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Twisted Alexander polynomials
detect fibered 3-manifolds

By Stefan Friedl and Stefano Vidussi

Abstract

A classical result in knot theory says that for a fibered knot the Alexan-

der polynomial is monic and that the degree equals twice the genus of

the knot. This result has been generalized by various authors to twisted

Alexander polynomials and fibered 3-manifolds. In this paper we show

that the conditions on twisted Alexander polynomials are not only neces-

sary but also sufficient for a 3-manifold to be fibered. By previous work of

the authors this result implies that if a manifold of the form S1×N3 admits

a symplectic structure, then N fibers over S1. In fact we will completely

determine the symplectic cone of S1 × N in terms of the fibered faces of

the Thurston norm ball of N .

1. Introduction

1.1. Twisted Alexander polynomials and fibered 3-manifolds. Let N be a

compact, connected, oriented 3-manifold with empty or toroidal boundary.

Given a nontrivial class φ ∈ H1(N ;Z) = Hom(π1(N),Z) we say that (N,φ)

fibers over S1 if there exists a fibration f : N → S1 such that the induced map

f∗ : π1(N)→ π1(S1) = Z agrees with φ. Stated otherwise, the homotopy class

in [N,S1] = H1(N ;Z) identified by φ can be represented by a fibration.

It is a classical result in knot theory that if a knot K ⊂ S3 is fibered, then

the Alexander polynomial is monic (i.e. the top coefficient equals ±1), and

the degree of the Alexander polynomial equals twice the genus of the knot.

This result has been generalized in various directions by several authors (e.g.

[McM02], [Cha03], [GKM05], [FK06], [Kit07]) to show that twisted Alexander

polynomials give necessary conditions for (N,φ) to fiber.

To formulate this kind of result more precisely we have to introduce some

definitions. Let N be a 3-manifold with empty or toroidal boundary and let
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φ ∈ H1(N ;Z). Given (N,φ) the Thurston norm of φ (cf. [Thu86]) is defined as

||φ||T = min{χ−(S) |S ⊂ N properly embedded surface dual to φ}.

Here, given a surface S with connected components S1 ∪ · · · ∪ Sk, we define

χ−(S) =
∑k
i=1 max{−χ(Si), 0}.

In the following we assume that φ ∈ H1(N ;Z) is nontrivial. Let α :

π1(N) → G be a homomorphism to a finite group. We have the permutation

representation π1(N)→ Aut(Z[G]) given by left multiplication, which we also

denote by α. We can therefore consider the twisted Alexander polynomial

∆α
N,φ ∈ Z[t±1], whose definition is detailed in Section 2.3. We denote by φα

the restriction of φ ∈ H1(N ;Z) = Hom(π1(N),Z) to Ker(α). Note that φα is

necessarily nontrivial. We denote by divφα ∈ N the divisibility of φα, i.e.

divφα = max{n ∈ N |φα = nψ for some ψ : Ker(α)→ Z}.

We can now formulate the following theorem which appears as [FK06, Th. 1.3

and Remark, p. 938].

Theorem 1.1. Let N 6= S1 × S2, S1 ×D2 be a 3-manifold with empty or

toroidal boundary. Let φ ∈ H1(N ;Z) be a nontrivial class. If (N,φ) fibers over

S1, then for any homomorphism α : π1(N) → G to a finite group the twisted

Alexander polynomial ∆α
N,φ ∈ Z[t±1] is monic and

deg(∆α
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα.

It is well-known that in general the constraint of monicness and degree

for the ordinary Alexander polynomial falls short from characterizing fibered

3-manifolds. The main result of this paper is to show that on the other hand

the collection of all twisted Alexander polynomials does detect fiberedness, i.e.

the converse of Theorem 1.1 holds true:

Theorem 1.2. Let N be a 3-manifold with empty or toroidal boundary.

Let φ ∈ H1(N ;Z) be a nontrivial class. If, for any homomorphism α : π1(N)→
G to a finite group, the twisted Alexander polynomial ∆α

N,φ ∈ Z[t±1] is monic

and

deg(∆α
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα

holds, then (N,φ) fibers over S1.

Note that alternatively it is possible to rephrase this statement in terms

of Alexander polynomials of the finite regular covers of N , by use of the fact

that ∆α
N,φ = ∆

Ñ,p∗(φ)
(cf. [FV08b]), where p : ‹N → N is the cover of N deter-

mined by Ker(α). Also, note that this theorem asserts that twisted Alexander

polynomials detect whether (N,φ) fibers under the assumption that ||φ||T is

known; while it is known that twisted Alexander polynomials give lower bounds
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(cf. [FK06, Th. 1.1]), it is still an open question whether twisted Alexander

polynomials determine the Thurston norm.

