# Ricci flow does not necessarily preserve positive radial sectional curvature 

Ryan Ta

Dissertation defense
April 7, 2022

## Thesis result

We will discuss the following result of my thesis:

## Theorem (Main theorem)

There exists a Riemannian metric with positive radial sectional curvature on $S^{4}$ that attains a negative radial sectional curvature when evolved by the Ricci flow.

We remark that this theorem is an extension of a similar by Bettiol and Krishnan in 2019 using a metric with nonnegative sectional curvature on $S^{4}$. We also remark that, in December 2021, they have also recently extended their result to a metric with positive sectional curvature on $S^{4}$. This means that Theorem 1 is now a special case of their 2021 result. I will explain that my metric with positive radial sectional curvature contains properties that differ significantly from the metric of their 2021 result.

## The group action on $M$

Let $M$ be a compact Riemannian manifold equipped with a Riemannian metric $g$. Let $G$ be a group that acts by isometries on $M$.

## Definition

We say that the action by $G$ on $M$ is with cohomogeneity one if the quotient space $M / G$ is one-dimensional.

Since we are assuming that $M$ is compact, the quotient space $M / G$ must be isometric to either a circle $S^{1}$ or a closed interval $[0, L]$ for some $L>0$.

In this presentation, we will focus only on the closed interval $[0, L]$.

## The $\mathrm{SO}(3)$ action on $S^{4}$

Define $V:=\left\{A \in \mathbb{R}^{3 \times 3} \mid A=A^{T}, \operatorname{tr}(A)=0\right\}$. Then $V$ is
five-dimensional and its natural inner product is $g(A, B):=\operatorname{tr}\left(A^{T} B\right)$ for $A, B \in V$.
The $S O(3)$ action on $S^{4}$ is defined to be the restriction to the unit sphere in $V$ of the group action of $S O(3)$ on $V$ by conjugation: $S O(3) \times V \rightarrow V$ given by $h \cdot A=h A h^{-1}$ for all rotation matrices $h \in S O$ (3) and for all $A \in V$.

## Geodesic through the orbits of $S^{4}$

The geodesic $\gamma:\left[0, \frac{\pi}{3}\right] \rightarrow V$ defined by

$$
\gamma(s):=\left[\begin{array}{ccc}
\frac{\cos (s)}{\sqrt{6}}+\frac{\sin (s)}{\sqrt{2}} & 0 & 0  \tag{1}\\
0 & \frac{\cos (s)}{\sqrt{6}}-\frac{\sin (s)}{\sqrt{2}} & 0 \\
0 & 0 & -\frac{2 \cos (s)}{\sqrt{6}}
\end{array}\right]
$$

runs orthogonally through all the principal orbits
$S O(3) / S O(3)_{\gamma\left(s_{\text {int }}\right)}$ of $S^{4}$.

## Basis of the Lie algebra of $S O(3)$

The Lie algebra of $S O(3)$ is

$$
\begin{equation*}
\mathfrak{s o}(3)=\left\{A \in \mathbb{R}^{3 \times 3} \mid A+A^{T}=0\right\} \tag{2}
\end{equation*}
$$

The set $\left\{E_{23}, E_{31}, E_{12}\right\}$, where we define

$$
\begin{align*}
& E_{23}:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right],  \tag{3}\\
& E_{31}:=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],  \tag{4}\\
& E_{12}:=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \tag{5}
\end{align*}
$$

is a basis of $\mathfrak{s o ( 3 )}$.

## Killing fields

The corresponding Killing fields are $X, Y, Z$, defined by

$$
\begin{align*}
& X(p):=\left.\frac{d}{d s} \exp \left(s E_{23}\right) \cdot p\right|_{s=0}  \tag{6}\\
& Y(p):=\left.\frac{d}{d s} \exp \left(s E_{31}\right) \cdot p\right|_{s=0}  \tag{7}\\
& Z(p):=\left.\frac{d}{d s} \exp \left(s E_{12}\right) \cdot p\right|_{s=0} \tag{8}
\end{align*}
$$

where

$$
\begin{align*}
\exp : & T_{p}\left(M \backslash\left(\pi^{-1}(\{0\}) \cup \pi^{-1}(\{L\})\right)\right)  \tag{9}\\
& \rightarrow M \backslash\left(\pi^{-1}(\{0\}) \cup \pi^{-1}(\{L\})\right)
\end{align*}
$$

is the Lie group exponential map.

