
 
A  Buried Treasure Problem 

 
 
Using the methods of projective geometry, we shall discuss a challenging problem taken 
from a classic high school geometry text (E. E. Moïse and F. L. Downs, Geometry, 

Addison – Wesley,  Reading, MA,  1964):    
 
The following instructions were found on an old map:   
 
 

Start from the right angle crossing of King’s Road and Queen’s Road.  Proceed 
due north on King’s Road and find a large pine tree and then a maple tree.  
Return to the crossroads.  Due west on Queen’s Road there is an elm, and due 
east on Queen’s Road there is a spruce.  One magical point is the intersection 
of the elm – pine line with the maple – spruce line.  The other magical point is 
the intersection of the spruce – pine line with the elm – maple line.  The 
treasure lies where the line through the magical points meets Queen’s Road.   

 
 

A search party found the elm tree 4 miles from the crossing, the spruce tree 2 

miles from the crossing, and the pine tree 3 miles from the crossing, but they 
found no trace of the maple tree.  Nevertheless, they were able to locate the 
treasure from the instructions. Show how they were able to do this.   
 
 

SOLUTION.  
 
First of all, we need to translate the problem into more mathematical terms.  We are 
given two perpendicular lines X (Queen’s Road)  and Y (King’s Road),  and we are 
also given four points E, M, P and S corresponding to the elm, maple, pine and spruce 
trees, with each of these points on either X or Y.  The positions of all the points except 
M are fixed in the problem, and all we know about M is that it satisfies certain given 
constraints.  We are also told that the lines EP and MS meet at some point C, the 
lines SP and EM meet at some point D, and the line CD meets Y at some point T 
where the treasure is located.  
 
The point of the exercise is to prove that T is the same for all choices of M consistent 
with the conditions in the problem.  In other words, if we make a second choice N for 
the location of the maple tree which is consistent with the data in the problem such that 
the lines EP and NS meet at the point A, the lines SP and EM meet at the point B, 
then the point U where AB meets Y is the same point T obtained before using M.  

In other words, we need to show that the three lines AB,  CD and Y = ES are 
concurrent,  meeting at the point T.  An illustration appears on the next page. 

 



 
 

As before, suppose that we take two possible choices for the location of the maple tree, 
say M and N.  Note that one has triangles ACS and BDE such that the points N 
(where AS meets BE),  M (where CS meets DE)  and P (where BD meets AC)  are 
collinear because they all lie on King’s Road.  By the dual of Desargues’ Theorem it 
follows that the lines ES (Queen’s Road),  AB (the line joining the two “magical points” 
for N) and CD (the line joining the two “magical points” for M)  are concurrent.  
Therefore, for all possible locations of the maple tree one obtains the same location T  
for the treasure.����  
 
 

Postscript 
 
 

After discovering that the location of the treasure did not depend upon the exact 
location of the maple tree, one member of the search party observed that the 
location of the treasure also did not depend upon the exact location of the pine 
tree.  How did he/she do this? 
 



EXPLANATION.    Briefly stated, the conclusion is true because the procedure for 
finding the treasure is symmetric in the locations of the maple tree and pine tree; if these 
locations are switched, one ultimately obtains the same point for the location of the 
treasure. 
 
Formally, one may proceed as follows: Suppose that the coordinates for the pine and 

maple trees are (0, u) and (0, v) respectively, where u and v are arbitrary but 
distinct real numbers.  Then one can carry out the outlined construction in the real 
projective plane (in order to ensure that all relevant lines have common points), and the 

result is a point T(u, v) which lies on the projective extension Y^ of the line Y.  In the 
construction,  one obtains the same point on this projective line if the roles of the 
pine and maple trees are switched,  and formally this translates into the symmetry 

property T(u, v)  =  T(v, u).  By the previous argument we know that if v ′′′′  ≠≠≠≠  u, v then 

T(u, v ′′′′)  =  T(u, v). 
 

Suppose now that u ′′′′  ≠≠≠≠  u, v.  Combining the identities in the preceding paragraph, we 

see that T(u ′′′′, v)  =  T(v, u ′′′′)  =  T(v, u)  =  T(u, v).   In particular, the points T(u, v)  

and T(u ′′′′, v ′′′′) are the same if either the first or second coordinates (u, v) and (u ′′′′, v ′′′′) 

are equal.  Now suppose that neither of the coordinates of (u, v) and (u ′′′′, v ′′′′) are 

equal.   If we have both u ′′′′  =  v  and u  =  v  ′′′′, then T(u, v)  =  T(u ′′′′, v ′′′′) by the 

preceding paragraph, so assume that we have either u′′′′  ≠≠≠≠  v or u  ≠≠≠≠  v  ′′′′.    In the first 

case, two applications of previous observations yield T(u, v)  =  T(u ′′′′, v)  =  T(u ′′′′, v ′′′′).   

Similarly, in the second case two applications of the same observations yield T(u, v)  =  

T(u, v ′′′′)  =  T(u ′′′′, v ′′′′).   Therefore, in all cases we know that T(u, v)  =  T(u ′′′′, v ′′′′). As 
noted before, this means that the location of the treasure does not depend upon the 
exact location of either the maple tree or the pine tree.����   