In the case where φ has trivial Thurston norm, this result is proven in

[FV08a], by use of subgroup separability. Here, following a different route (see

§1.3 for a summary of the proof), we prove the general case.

1.2. Symplectic 4-manifolds and twisted Alexander polynomials. In 1976

Thurston [Thu76] showed that if a closed 3-manifold N admits a fibration over

S1, then S1 × N admits a symplectic structure, i.e. a closed, nondegenerate

2-form ω. It is natural to ask whether the converse to this statement holds

true. In its simplest form, we can state this problem in the following way:

Conjecture 1.3. Let N be a closed 3-manifold. If S1×N is symplectic,

then there exists a φ ∈ H1(N ;Z) such that (N,φ) fibers over S1.

Interest in this question was motivated by Taubes’ results in the study

of Seiberg-Witten invariants of symplectic 4-manifolds (see [Tau94], [Tau95])

that gave initial evidence to an affirmative solution of this conjecture. In the

special case where N is obtained via 0-surgery along a knot in S3, this question

appears also in [Kro98, Question 7.11]. Over the last ten years evidence for this

conjecture was given by various authors [Kro98], [CM00], [Etg01], [McC01],

[Vid03].

In [FV08b] the authors initiated a project relating Conjecture 1.3 to the

study of twisted Alexander polynomials. The outcome of that investigation

is that if S1 × N is symplectic, then the twisted Alexander polynomials of

N behave like twisted Alexander polynomials of a fibered 3-manifold. More

precisely, the following holds (cf. [FV08b, Th. 4.4]):

Theorem 1.4. Let N be an irreducible closed 3-manifold and ω a sym-

plectic structure on S1×N such that ω represents an integral cohomology class.

Let φ ∈ H1(N ;Z) be the Künneth component of [ω] ∈ H2(S1 × N ;Z). Then

for any homomorphism α : π1(N)→ G to a finite group, the twisted Alexander

polynomial ∆α
N,φ ∈ Z[t±1] is monic and

deg(∆α
N,φ) = |G| ‖φ‖T + 2divφα.

Note that it follows from McCarthy’s work [McC01] (see also Lemma 7.1)

and Perelman’s proof of the geometrization conjecture (cf. e.g. [MT07]) that if

S1 ×N is symplectic, then N is prime, i.e. either irreducible or S1 × S2. The

proof of Theorem 1.4 relies heavily on the results of [Kro98] and [Vid03], which

in turn build on results of Taubes [Tau94], [Tau95] and Donaldson [Don96].

As the symplectic condition is open, the assumption that a symplectic

manifold admits an integral symplectic form is not restrictive. Therefore, com-

bining Theorem 1.2 with Theorem 1.4, we deduce that Conjecture 1.3 holds
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true. In fact, in light of [FV11, Th. 1.2], we have the following more refined

statement:

Theorem 1.5. Let N be a closed oriented 3-manifold. Then given Ω ∈
H2(S1 ×N ;R) the following are equivalent :

(1) Ω can be represented by a symplectic structure;

(2) Ω can be represented by a symplectic structure which is S1-invariant ;

(3) Ω2 > 0 and the Künneth component φ ∈ H1(N ;R) of Ω lies in the open

cone on a fibered face of the Thurston norm ball of N .

Note that the theorem allows us in particular to completely determine the

symplectic cone of a manifold of the form S1×N in terms of the fibered cones

of N .

Combined with the results of [FV08b], Theorem 1.2 shows in particu-

lar that the collection of the Seiberg-Witten invariants of all finite covers of

S1 ×N determines whether S1 × N is symplectic or not. In particular, we

have the following corollary (we refer to [Vid99], [Vid03] for the notation and

the formulation in the case that b1(N) = 1).

Corollary 1.6. Let N be a closed 3-manifold with b1(N) > 1. Then

given a spinc structure K ∈ H2(S1 ×N ;Z) there exists a symplectic structure

representing a cohomology class Ω ∈ H2(S1 ×N ;R) with canonical class K if

and only if the following conditions hold :

(1) K · φ = ‖φ‖T , where φ ∈ H1(N ;R) is the Künneth component of Ω,

and for any regular finite cover p : ‹N → N ;

(2) SW
S1×Ñ (p∗(K)) = 1;

(3) for any Seiberg-Witten basic class κ ∈ H2(S1 × ‹N ;Z) we have

|p∗(κ) · φ| ≤ deg(p) K · φ

(where p∗ is the transfer map), and the latter equality holds if and only

if κ = ±p∗K .

(Note that, under the hypotheses of the corollary, all basic classes of S1×‹N
are the pull-back of elements of H2(‹N ;Z)).