## Killing fields

Since the $S O(3)$ action on $S^{4}$ is cohomogeneity one and by isometries, the metric $g$ is determined completely by its restriction to the geodesic $\gamma$.
The lengths of the Killing fields are denoted

$$
\begin{align*}
\varphi(s) & :=|X(\gamma(s))|,  \tag{10}\\
\psi(s) & :=|Y(\gamma(s))|,  \tag{11}\\
\xi(s) & :=|Z(\gamma(s))| . \tag{12}
\end{align*}
$$

## The 2017 result by Renato Bettiol and Anusha Krishnan

Let $\frac{\partial}{\partial s}$ be the tangent vector of the geodesic $\gamma$ at the point $\gamma(s)$.
Lemma (Bettiol and Krishnan, 2017)
Any SO(3)-invariant Riemannian metric $g$ on $S^{4}$ takes the form

$$
\begin{equation*}
g=d r^{2}+\varphi^{2} d x^{2}+\psi^{2} d y^{2}+\xi^{2} d z^{2} \tag{13}
\end{equation*}
$$

where $d r, d x, d y, d z$ are covectors corresponding respectively to the vector fields $\frac{\partial}{\partial s}, X, Y, Z$.

The entries off the diagonal of the $4 \times 4$ matrix associated with $g$ are zero.

## Applications of Ricci flow

Now we consider metrics $g(t)$ that evolve in time.

## Definition

A smooth time-dependent family of metrics $g(t)$ for all $t \geq 0$ is called the Ricci flow if it satisfies the partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} g(t)=-2 \operatorname{Ric}_{g(t)} \tag{14}
\end{equation*}
$$

where $\operatorname{Ric}_{g(t)}$ is the Ricci tensor.

## Applications of Ricci flow

The Ricci flow equation (14), the diagonal form of $g$, the Ricci curvature expressions in terms $\varphi, \psi, \xi$, and some calculus all yield the system of partial differential equations associated with the Ricci flow $g(t)$ :

$$
\begin{align*}
\zeta_{t} & =-\left(\frac{\varphi_{r}}{\varphi}+\frac{\psi_{r}}{\psi}+\frac{\xi_{r}}{\xi}\right)^{\zeta_{r}} \zeta^{2}+\left(\frac{\varphi_{r r}}{\varphi}+\frac{\psi_{r r}}{\psi}+\frac{\xi_{r r}}{\xi}\right) \frac{1}{\zeta}  \tag{15}\\
\varphi_{t} & =\frac{1}{\zeta^{2}} \varphi_{r r}+\frac{1}{\zeta \psi \xi}\left(\frac{\psi \xi}{\zeta}\right)_{r} \varphi_{r}-\frac{1}{2 \psi^{2} \xi^{2}} \varphi^{3}+\frac{\left(\psi^{2}-\xi^{2}\right)^{2}}{2 \psi^{2} \xi^{2}} \frac{1}{\varphi}  \tag{16}\\
\psi_{t} & =\frac{1}{\zeta^{2}} \psi_{r r}+\frac{1}{\zeta \varphi \xi}\left(\frac{\varphi \xi}{\zeta}\right)_{r} \psi_{r}-\frac{1}{2 \varphi^{2} \xi^{2}} \psi^{3}+\frac{\left(\varphi^{2}-\xi^{2}\right)^{2}}{2 \varphi^{2} \xi^{2}} \frac{1}{\psi}  \tag{17}\\
\xi_{t} & =\frac{1}{\zeta^{2}} \xi_{r r}+\frac{1}{\zeta \varphi \psi}\left(\frac{\varphi \psi}{\zeta}\right)_{r} \xi_{r}-\frac{1}{2 \varphi^{2} \psi^{2}} \xi^{3}+\frac{\left(\varphi^{2}-\psi^{2}\right)^{2}}{2 \varphi^{2} \psi^{2}} \frac{1}{\xi} \tag{18}
\end{align*}
$$

## Graphs of the functions for the metric



## The middle metric

The middle linearized metric on a neighborhood of $S^{4}$ about $s=s_{0}$, for any fixed $0<s_{0}<\frac{\pi}{3}$ and for any $m, c \in \mathbb{R}$ :

$$
\begin{equation*}
\bar{g}_{m, c}=d s^{2}+\bar{\varphi}_{m, c}^{2} d x^{2}+\bar{\psi}_{m, c}^{2} d y^{2}+\bar{\xi}_{m, c}^{2} d z^{2} \tag{19}
\end{equation*}
$$

where we define $\bar{\varphi}_{m, c}, \bar{\psi}_{m, c}, \bar{\xi}_{m, c}:\left[0, \frac{\pi}{3}\right] \rightarrow \mathbb{R}$ by

$$
\begin{align*}
\bar{\varphi}_{m, c}(s) & :=c+m s  \tag{20}\\
\bar{\psi}_{m, c}(s) & :=\frac{m \pi}{3}+2 c  \tag{21}\\
\bar{\xi}_{m, c}(s) & :=\frac{m \pi}{3}+c-m s . \tag{22}
\end{align*}
$$

A working example for our result is $\bar{g}_{m=\frac{7}{5}, c=\frac{3}{10}}$.

## Graphs of the functions for the metric



## First key lemma

We introduce a key lemma.

