hyperquadric in CP

n defined by the equation

r∑

k=0

z2
k = 0

and let Q′(r;n) denote its inverse image in CP
n. By definition we have Q(n;n) = Q0(n) and

Q′(n;n) = Q′

0(n).

Theorem 1 in Section 2 implies that if r < n then the inverse image of Q′(r, n) of Q(r, n) in
Sn is homeomorphic to

Vr+1,2 ∗ S2(n−r)−1

and we also know that the latter is a principal S1-bundle over the original hyperquadric. We shall
begin by showing that the displayed join is not a topological (2n − 1)-manifold; it will follow that
Q(r, n) also cannot be a topological (2n−2)-manifold if r < n. Since the nonsingular hyperquadric
Q0(n) is a smooth (2n − 2)-manifold (and it has a canonical complex analytic structure!), we can
also conclude that Q(r, n) and Q(n, n) cannot be homeomorphic if r < n.

LEMMA. If r < n, then the complement of S2(n−r)−1 in

Q′(r, n) ∼= Vr+1,2 ∗ S2(n−r)−1

is the unique maximal open subset N
(
Q′(r, n)

)
which is a topological (2n − 1)-manifold, and the

local cohomology of this space at a point of S2(n−r)−1 is isomorphic to

H̃2(n−r) ( Vr+1,2; Z ) .

Furthermore, the local cohomology of Q(r, n) at a point in the image π
[
S2(n−r)−1

]
of S2(n−r)−1

in Q(r, n) is isomorphic to

H̃2(n−r)−1 ( Vn+1,2; Z ) .

In particular, Q′(r, n) is not a topological (2n−1)-manifold if r < n, and Q(r, n) is not a topological
(2n − 2)-manifold if r < n.

Sketch of proof. The assertion regarding Q′(r, n) follows because the complement of S2(n−r)−1

is homeomorphic to
Vr+1,2 × C

n−r

and every point of S2(n−r)−1 has an S1-invariant open neighborhood which is S1-equivariantly
homeomorphic to the product of S1 × C

n−r−1 (translation action on the first coordinate, trivial
action on the second) with the open cone on Vr+1,2. The analagous assertion regarding Q(r, n)
follows from consideration of the quotient of such a neighborhood with respect to the action of S 1.

We shall also need the following result about the complement of π
[
S2(n−r)−1

]
:

PROPOSITION. If N
(
Q(r, n)

)
is the unique maximal open subset which is a (2n−2)-manifold,

then this set is the image of N
(
Q′(r, n)

)
with respect to the projection map π.
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Proof. The set N
(
Q′(r, n)

)
is in fact S1-homeomorphic to Q′(r, n)×C

n−r in which the S1-action
is given by the smooth principal bundle action on the first coordinate and scalar multiplication by
unit complex numbers on the second. It follows immediately that the quotient map is a smooth
principal S1-bundle projection and the quotient space is a smooth manifold of dimension (2n− 2).
Therefore the image of N

(
Q′(r, n)

)
under π is contained in N

(
Q(r, n)

)
. On the other hand, by

the computations of local cohomology groups we know that no other points of Q(r, n) have open
neighborhoods which are homeomorphic to open subsets of R

2n−2, so therefore N
(
Q(r, n)

)
must

be equal to the image of N
(
Q′(r, n)

)
.

One immediate consequence of the preceding result is that N
(
Q(r, n)

)
is homotopy equivalent

to Q0(r). This observation leads directly to our main objective.

PROOF OF THE CLASSIFICATION THEOREM. As in the real case, it suffices to consider cases
Q(r, n) and Q(r′, n), where r, r′ < n. If the hyperquadrics Q(r, n) and Q(r′, n) are homeomorphic,
then we know that the sets N

(
Q(r, n)

)
and N

(
Q(r′, n)

)
must also be homeomorphic, so by

the preceding observations the nonsingular hyperquadrics Q0(r) and Q0(r
′) must be homotopy

equivalent. However, we already know that the latter happens if and only if r = r ′.

4. Affine hyperquadrics in C
n

In this case we know that every hyperquadric is affinely equivalent to a unique example defined
by a quadratic equation in the following indexed list from quadrics1.pdf.

(I.r) z2
1 + · · · + z2

r = 0 (1 ≤ r ≤ n)

(II.r) z2
1 + · · · + z2

r = 1 (1 ≤ r ≤ n)

(III.r) z2
1 + · · · + z2

r = zr+1 (1 ≤ r < n)

As in the real case, the Roman numeral in the first position will be called the type of the
defining equation.