Remark. A different approach to Conjecture 1.3 involves a deeper inves-

tigation of the consequence of the symplectic condition on S1 ×N , that goes

beyond the information encoded in Theorem 1.4. A major breakthrough in

this direction has recently been obtained by Kutluhan and Taubes ([KT09]).

They show that if N is a 3-manifold such that S1 × N is symplectic, under

some cohomological assumption on the symplectic form, then the Monopole

Floer homology of N behaves like the Monopole Floer homology of a fibered
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3-manifold. On the other hand it is known, due to the work of Ghiggini, Kron-

heimer and Mrowka, and Ni that Monopole Floer homology detects fibered

3-manifolds ([Ghi08], [Ni09], [KM10], [Ni08].) The combination of the above

results proves in particular Conjecture 1.3 in the case that b1(N) = 1.

1.3. Fibered 3-manifolds and finite solvable groups : outline of the proof.

In this subsection we will outline the strategy of the proof of Theorem 1.2. It

is useful to introduce the following definition.

Definition. Let N be a 3-manifold with empty or toroidal boundary, and

let φ ∈ H1(N ;Z) be a nontrivial class. We say that (N,φ) satisfies Condition

(∗) if for any homomorphism α : π1(N) → G to a finite group the twisted

Alexander polynomial ∆α
N,φ ∈ Z[t±1] is monic and

deg(∆α
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα.

It is well-known (see [McC01] for the closed case, and 7.1 for the general

case) that Condition (∗) implies, by geometrization, that N is prime; so we

can restrict ourself to the case where N is irreducible.

Note that McMullen [McM02] showed that when the class φ is primitive,

the condition ∆N,φ 6= 0 implies that there exists a connected Thurston norm-

minimizing surface Σ dual to φ. It is well-known that to prove Theorem 1.2 it

is sufficient to consider a primitive φ, and we will assume that in the following.

Denote M = N \ νΣ; the boundary of M contains two copies Σ± of Σ and

throughout the paper we denote the inclusion induced maps Σ→ Σ± → M

by ι±.

By Stallings’ theorem [Sta62] the surface Σ is a fiber of a fibration N →
S1 if and only if ι± : π1(Σ) → π1(M) are isomorphisms. Hence to prove

Theorem 1.2 we need to show that if (N,φ) satisfies Condition (∗), then the

monomorphisms ι± : π1(Σ) → π1(M) are in fact isomorphisms. Using purely

group theoretic arguments we are not able to show directly that Condition (∗)
implies the desired isomorphism; however, we have the following result:

Proposition 1.7. Assume that (N,φ) satisfies Condition (∗) and that φ

is primitive. Let Σ ⊂ N be a connected Thurston norm-minimizing surface dual

to φ and let ι be either of the two inclusion maps of Σ into M = N \νΣ. Then

ι : π1(Σ)→ π1(M) induces an isomorphism of the prosolvable completions.

We refer to Section 2.4 for information regarding group completions. Prop-

osition 1.7 translates the information from Condition (∗) into information re-

garding the maps ι± : π1(Σ)→ π1(M). From a purely group theoretic point of

view it is a difficult problem to decide whether a homomorphism which gives

rise to an isomorphism of prosolvable completions has to be an isomorphism

itself (cf. [Gro70], [BG04], [AdlHKŠ07] and also Lemma 4.7). However in our
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3-dimensional setting we can use a recent result of Agol [Ago08] to prove the

following theorem.

Theorem 1.8. Let N be an irreducible 3-manifold with empty or toroidal

boundary. Let Σ ⊂ N be a connected Thurston norm-minimizing surface. We

write M = N \ νΣ. Assume the following hold :

(1) The inclusion induced maps ι± : π1(Σ) → π1(M) give rise to isomor-

phisms of the respective prosolvable completions, and

(2) π1(M) is residually finite solvable,

then ι± : π1(Σ)→ π1(M) are isomorphisms ; hence M = Σ× I .

In light of Proposition 1.7, the remaining obstacle for the proof of Theo-

rem 1.2 is the condition in Theorem 1.8 that π1(M) has to be residually finite

solvable. It is well-known that linear groups (and hence in particular hyperbolic

3-manifolds groups) are virtually residually p for all but finitely many primes

p (cf. e.g. [Weh73, Th. 4.7] or [LS03, Window 7, Prop. 9]), in particular they

are residually finite solvable. Thurston conjectured that 3-manifold groups in

general are linear (cf. [Kir97, Problem 3.33]), but this is still an open problem.

Using the recent proof of the geometrization conjecture (cf. e.g. [MT07]) we

will prove the following result, which will be enough for our purposes.

Theorem 1.9. Let N be a closed prime 3-manifold. Then for all but

finitely many primes p there exists a finite cover N ′ of N such that the funda-

mental group of any component of the JSJ decomposition of N ′ is residually a

p-group.