## Lemma (First key lemma)

Let $\left\{\left(M, g_{\tau}\right)\right\}_{\tau \geq 0}$ be a smooth family of Riemannian metrics. For simplicity of notation, we set $g_{0}=g$. Suppose there exists a tangent plane $\sigma$ that satisfies

$$
\begin{align*}
\sec _{g}(\sigma) & =0  \tag{23}\\
\left.\left(\sec _{g(t)}(\sigma)\right)_{t}\right|_{t=0} & <0 \tag{24}
\end{align*}
$$

If $\tau>0$ is sufficiently small, then $\left(M, g_{\tau}\right)$ evolves through Ricci flow to a metric with a negative sectional curvature; that is, there exists $t_{0}>0$ that satisfies

$$
\begin{equation*}
\sec _{g_{\tau}\left(t_{0}\right)}(\sigma)<0 \tag{25}
\end{equation*}
$$

## The middle metric

The middle metric ( $S^{4}, \bar{g}_{m, c}$ ) has a negative temporal derivative of sectional curvature for suitable values of $m, c \in \mathbb{R}$.

## Lemma

There exist $m \in(-\sqrt{2}, \sqrt{2}), c \in \mathbb{R}$, and a sufficiently small $\alpha>0$ such that, for all $\frac{\pi}{6}-\alpha<s<\frac{\pi}{6}+\alpha$, the middle metric $\bar{g}_{m, c}$ has zero mixed curvatures and satisfies

$$
\begin{align*}
\sec _{\bar{g}_{m, c}}\left(\frac{\partial}{\partial s}, X\right) & =0  \tag{26}\\
\left.\frac{\partial}{\partial t}\left(\sec _{\bar{g}_{m, c}(t)}\left(\frac{\partial}{\partial s}, X\right)\right)\right|_{t=0} & <0 \tag{27}
\end{align*}
$$

where $\bar{g}_{m, c}(t)$ is Ricci flow whose initial metric is $\bar{g}_{m, c}(0)=\bar{g}_{m, c}$.
A working example is $\bar{g}_{m=\frac{7}{5}}, c=\frac{3}{10}$.

## The deformed middle metric

The corresponding family of deformed linearized metrics $\left\{\bar{g}_{m, c}^{\epsilon}\right\}_{\epsilon \geq 0}$ on a neighborhood of $S^{4}$ about $s=s_{0}$, for any fixed $0<s_{0}<\frac{\pi}{3}$ and for any $m, c \in \mathbb{R}$, defined by

$$
\begin{equation*}
\bar{g}_{m, c}^{\epsilon}=d s^{2}+\left(\bar{\varphi}_{m, c}^{\epsilon}\right)^{2} d x^{2}+\left(\bar{\psi}_{m, c}^{\epsilon}\right)^{2} d y^{2}+\left(\bar{\xi}_{m, c}^{\epsilon}\right)^{2} d z^{2} \tag{28}
\end{equation*}
$$

where we define $\bar{\varphi}_{m, c}^{\epsilon}, \bar{\psi}_{m, c}^{\epsilon}, \bar{\xi}_{m, c}^{\epsilon}:\left[0, \frac{\pi}{3}\right] \rightarrow \mathbb{R}$ by

$$
\begin{align*}
\bar{\varphi}_{m, c}^{\epsilon}(s) & :=c+m s-\epsilon s^{3}  \tag{29}\\
\bar{\psi}_{m, c}^{\epsilon}(s) & :=\frac{m \pi}{3}+2 c-\epsilon s^{2}-\epsilon s^{3}  \tag{30}\\
\bar{\xi}_{m, c}^{\epsilon}(s) & :=\frac{m \pi}{3}+c-m s-\epsilon s^{2} \tag{31}
\end{align*}
$$

## Graphs of the functions for the metric

The figure below shows the graphs of $\hat{\varphi}_{m, c}^{\alpha, \epsilon}, \hat{\psi}_{m, c}^{\alpha, \epsilon}, \hat{\xi}_{m, c}^{\alpha, \epsilon}$ when $\alpha>0$ and $\epsilon>0$ are very small.


As we will see, one of the tangent planes at $s=\frac{\pi}{6}$ has positive radial sectional curvature that will flow to a negative one through the Ricci flow.

