Days 1-2: Sequences and subsequences

Definition. A sequence {a,},’ is a function defined on the set of all positive integers n =
1,2,3, ... to real numbers.
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are all examples of sequences.

Definition. Let {a,};’, be a sequence. Consider a sequence {ny},>, of positive integers that
satisfy the infinite chain of inequalities ny < ny < n3 < ---. Then {ay};., is called a
subsequence of {a,} " ;.

Examples. The sets
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are all respective examples of subsequences of the sequences in Example 1.

Exercise. Find the limits of each of the sequences in Example 1. If a limit of a certain sequence
does not exist, state “DNE”.

Definition. A sequence {a,}, | of real numbers is said to converge if there exists a real number
a with the following property: For all € > 0, there exists an integer N such that n > N implies
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lan — a| < €. In this case, we say that a is the limit of {a,},” |, writing lim a, = a.
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Example. Find the limit of the sequence {n ’I} . Then prove it using the definition of the
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limit of a sequence.

Proof. The limit of the sequence is
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" using the definition of the limit of a sequence. Let € > 0
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Now we will prove lim —
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be given. Choose N =1 + é If n > N, then we have
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as desired. O

Exercise. For the first three sequences of Example 1, use the definition of sequence convergence
to show that the sequences indeed converge to their respective limits.

Now, consider the Euler constant

e ~ 2.71828182845904523536028747135266249775724709369995...
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Example. Compute the limit of the sequence { (1 + —) } . The answer is
n
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lim (1 + —) =e.
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You may use all the tools you have learned in first-year calculus. Note, however, that we are
NOT asking you here to prove this limit.

1n
y = lim (1+—) .

n—oo n

Solution. Let

Then we can take the natural log of both sides to obtain

In(y) =1n ( lim (1 + l)n)
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Recall for all x € R the Taylor series
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Then we have
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So we have

1 1 1
:1im(1——+— +--)

n—0oo
) ) 1 ) . 1
=liml-Ilim —+ lim — - lim — +---
n—oo n—o 2n  n—o 3p2  now 4p
=1-0+0-0+---
=1.

Finally, we can exponentiate both sides to obtain y = e, or equivalently

1 n
lim (1 + —) =e,
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as desired. O

Now also recall that, if n is a positive integer, then its factorial is defined

nl=nn-1)n-2)---3-2-1.
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Exercise (very hard). Compute the limit of the sequence {
(n!)n

(o)
} . The answer is
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.= e.
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You may use all the tools you have learned in first-year calculus. Note, however, that we are
NOT asking you here to prove this limit.