We can now deduce Theorem 1.2 as follows: We first show in Lemmas 7.1

and 7.2 that it suffices to show Theorem 1.2 for closed prime 3-manifolds.

Theorem 1.2 in that situation now follows from combination of Theorems 1.7,

1.8 and 1.9 with a more technical theorem which allows us to treat the various

JSJ pieces separately (cf. Theorem 6.4).

Added in proof. In a very recent paper ([AF10]) Matthias Aschenbrenner

and the first author showed that any 3-manifold group is virtually residually p.

This simplifies the proof of Theorem 1.2 as outlined in [FV09].

This paper is structured as follows. In Section 2 we recall the definition

of twisted Alexander polynomials and some basics regarding completions of

groups. In Section 3 we will prove Proposition 1.7 and in Section 4 we give the

proof of Theorem 1.8. In Section 5 we prove Theorem 1.9 and in Section 6 we

provide the proof for Theorem 6.4. Finally in Section 7 we complete the proof

of Theorem 1.2.

Conventions and notation. Throughout the paper, unless otherwise stated,

we will assume that all manifolds are oriented and connected, and all homology
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and cohomology groups have integer coefficients. Furthermore all surfaces are

assumed to be properly embedded and all spaces are compact and connected,

unless stated explicitly otherwise. The derived series of a group G is defined

inductively by G(0) = G and G(n+1) = [G(n), G(n)].

Acknowledgments. We would like to thank Ian Agol, Matthias Aschen-

brenner, Steve Boyer, Paolo Ghiggini, Taehee Kim, Marc Lackenby, Alexander

Lubotzky, Kent Orr, Saul Schleimer, Jeremy van Horn-Morris and Genevieve

Walsh for many helpful comments and conversations. We also would like to

thank the referee for suggesting several improvements to the paper and point-

ing out various inaccuracies.

2. Preliminaries: Twisted invariants and completions of groups

2.1. Twisted homology. Let X be a CW-complex with base point x0. Let

R be a commutative ring, V a module over R and α : π1(X,x0)→ AutR(V ) a

representation. Let ‹X be the universal cover of X. Note that π1(X,x0) acts

on the left on ‹X as a group of deck transformations. The cellular chain groups

C∗(‹X) are in a natural way right π1(X)-modules, with the right action on

C∗(‹X) defined via σ ·g := g−1σ, for σ ∈ C∗(‹X). By tensoring, we can form the

chain complex C∗(‹X) ⊗Z[π1(X,x0)] V , which is a complex of R-modules. Now

define Hi(X;V ) := Hi(C∗(‹X) ⊗Z[π1(X,x0)] V ). The isomorphism type of the

R-module Hi(X;V ) does not depend on the choice of the base point; in fact

it only depends on the homotopy type of X and the isomorphism type of the

representation.

In this paper we will also frequently consider twisted homology for a

finitely generated group Γ; its definition can be reduced to the one above

by looking at the twisted homology of the Eilenberg-Maclane space K(Γ, 1).

The most common type of presentation we consider in this paper is as

follows: Let X be a topological space, α : π1(X) → G a homomorphism to

a group G and H ⊂ G a subgroup of finite index. Then we get a natural

action of π1(X) on AutZ(Z[G/H]) by left-multiplication, which gives rise to

the homology groups Hi(X;Z[G/H]).

We will now study the Z[π1(X)]-module Z[G/H] in more detail. We write

C := α(π1(X)). Consider the set of double cosets C\G/H. By definition

g, g′ ∈ G represent the same equivalence class if and only if there exist c, c′ ∈
C and h, h′ ∈ H such that cgh = c′g′h′. Note that g1, . . . , gk ∈ G are a

complete set of representatives of C\G/H if and only if G is the disjoint union

of Cg1H, . . . , CgkH. The first part of the following lemma is an immediate

consequence of [Bro94, II.5.2.], the second part follows either from Shapiro’s

lemma or a straightforward calculation.

Lemma 2.1. Let g1, . . . , gk ∈ G be a set of representatives for the equiva-

lence classes C\G/H . For i = 1, . . . , k write C̃i = C ∩ giHg−1
i . We then have
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the following isomorphisms of left Z[C]-modules :

Z[G/H] ∼=
k⊕
i=1

Z[C/C̃i].

In particular H0(X;Z[G/H]) is a free abelian group of rank k = |C\G/H|.

2.2. Induced maps on low dimensional homology groups. In this section we

will give criteria when maps between groups give rise to isomorphisms between

low dimensional twisted homology groups. We start out with a study of the

induced maps on 0-th twisted homology groups.