## The metrics we will use to construct a one-parameter family

The modified round metric on a neighborhood of the singular orbit of $S^{4}$ about $s=0$, for any $\alpha>0$ :

$$
\begin{equation*}
\dot{g}_{0}^{\alpha}=d r^{2}+\left(\dot{\varphi}_{0}^{\alpha}\right)^{2} d \dot{x}^{2}+\left(\dot{\psi}_{0}^{\alpha}\right)^{2} d \dot{y}^{2}+\left(\dot{\xi}_{0}^{\alpha}\right)^{2} d \dot{z}^{2} \tag{32}
\end{equation*}
$$

where we define $\stackrel{\varphi}{\varphi}_{0}^{\alpha}, \dot{\psi}_{0}^{\alpha}, \dot{\xi}_{0}^{\alpha}:\left[0, \frac{\pi}{3 \alpha}\right] \rightarrow \mathbb{R}$ by

$$
\begin{align*}
\dot{\varphi}_{0}^{\alpha}(s) & :=\frac{2}{\alpha} \sin (\alpha s)  \tag{33}\\
\dot{\psi}_{0}^{\alpha}(s) & :=\sqrt{3} \cos (\alpha s)+\frac{1}{\alpha} \sin (\alpha s)  \tag{34}\\
\dot{\xi}_{0}^{\alpha}(s) & :=\sqrt{3} \cos (\alpha s)-\frac{1}{\alpha} \sin (\alpha s), \tag{35}
\end{align*}
$$

## The metrics we will use to construct a one-parameter family

The modified round metric on a neighborhood of the singular orbit of $S^{4}$ about $s=\frac{\pi}{3}$, for any $\alpha>0$ :

$$
\begin{equation*}
\dot{g}_{\frac{\pi}{3}}^{\alpha}=d r^{2}+\left(\stackrel{\varphi}{\frac{\pi}{3}}_{\alpha}^{\alpha}\right)^{2} d \dot{x}^{2}+\left(\dot{\psi}_{\frac{\pi}{3}}^{\alpha}\right)^{2} d \dot{y}^{2}+\left(\dot{\xi}_{\frac{\pi}{3}}^{\alpha}\right)^{2} d \grave{z}^{2} \tag{36}
\end{equation*}
$$

where we define $\stackrel{\circ}{\varphi}_{\frac{\pi}{3}}^{\alpha}, \dot{\psi}_{\frac{\pi}{3}}^{\alpha}, \stackrel{\circ}{\xi}_{\frac{\pi}{3}}^{\alpha}:\left[0, \frac{\pi}{3 \alpha}\right] \rightarrow \mathbb{R}$ by

$$
\begin{align*}
\grave{\varphi}_{\frac{\pi}{3}}^{\alpha}(s) & :=\dot{\psi}_{0}^{\alpha}\left(s-\frac{\pi}{3}\right),  \tag{37}\\
\dot{\psi}_{\frac{\pi}{3}}^{\alpha}(s) & :=\dot{\circ}_{0}^{\alpha}\left(s-\frac{\pi}{3}\right),  \tag{38}\\
\dot{\xi}_{\frac{\pi}{3}}^{\alpha}(s) & :=-\dot{\varphi}_{0}^{\alpha}\left(s-\frac{\pi}{3}\right) . \tag{39}
\end{align*}
$$

## The metric is smooth at the singular orbits

## Theorem

The SO(3)-invariant metric $g$ is smooth on the singular orbit $\left(\mathrm{SO}(3) \times \mathbb{D}^{2}\right) / \mathrm{SO}(3)_{\gamma(0)}$ if and only if the metric

$$
\begin{equation*}
\left.g\right|_{\mathbb{D}^{2}}:=d s^{2}+\varphi^{2} d x^{2} \tag{40}
\end{equation*}
$$

is smooth on $\mathbb{D}^{2}$ and the extended functions $\psi_{\text {ext }}, \xi_{\text {ext }}:[-L, L] \rightarrow \mathbb{R}$ defined by

$$
\begin{align*}
& \psi_{\text {ext }}(s):= \begin{cases}\psi(s) & \text { for } s \geq 0 \\
\xi(-s) & \text { for } s<0\end{cases}  \tag{41}\\
& \xi_{\text {ext }}(s):= \begin{cases}\xi(s) & \text { for } s \geq 0 \\
\psi(-s) & \text { for } s<0\end{cases} \tag{42}
\end{align*}
$$

are also smooth on $[-L, L]$.

## Graphs of the functions for the metric

We remind the audience of the graphs of $\hat{\varphi}_{m, c}^{\alpha, \epsilon}, \hat{\psi}_{m, c}^{\alpha, \epsilon}, \hat{\xi}_{m, c}^{\alpha, \epsilon}$ when $\alpha>0$ and $\epsilon>0$ are very small.


## The metrics we will use to construct a one-parameter family

The deformed hat metric, for any $\epsilon>0$ :

$$
\begin{equation*}
\hat{g}_{m, c}^{\alpha, \epsilon}=d r^{2}+\left(\hat{\varphi}_{m, c}^{\alpha, \epsilon}\right)^{2} d x^{2}+\left(\hat{\psi}_{m, c}^{\alpha, \epsilon}\right)^{2} d y^{2}+\left(\hat{\xi}_{m, c}^{\alpha, \epsilon}\right)^{2} d z^{2} \tag{43}
\end{equation*}
$$

where we define $\hat{\varphi}_{m, c}^{\alpha, \epsilon}, \hat{\psi}_{m, c}^{\alpha, \epsilon}, \hat{\xi}_{m, c}^{\alpha, \epsilon}:\left[0, \frac{\pi}{3}\right] \rightarrow \mathbb{R}$ by