The following result will lead directly to the topological classification of affine hyperquadrics in the
complex case:

PROPOSITION. Let F2(n) ⊂ C
n denote the set of all points z = (z1, · · · , zn) satisfying

equation (II.n). Then F2(n) is diffeomorphic to the tangent space T(Sn−1).

Proof. This is similar to an argument in the preceding section. If we now take z = (z1, · · · , zn) ∈
C

n and express it in the form x + iy where x and y are in R
n, then the equation Σ z2

k = 0 can
be rewritten in the form

1 =
(
|x|2 − |y|2

)
+ 2 i 〈x, y〉

and if we equate the real and imaginary parts of the two sides of this equation we see that |x|2 =
|y|2 + 1 and 〈x, y〉 = 0.

We may view T(Sn−1) as the set of all points (u, v) ∈ Sn−1 × R
n such that u and v are

perpendicular, and the diffeomorphism from the hyperquadric to the tangent space is defined by
sending z = (x, y) to (

1

|x| · x, y

)
.

One can check directly that this sends points in the hyperquadric into T(Sn−1) ⊂ Sn−1 × R
n.
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This yields the following result on the homeomorphism types of the quadrics in our list:

PROPOSITION. Suppose that Σ ⊂ C
n is defined by a quadratic equation in the short list of

examples:

(i) If Σ is defined by equation (I.r), then Σ is homeomorphic to C open
(

Vr,2

)
× C

n−r.

(ii) If Σ is defined by equation (II.r), then Σ is diffeomorphic to T(Sr−1) × C
n−r.

(ii) If Σ is defined by equation (III.r), then Σ is diffeomorphic to C
n−1.

Proof. The first case follows because Σ is homeomorphic to the open cone on Σ ∩ S 2n−1, and
by the results of the preceding section we know the latter is homeomorphic to the indicated Stiefel
manifold. The second follows immediately from the previous proposition, and the third follows
because in this case Σ is merely the graph of a quadratic polynomial function.

As in the real case, we now have the following result:

THE COMPLETE CLASSIFICATION. (0) Different types of equations yield nonhome-
omorphic hyperquadrics.

(1) The hyperquadrics defined by (I.r) and (I.r ′) are homeomorphic if and only if r = r′.

(2) The hyperquadrics defined by (II.r) and (II.r ′) are homeomorphic if and only if r = r′.

(3) The hyperquadrics defined by (III.r) and (III.r ′) are all homeomorphic to each other.

Sketch of proof. As usual, let N (Σ) be the unique maximal open subset which is a topological
(2n − 2)-manifold. Then N (Σ) = Σ for equations of Type II or III, while N (Σ) corresponds
to the proper subset (0,∞) × Vr,2 × C

n−r for the equation (I.r). It follows immediately that a
hyperquadric defined by an equation of Type I is not topologically equivalent to one which is defined
by an equation of Type II or III.

To finish the proof of (0), we need to show that a pair of hyperquadrics defined by equations of
Types II and III cannot be homeomorphic. Since a hyperquadric defined by an equation (II.r) is
homotopy equivalent to Sr−1 and a hyperquadric defined by an equation of Type III is contractible,
the assertion regarding Types II and III also follows quickly.

To see that hyperquadrics Σ and Σ′ defined by equations of the form (I.r) and (I.r ′) are not
homeomorphic if r 6= r′, note that if they were homeomorphic then N (Σ) and N (Σ′) would also
be homeomorphic, and since these sets have the homotopy types of the Stiefel manifolds Vr,2 and
Vr′,2 it would follow that the latter would be homotopy equivalent. However, this only happens if
r = r′. Similarly, to see that hyperquadrics Σ and Σ′ defined by equations of the form (II.r) and
(II.r′) are not homeomorphic if r 6= r′, note that if they were homeomorphic then Sr−1 and Sr′

−1

and would be homotopy equivalent, and this only happens if r = r ′. Finally, we already know that
all hyperquadrics of Type III are diffeomorphic, so this completes the argument.

Our final result follows formally from the same type of argument given at the end of Section
1.

COMPLEMENT. If two hyperquadrics Σ and Σ′ in C
n are homeomorphic, then there is a

complex analytic diffeomorphism ϕ of C
n such that ϕ[Σ] = Σ′.
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