Lemma 2.2. Let ϕ : A → B be a monomorphism of finitely generated

groups. Suppose that B is a subgroup of a group π and let π̃ ⊂ π be a subgroup

of finite index. Let g1, . . . , gk ∈ π be a set of representatives for the equivalence

classes B\π/π̃. For i = 1, . . . , k we write ‹Bi = B ∩ giπ̃g−1
i and Ãi = ϕ−1(‹Bi).

Then
ϕ∗ : H0(A;Z[π/π̃])→ H0(B;Z[π/π̃])

is an epimorphism of free abelian groups and it is an isomorphism if and only

if ϕ : A/Ãi → B/‹Bi is a bijection for any i.

Proof. It is well-known that the induced map on 0-th twisted homology

groups is always surjective (cf. e.g. [HS97, §6]) and by Lemma 2.1 both groups

are free abelian groups. Now note that without loss of generality we can assume

that A ⊂ B and that ϕ is the inclusion map. It follows from Lemma 2.1 that

H0(B;Z[π/π̃]) is a free abelian group of rank k = |B\π/π̃|. By the same lemma

we also have

Z[π/π̃] ∼=
k⊕
i=1

Z[B/B̃i]

as left Z[B]-modules and hence also as left Z[A]-modules. Applying Lemma 2.1

to the Z[A]-modules Z[B/B̃i], we see that H0(A;Z[π/π̃]) is a free abelian group

of rank k if and only if |A\B/‹Bi| = 1 for any i. It is straightforward to see

that this is equivalent to A/Ãi → B/‹Bi being a bijection for any i. �

We will several times make use of the following corollary.

Corollary 2.3. Let ϕ : A→ B be a monomorphism of finitely generated

groups. Let β : B → G be a homomorphism to a finite group. Then

ϕ∗ : H0(A;Z[G])→ H0(B;Z[G])

is an epimorphism of free abelian groups and it is an isomorphism if and only if

Im{A→ B → G} = Im{B → G}.

Proof. Let π′ = B × G and π̃′ = B. We can then apply Lemma 2.2 to

A′ = A,B′ = {(g, β(g)) | g ∈ B} ⊂ π′ and ϕ′(a) = (ϕ(a), β(ϕ(a)), a ∈ A′. It is

straightforward to verify that the desired equivalence of statements follows. �
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We now turn to the question when group homomorphisms induce isomor-

phisms of the 0-th and of the first twisted homology groups at the same time.

Lemma 2.4. Let ϕ : A → B be a monomorphism of finitely generated

groups. Suppose that B is a subgroup of a group π and let π̃ ⊂ π be a subgroup

of finite index. Let g1, . . . , gk ∈ π be a set of representatives for the equivalence

classes B\π/π̃. For i = 1, . . . , k we write ‹Bi = B ∩ giπ̃g−1
i and Ãi = ϕ−1(‹Bi).

Then

ϕ∗ : Hi(A;Z[π/π̃])→ Hi(B;Z[π/π̃])

is an isomorphism for i = 0 and i = 1 if and only if the following two conditions

are satisfied :

(1) ϕ : A/Ãi → B/‹Bi is a bijection for any i,

(2) ϕ : A/[Ãi, Ãi]→ B/[‹Bi, ‹Bi] is a bijection for any i.

Proof. Without loss of generality we can assume that A ⊂ B and that ϕ

is the inclusion map. By Lemmas 2.1 and 2.2 it suffices to show for any i the

following: If A/Ãi → B/‹Bi is a bijection, then the map H1(A;Z[B/‹Bi]) →
H1(B;Z[B/‹Bi]) is an isomorphism if and only if ϕ : A/[Ãi, Ãi] → B/[‹Bi, ‹Bi]
is a bijection.

Using the above and using Shapiro’s Lemma we can identify

H1(A;Z[B/‹Bi]) = H1(A;Z[A/Ãi]) = Ãi/[Ãi, Ãi] and

H1(B;Z[B/‹Bi]) = ‹Bi/[‹Bi, ‹Bi].
Note that A/Ãi, B/‹Bi, A/[Ãi, Ãi] and B/[‹Bi, ‹Bi] are in general not groups, but

we can view them as pointed sets. We now consider the following commutative

diagram of exact sequences of pointed sets:

0 // H1(A;Z[B/‹Bi]) //

ϕ
��

A/[Ãi, Ãi]

ϕ
��

// A/Ãi

ϕ
��

// 1

0 // H1(B;Z[B/‹Bi]) // B/[‹Bi, ‹Bi] // B/‹Bi // 1.

Recall that the map on the right is a bijection. It now follows from the

5-Lemma for exact sequences of pointed sets that the middle map is a bijection

if and only if the left-hand map is a bijection. �

We will several times make use of the following corollary which can be

deduced from Lemma 2.4 the same way that Corollary 2.3 is deduced from

Lemma 2.2.