$$
\begin{align*}
\hat{\varphi}_{m, c}^{\alpha, \epsilon}(s) & :=\min \left\{\dot{\varphi}_{0}^{\alpha}(s), \bar{\varphi}_{m, c}^{\epsilon}(s), \grave{\varphi}_{\frac{\pi}{3}}^{\alpha}(s)\right\}  \tag{44}\\
\hat{\psi}_{m, c}^{\alpha, \epsilon}(s) & :=\min \left\{\dot{\psi}_{0}^{\alpha}(s), \bar{\psi}_{m, c}^{\epsilon}(s), \dot{\psi}_{\frac{\pi}{3}}^{\alpha}(s)\right\},  \tag{45}\\
\hat{\xi}_{m, c}^{\alpha, \epsilon}(s) & :=\min \left\{\dot{\xi}_{0}^{\alpha}(s), \bar{\xi}_{m, c}^{\epsilon}(s), \dot{\xi}_{\frac{\pi}{3}}^{\alpha}(s)\right\} . \tag{46}
\end{align*}
$$

## Metric modification techniques

Consider a mollifier $\eta: \mathbb{R} \rightarrow \mathbb{R}$ that is positive and has compact support. Furthermore, consider for any $\delta>0$ the function $\eta^{\delta}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\eta^{\delta}(x):=\frac{1}{\delta} \eta\left(\frac{x}{\delta}\right) \tag{47}
\end{equation*}
$$

that satisfies

$$
\begin{equation*}
\int_{-\infty}^{\infty} \eta^{\delta}(x) d x=1 \tag{48}
\end{equation*}
$$

Define for any $\delta>0$ the mollification $f^{\delta}: \mathbb{R} \rightarrow \mathbb{R}$ by the convolution of $\eta^{\delta}$ and $f$; namely, we define

$$
\begin{equation*}
f^{\delta}(x):=\left(\eta^{\delta} * f\right)(x)=\int_{-\infty}^{\infty} \eta^{\delta}(x-z) f(z) d z \tag{49}
\end{equation*}
$$

## Metric modification techniques

For any closed interval $[a, b] \subseteq \mathbb{R}$, let $H_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth, nondecreasing function that is 0 on $(-\infty, a]$ and 1 on $[b, \infty)$. This allows us to glue the functions $f, h: \mathbb{R} \rightarrow \mathbb{R}$, which we write as

$$
\begin{equation*}
\left(f_{a} \diamond_{b} h\right)(x):=\left(1-H_{a, b}(x)\right) f(x)+H_{a, b}(x) h(x) \tag{50}
\end{equation*}
$$

In particular, the glue function is smooth on $\mathbb{R}$ and satisfies

$$
\begin{align*}
& \left(f_{a} \diamond_{b} h\right)(x)=f(x) \text { for all } x \leq a,  \tag{51}\\
& \left(f_{a} \diamond_{b} h\right)(x)=h(x) \text { for all } x \geq b . \tag{52}
\end{align*}
$$

The glue operation allows us to glue the convolved functions with the modified round metrics using bump functions.

## Graphs of the functions for the metric

Once again, we remind the audience of the graphs of $\hat{\varphi}_{m, c}^{\alpha, \epsilon}, \hat{\psi}_{m, c}^{\alpha, \epsilon}, \hat{\xi}_{m, c}^{\alpha, \epsilon}$ when $\alpha>0$ and $\epsilon>0$ are very small.


## Glued metric

In particular, define for any $\alpha>0, \delta>0, \epsilon>0$ the glue functions $\hat{\varphi}_{m, c, \rho_{3,4,7,8}}^{\alpha, \delta, \epsilon} \hat{\xi}_{m, c, \rho_{1,2,5,6}}^{\alpha, \delta, \epsilon}:\left[0, \frac{\pi}{3}\right] \rightarrow \mathbb{R}$ by

$$
\begin{align*}
& \hat{\varphi}_{m, c, \rho_{3,4,7,8}^{\alpha}}^{\alpha, \delta, \epsilon}(s):=\left(\stackrel{\circ}{\varphi}_{0}^{\alpha} \rho_{3} \diamond_{\rho_{4}} \hat{\varphi}_{m, c}^{\alpha, \delta, \epsilon} \rho_{7} \diamond_{\rho_{8}} \stackrel{\circ}{\frac{\pi}{3}}_{\alpha}^{\alpha}\right)(s),  \tag{53}\\
& \left.\hat{\xi}_{m, c, \rho_{1,2,5,6}^{\alpha, \delta, \epsilon}}^{\alpha, s}\right):=\left(\dot{\xi}_{0}^{\alpha} \rho_{\rho_{1}} \diamond_{\rho_{2}} \hat{\xi}_{m, c}^{\alpha, \delta, \epsilon} \rho_{5} \diamond_{\rho_{6}} \dot{\xi}_{0}^{\alpha}\right)(s), \tag{54}
\end{align*}
$$



$$
\begin{equation*}
\hat{\psi}_{m, c, \rho_{1,2,3,4,5,6,7,8}}^{\alpha, \delta, \epsilon}(s):=\hat{\varphi}_{m, c, \rho_{3,4,7,8}}^{\alpha, \delta, \epsilon}(s)+\hat{\xi}_{m, c, \rho_{1,2,5,6}}^{\alpha, \delta, \epsilon}(s) . \tag{55}
\end{equation*}
$$