Corollary 2.5. Let ϕ : A→ B be a monomorphism of finitely generated

groups, and assume there is given a homomorphism β : B → G to a finite
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group G. Then

ϕ∗ : Hi(A;Z[G])→ Hi(B;Z[G]), i = 0, 1

is an isomorphism if and only if the following two conditions hold :

(1) Im{A→ B → G} = Im{B → G},
(2) ϕ induces an isomorphism

A/[Ker(β ◦ ϕ),Ker(β ◦ ϕ)]→ B/[Ker(β),Ker(β)].

Under extra conditions we can also give a criterion for a map between

groups to induce an isomorphism of second homology groups.

Lemma 2.6. Let ϕ : A→ B be a homomorphism between two groups such

that X = K(A, 1) and Y = K(B, 1) are finite 2-complexes with vanishing Euler

characteristic. Let β : B → G be a homomorphism to a finite group such that

ϕ∗ : Hi(A;Z[G])→ Hi(B;Z[G]), i = 0, 1

is an isomorphism ; then

ϕ∗ : H2(A;Z[G])→ H2(B;Z[G])

is also an isomorphism.

Proof. We can and will view X as a subcomplex of Y . It suffices to show

thatH2(Y,X;Z[G]) = 0. Note that our assumption implies thatHi(Y,X;Z[G])

=0 for i=0, 1. Now note that H2(Y,X;Z[G]) is a submodule of C2(Y,X;Z[G]),

in particular H2(Y,X;Z[G]) is a free Z-module. We therefore only have to show

that rankH2(Y,X;Z[G]) = 0. Now note that

rankH2(Y,X;Z[G]) = rankH2(Y,X;Z[G])− rankH1(Y,X;Z[G])

+ rankH0(Y,X;Z[G])

= |G|χ(Y,X)

= |G|(χ(Y )− χ(X))

= 0. �

We conclude this section with the following lemma.

Lemma 2.7. Let ϕ : A → B be a homomorphism. Let “B ⊂ ‹B ⊂ B be

two subgroups. Suppose that “B ⊂ B is normal. We write Â := ϕ−1(“B) and

Ã := ϕ−1(‹B). Assume that

ϕ : A/Â→ B/“B and ϕ : A/[Â, Â]→ B/[“B, “B]

are bijections, then

ϕ : A/Ã→ B/‹B and ϕ : A/[Ã, Ã]→ B/[‹B, ‹B]

are also bijections.
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Proof. In the following let n = 0 or n = 1. Suppose that ϕ : A/Â(n) →
B/“B(n) is a bijection. Note that Â(n) ⊂ A and “B(n) ⊂ B are normal, in

particular ϕ : A/Â(n) → B/“B(n) is in fact an isomorphism. We have to show

that ϕ : A/Ã(n) → B/‹B(n) is a bijection.

Claim. The map ϕ induces a bijection Ã(n)/Â(n) → ‹B(n)/“B(n).

We write Ā := A/Â(n), B̄ := B/“B(n) and we denote by ϕ : Ā → B̄ the

induced map which by assumption is an isomorphism. We denote by H̄ the sub-

group ‹B/“B(n) ⊂ B̄. Note that ϕ restricts to isomorphisms ϕ−1(H̄) → H̄ and

ϕ−1(H̄(n))→ H̄(n). Since ϕ−1 is an isomorphism it follows that
(
ϕ−1(H̄)

)(n)
=

ϕ−1
Ä
H̄(n)

ä
. Now recall that H̄ = ‹B/“B(n), hence H̄(n) = ‹B(n)/“B(n). We clearly

have ϕ−1(H̄) = Ã/Â(n) and therefore ϕ−1(H̄)(n) = Ã(n)/Â(n). This shows that

the isomorphism ϕ : ϕ−1
Ä
H̄(n)

ä
→ H̄(n) is precisely the desired isomorphism

Ã(n)/Â(n) → ‹B(n)/“B(n). This concludes the proof of the claim.

Now consider the following commutative diagram of short exact sequences

of pointed sets:

1 // Ã(n)/Â(n)

ϕ
��

// A/Â(n)

ϕ
��

// A/Ã(n)

ϕ
��

// 1

1 // ‹B(n)/“B(n) // B/“B(n) // B/‹B(n) // 1.

The middle vertical map is a bijection by assumption and we just verified that

the vertical map on the left is a bijection. It now follows from the 5-Lemma

for exact sequences of pointed sets that the vertical map on the right is also a

bijection. �

2.3. Twisted Alexander polynomials. In this section we are going to recall

the definition of twisted Alexander polynomials. These were introduced, for

the case of knots, by Xiao-Song Lin in 1990 (published in [Lin01]), and his def-

inition was later generalized to 3-manifolds by Wada [Wad94], Kirk-Livingston

[KL99] and Cha [Cha03].

Let N be a compact manifold. Let R be a commutative, Noetherian

unique factorization domain (in our applications R = Z or R = Fp, the finite

field with p elements) and V a finite free R-module. Let α : π1(N)→ AutR(V )

be a representation and let φ ∈ H1(N ;Z) = Hom(π1(N),Z) be a nontrivial

element. We write V ⊗R R[t±1] =: V [t±1]. Then α and φ give rise to a

representation α⊗ φ : π1(N)→ AutR[t±1](V [t±1]) as follows:Ä
(α⊗ φ)(g)

ä
(v ⊗ p) := (α(g) · v)⊗ (φ(g) · p) = (α(g) · v)⊗ (tφ(g)p),

where g ∈ π1(N), v ⊗ p ∈ V ⊗R R[t±1] = V [t±1].
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Note that N is homotopy equivalent to a finite CW-complex, which, by

abuse of notation, we also denote by N . Then we consider C∗(Ñ) ⊗Z[π1(N)]

V [t±1] which is a complex of finitely generated R[t±1]-modules. Since R[t±1]

is Noetherian it follows that for any i the R[t±1]-module Hi(N ;V [t±1]) is a

finitely presented R[t±1]-module. This means Hi(N ;V [t±1]) has a free R[t±1]-

resolution

R[t±1]ri
Si−→ R[t±1]si → Hi(N ;V [t±1])→ 0.

Without loss of generality we can assume that ri ≥ si.

Definition. The i-th twisted Alexander polynomial of (N,α, φ) is defined

to be the order of the R[t±1]-module Hi(N ;V [t±1]), i.e. the greatest common

divisor (which exists since R[t±1] is a UFD as well) of the si× si minors of the

si × ri-matrix Si. It is denoted by ∆α
N,φ,i ∈ R[t±1].

Note that ∆α
N,φ,i ∈ R[t±1] is well-defined up to a unit in R[t±1], i.e. up

to an element of the form rti where r is a unit in R and i ∈ Z. We say that

f ∈ R[t±1] is monic if its top coefficient is a unit in R. Given a nontrivial

f =
∑s
i=r ast

i with ar 6= 0, as 6= 0 we write degf = s− r. For f = 0 we write

deg(f) = −∞. Note that deg∆α
N,φ,i is well-defined.

We now write π = π1(N). If we are given a homomorphism α : π → G

to a finite group, then this gives rise to a finite dimensional representation of

π, that we will denote by α : π → AutR(R[G]) as well. In the case that we

have a finite index subgroup π̃ ⊂ π we get a finite dimensional representation

π → AutR(R[π/π̃]) given by left-multiplication. When R = Z, the resulting

twisted Alexander polynomials will be denoted by ∆
π/π̃
N,φ,i ∈ Z[t±1], while for

R = Fp we will use the notation ∆
π/π̃,p
N,φ,i ∈ Fp[t±1]. See [FV08b] for the relation

between these polynomials.

Finally, in the case that α : π → GL(1,Z) is the trivial representation we

drop the α from the notation, and in the case that i = 1 we drop the subscript

“1” from the notation.

We summarize some of the main properties of twisted Alexander poly-

nomials in the following lemma. It is a consequence of [FV08b, Lemmas 3.3

and 3.4] and [FK06, Prop. 2.5].

Lemma 2.8. Let N be a 3-manifold with empty or toroidal boundary. Let

φ ∈ H1(N ;Z) be nontrivial and π̃ ⊂ π := π1(N) a finite index subgroup.

Denote by φπ̃ the restriction of φ to π̃; then the following hold :

(1) ∆
π/π̃
N,φ,0 = (1− tdiv φπ̃);

(2) if ∆
π/π̃
N,φ,1 6= 0, then ∆

π/π̃
N,φ,2 = (1− tdiv φπ̃)b3(N);

(3) ∆
π/π̃
N,φ,i = 1 for any i ≥ 3.
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Assume we also have a subgroup π′ with π̃ ⊂ π′ ⊂ π. Denote the covering of

N corresponding to π′ by N ′ and denote by φ′ the restriction of φ to π′, then

∆
π/π̃
N,φ,i = ∆

π′/π̃
N ′,φ′,i

for any i. Finally note that the statements of the lemma also hold for the

polynomial ∆
π/π̃,p
N,φ,i ∈ Fp[t±1].

We also recall the following well-known result (cf. e.g. [Tur01]).