Accordingly, we have the glued metric for any $m, c \in \mathbb{R}$ and for any $\delta>0, \epsilon>0$ :

$$
\begin{align*}
\hat{g}_{m, c, \rho_{1,2,3,4,5,6,7,8}}^{\alpha, \delta, \epsilon}= & d r^{2} \\
& +\left(\hat{\varphi}_{m, c, \rho_{3,4,7,8}}^{\alpha, \delta, \epsilon}\right)^{2} d x^{2}  \tag{56}\\
& +\left(\hat{\psi}_{m, c, c, \rho_{1,2,3,4,5,6,7,8}}^{\alpha,)^{2}}\right)^{2} d y^{2} \\
& +\left(\hat{\xi}_{m, c, \rho_{1,2,5,6}}^{\alpha, \delta \epsilon}\right)^{2} d z^{2} .
\end{align*}
$$

## One-parameter family of metrics

Define the one-parameter family of metrics $\left\{g_{\text {final }}^{\tau}\right\}_{\tau \geq 0}$ taking the form

$$
\begin{equation*}
g_{\text {final }}^{\tau}=d r^{2}+\varphi_{\text {final }}^{\tau} d x^{2}+\psi_{\text {final }}^{\tau} d y^{2}+\xi_{\text {final }}^{\tau} d z^{2} \tag{57}
\end{equation*}
$$

where we define $\varphi_{\text {final }}^{\tau}, \psi_{\text {final }}^{\tau}, \xi_{\text {final }}^{\tau}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{align*}
\varphi_{\text {final }}^{\tau} & :=\hat{\varphi}_{m=\frac{7}{5}, c=\frac{3}{10}, \rho_{3,4,7,8}}^{\alpha, \delta, \tau \epsilon}  \tag{58}\\
\psi_{\text {final }}^{\tau} & :=\hat{\psi}_{m=\frac{7}{5}, c=\frac{3}{10}, \rho_{1,2,3,4,5,6,7,8}}^{\alpha, \delta,}  \tag{59}\\
\xi_{\text {final }}^{\tau} & :=\hat{\xi}_{m=\frac{7}{5}, c=\frac{3}{10}, \rho_{1,2,5,6}}^{\alpha, \delta \epsilon} \tag{60}
\end{align*}
$$

for all $0<\delta<\delta_{0}$ and $0<\epsilon<\epsilon_{0}$.

## Outline of our proof of the main theorem

Now that we have introduced all the Riemannian metrics on $S^{4}$ that we need, we will now turn our attention to outlining our proof of the main theorem, which we will state again here:

## Theorem (Main theorem)

There exists a Riemannian metric with positive radial sectional curvature on $S^{4}$ that attains a negative radial sectional curvature when evolved by the Ricci flow.

To prove this theorem, we will need two key lemmas.

## Outline of our proof of the main theorem

## Lemma (First key lemma)

Let $\left\{\left(M, g_{\tau}\right)\right\}_{\tau \geq 0}$ be a smooth family of Riemannian metrics. For simplicity of notation, we set $g_{0}=g$. Suppose there exists a tangent plane $\sigma$ that satisfies

$$
\begin{align*}
\sec _{g}(\sigma) & =0  \tag{61}\\
\left.\left(\sec _{g(t)}(\sigma)\right)_{t}\right|_{t=0} & <0 \tag{62}
\end{align*}
$$

If $\tau>0$ is sufficiently small, then $\left(M, g_{\tau}\right)$ evolves through Ricci flow to a metric with a negative sectional curvature; that is, there exists $t_{0}>0$ that satisfies

$$
\begin{equation*}
\sec _{g_{\tau}\left(t_{0}\right)}(\sigma)<0 \tag{63}
\end{equation*}
$$

## Outline of our proof of the main theorem

## Lemma (Second key lemma)

There exists $g$ on $S^{4}$ of the form given by (13) such that:

1. The functions $\varphi, \psi, \xi$ are concave down.
2. For $k=0,1$ and for $s^{*}=0, \frac{\pi}{3}$, the functions $\varphi, \psi, \xi$ satisfy

$$
\begin{align*}
\varphi^{(k)}\left(s^{*}\right) & =\left(\dot{\varphi}_{0}^{\alpha}\right)^{(k)}\left(s^{*}\right),  \tag{64}\\
\psi^{(k)}\left(s^{*}\right) & =\left(\dot{\psi}_{0}^{\alpha}\right)^{(k)}\left(s^{*}\right),  \tag{65}\\
\xi^{(k)}\left(s^{*}\right) & =\left(\dot{\xi}_{0}^{\alpha}\right)^{(k)}\left(s^{*}\right) . \tag{66}
\end{align*}
$$

3. There exists $t_{0} \in\left(0, \frac{\pi}{3}\right)$ such that, for any $p \in \mathrm{SO}(3) / \mathrm{SO}(3)_{\gamma\left(t_{0}\right)}$, there exists a radial plane $\sigma \in T_{p} S^{4}$ that satisfies $\left.\left(\sec _{g(t)}(\sigma)\right)_{t}\right|_{t=0}<0$, where $g(t)$ solves Ricci flow near $\left(t_{0}, p\right)$ whose initial metric is $g(0)=g$.

## Outline of our proof of the main theorem

## Proposition

Let $f, h: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable functions that are strictly concave on any closed interval $[a, b] \subseteq \mathbb{R}$. Then:

1. The sum function $f+h$ is strictly concave on $\mathbb{R}$.
2. If $\delta>0$ is sufficiently small, then the mollification $f^{\delta}:=\eta^{\delta} * f$ is strictly concave on $[a, b]$.
3. For any $\beta>0$, there exists $\epsilon>0$ such that, if $f, h$ satisfy

$$
\begin{gather*}
\max \left(\max _{x \in[a, b]} f^{\prime \prime}(x), \max _{x \in[a, b]} h^{\prime \prime}(x)\right) \leq-\beta,  \tag{67}\\
\|f-h\|_{C^{1}([a, b])}<\epsilon, \tag{68}
\end{gather*}
$$

then the glue function $f_{a} \diamond_{b} h$ is strictly concave on $[a, b]$.
 are all strictly concave on $\left[0, \frac{\pi}{3}\right]$, according to the Proposition.

## Outline of our proof of the main theorem

## Lemma

Let $\left(S^{4}, g\right)$ be $\mathrm{SO}(3)$-invariant. Suppose $g$ takes the form in (13).

1. If $\varphi, \psi, \xi$ are concave, then $\left(S^{4}, g\right)$ has a nonnegative radial sectional curvature.
2. If $\varphi, \psi, \xi$ are strictly concave, then $\left(S^{4}, g\right)$ has positive radial sectional curvature.

## Lemma

Fix any number $\tau_{0}>0$. There exist $\delta>0$ and $\epsilon>0$ such that the following properties hold:

1. The manifold $\left(S^{4}, g_{\text {final }}^{\tau}\right)$ has positive radial sectional curvature for all $0<\tau<\tau_{0}$.
2. The family of manifolds $\left\{\left(S^{4}, g_{\text {final }}^{\tau}\right)\right\}_{0 \leq \tau \leq \tau_{0}}$ satisfies the hypotheses of the first key lemma.

## Outline of our proof of the main theorem

Let us summarize what we have discussed before we prove the main theorem.

1. Our functions $\hat{\varphi}_{m, c}^{\alpha, \epsilon}, \hat{\psi}_{m, c}^{\alpha, \epsilon}, \hat{\xi}_{m, c}^{\alpha, \epsilon}$, where $\alpha>0$ and $\epsilon>0$ are small, are continuous, piecewise smooth, and strictly concave.
2. Their corresponding mollifications $\hat{\varphi}_{m, c}^{\alpha, \delta, \epsilon}, \hat{\psi}_{m, c}^{\alpha, \delta, \epsilon}, \hat{\xi}_{m, c}^{\alpha, \delta, \epsilon}$ maintain the properties we mentioned in (1) and are also smooth.
3. The glue functions $\hat{\varphi}_{m, c, \rho_{3,4,7,8}^{\alpha, \delta, \epsilon}}^{\alpha, \hat{\psi}_{m, c, \rho_{1,2,3,4,5,6,7,8}}^{\alpha, \delta, \epsilon} \hat{\xi}_{m, c, \rho_{1,2,5,6}}^{\alpha, \delta, \epsilon}, ~}$ glue $\hat{\varphi}_{m, c}^{\alpha, \delta, \epsilon}, \hat{\psi}_{m, c}^{\alpha, \delta, \epsilon}, \hat{\xi}_{m, c}^{\alpha, \delta, \epsilon}$ with $\stackrel{\varphi}{\varphi}_{0}^{\alpha}, \grave{\psi}_{0}^{\alpha}, \dot{\xi}_{0}^{\alpha}$, respectively. The glue functions maintain the properties we mentioned in (1) and (2), and they satisfy (64), (65), (66), as asserted by the second key lemma. We called this resulting metric $g_{m, c, \rho_{1,2,3,4,5,6,7,8}^{\alpha, \delta} \text {. }}^{\alpha,{ }_{c},}$
4. Finally, we were able to construct our desired one-parameter family of metrics $\left\{g_{\text {final }}^{\tau}\right\}_{\tau \geq 0}:=\left\{g_{m, c, \rho_{1,2,3,4,5,6,7,8}^{\alpha, \delta, \epsilon}}^{\alpha}\right\}_{\tau \geq 0}$.

## Outline of our proof of the main theorem

Finally, we will write a short proof of the main theorem, citing our previous propositions and lemmas. We will also restate the main theorem one more time.

## Theorem (Main theorem)

There exists a Riemannian metric with positive radial sectional curvature on $S^{4}$ that attains a negative radial sectional curvature when evolved by the Ricci flow.

Proof. Consider the one-parameter family of metrics $\left\{g_{\text {final }}^{\tau}\right\}_{\tau \geq 0}$. For all $0<\tau<\tau_{0}$, the final key lemma asserts that the manifold $\left(S^{4}, g_{\text {final }}^{\tau}\right)$ has positive radial sectional curvature and that the family $\left\{\left(S^{4}, g_{\text {final }}^{\tau}\right)\right\}_{0 \leq \tau \leq \tau_{0}}$ satisfies the hypotheses of the first key lemma for the tangent plane $\operatorname{span}\left(\frac{\partial}{\partial s}, X\right)$. Furthermore, the first key lemma asserts (25), which is precisely the assertion of our main theorem.

## References

[1] Andrey Alekseevsky and Dmitry Alekseevsky. Riemannian G-Manifold with One-Dimensional Orbit Space. Annals of Global Analysis and Geometry, Volume 11 (1993), Pages 197-211.
[2] Renato Bettiol and Anusha Krishnan. Four-Dimensional Cohomogeneity One Ricci Flow and Nonnegative Sectional Curvature. Communications in Analysis and Geometry, Volume 27 (2019), Pages 511-527.
[3] Renato Bettiol and Anusha Krishnan. Ricci Flow Does Not Preserve Positive Sectional Curvature in Dimension Four. Preprint (2021).
[4] Christoph Böhm and Burkhard Wilking. Nonnegatively Curved Manifolds with Finite Fundamental Groups Admit Metrics with Positive Ricci Curvature. Geometric and Functional Analysis, Volume 17, Number 3 (2007), Pages 665-681.

## References

[5] Theodor Bröcker and Klaus Janich. Introduction to Differential Topology. Cambridge University Press (1982).
[6] Bennett Chow, Peng Lu, and Lei Ni. Hamilton's Ricci Flow. American Math Society, Science Press, Volume 77 (2006).
[7] Semyon Dyatlov. The Sectional Curvature Remains Positive When Taking Quotients by Certain Nonfree Actions. Siberian Advances in Mathematics, Volume 18, Number 1 (2008), Pages 1-20.
[8] Lawrence Evans. Partial Differential Equations. American Math Society, Volume 19, Second Edition (2010).
[9] Karsten Grove and Wolfgang Ziller. Curvature and Symmetry of Milnor Spheres. Annals of Mathematics, Volume 152, Number 1 (2000), Pages 331-367.

## References

[10] Luis Guijarro and Frederick Wilhelm. Focal Radius, Rigidity, and Lower Curvature Bounds. Proceedings of the London Mathematical Society, Volume 116, Number 6 (2018), Pages 1329-1628.
[11] Luis Guijarro and Frederick Wilhelm. Restrictions on Submanifolds via Focal Radius Bounds. Mathematical Research Letters, Volume 27, Number 1 (2020), Pages 115-139.
[12] Chenxu He, Peter Petersen, and William Wylie. Warped Product Einstein Metrics over Spaces with Constant Scalar Curvature. Asian Journal of Mathematics, Volume 18, Number 1 (2014), Pages 159-190.
[13] John Lee. Introduction to Smooth Manifolds. Springer Science and Business Media, New York, Second Edition (2013).

## References

[14] Valery Marenich. Manifolds with Minimial Radial Curvature Bounded from Below and Big Volume. Transactions of the American Mathematical Society, Volume 352, Number 10 (2000), Pages 4451-4468.
[15] Valery Marenich and Sergio Mendonça. Manifolds with Minimal Radial Curvature Bounded from Below and Big Radius. Indiana University Mathematics Journal, Volume 48, Number 1 (1999), Pages 249-274.
[16] James Munkres. Topology. Prentice Hall, Upper Saddle River, Second Edition (2000).
[17] Peter Petersen. Riema nnian Geometry, Volume 171 of Graduate Texts in Mathematics. Springer International Publishing, Third Edition (2016).
[18] Luigi Verdiani and Wolfgang Ziller. Smoothness Conditions in Cohomogeneity Manifolds. Transformation Groups (2020).