Lemma 2.9. Let N be a 3-manifold with empty or toroidal boundary. Let

φ ∈ H1(N ;Z) be nontrivial and π̃ ⊂ π := π1(N) a finite index subgroup. Then

given i the following are equivalent :

(1) ∆
π/π̃
N,φ,i 6= 0,

(2) Hi(N ;Z[π/π̃][t±1]) is Z[t±1]-torsion,

(3) Hi(N ;Q[π/π̃][t±1]) is Q[t±1]-torsion,

(4) the rank of the abelian group Hi(N ;Z[π/π̃][t±1]) is finite.

In fact if any of the four conditions holds, then

deg∆
π/π̃
N,φ,i = rankHi(N ;Z[π/π̃][t±1]) = dimHi(N ;Q[π/π̃][t±1]).

2.4. Completions of groups. Throughout the paper it is convenient to use

the language of completions of groups. Although the proof of Theorem 1.2

does not explicitly require this terminology, group completions are the natural

framework for these results. We recall here the definitions and some basic

facts, referring to [LS03, Window 4] and [Wil98], [RZ00] for proofs and for

more information.

Let C be a variety of groups (cf. [RZ00, p. 20] for the definition). Examples

of varieties of pertinence to this paper are given by any one of the following:

(1) finite groups,

(2) p-groups for a prime p,

(3) the variety FS(n) of finite solvable groups of derived length at most n,

(4) the variety FS of finite solvable groups.

In the following we equip a finitely generated group A with its pro-C topology,

this topology is the translation invariant topology uniquely defined by taking

as a fundamental system of neighborhoods of the identity the collection of all

normal subgroups of A such that the quotient lies in C. Note that in particular

all groups in C are endowed with the discrete topology.

Given a group A denote by ÂC its pro-C completion, i.e. the inverse limit

ÂC = lim←−A/Ai
where Ai runs through the inverse system determined by the collection of all

normal subgroups of A such that A/Ai ∈ C. Then ÂC , which we can view

as a subgroup of the direct product of all A/Ai, inherits a natural topology.
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Henceforth by homomorphisms between groups we will mean a homomorphism

which is continuous with respect to the above topologies. Using the standard

convention we refer to the pro-FS completion of a group as the prosolvable

completion.

Note that by the assumption that C is a variety, the pro-C completion is

a covariant functor, i.e. given ϕ : A → B we get an induced homomorphism

ϕ̂ : ÂC → “BC .
A group A is called residually C if for any nontrivial g ∈ A there exists

a homomorphism α : A → G where G ∈ C such that α(g) 6= e. It is easily

seen that A is residually C if and only if the map A → ÂC is injective. In

particular, if we are given a homomorphism ϕ : A → B between residually C
groups A,B such that ϕ̂ : ÂC → “BC is an injection, then it follows from the

following commutative diagram

A

��

ϕ // B

��

ÂC
ϕ̂ // “BC

that ϕ is injective as well.

The following well-known lemma gives sufficient and necessary conditions

for a homomorphism ϕ : A → B to induce an isomorphism of pro-C comple-

tions.

Lemma 2.10. Let C be a variety of groups and assume that there is a

homomorphism ϕ : A→ B. Then the following are equivalent :

(1) ϕ̂ : ÂC → “BC is an isomorphism,

(2) for any G ∈ C the induced map

ϕ∗ : Hom(B,G)→ Hom(A,G)

is a bijection.

We also note the following well-known lemma.

Lemma 2.11. Let C be an extension-closed variety and let ϕ : A → B be

a homomorphism of finitely generated groups which induces an isomorphism

of pro-C completions. Then for any homomorphism β : B → G to a C-group,

the restriction of ϕ to Ker(β ◦ ϕ)→ Ker(β) induces an isomorphism of pro-C
completions.

When a homomorphism ϕ : A→ B of finitely generated groups induces an

isomorphism of their pro-C completions, then we have a relation of the twisted

homology with coefficients determined by C-groups. More precisely, we have

the following.
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Lemma 2.12. Let C be a variety of groups and let ϕ : A → B be a

homomorphism of finitely generated groups which induces an isomorphism of

pro-C completions. Then for any homomorphism β : B → G to a C-group

the map ϕ∗ : H0(A;Z[G]) → H0(B;Z[G]) is an isomorphism. Furthermore, if

C is an extension-closed variety containing all finite abelian groups, the map

ϕ∗ : H1(A;Z[G])→ H1(B;Z[G]) is an isomorphism.

Proof. Observe that, by Corollary 2.3, the first part of the statement is

equivalent to the assertion that, for any element β ∈ Hom(B,G),

Im{β ◦ ϕ : A→ G} = Im{β : B → G}.

Without loss of generality, we can reduce the proof of this isomorphism to

the case where β is surjective. Denote α = β ◦ ϕ ∈ Hom(A,G). Assume to

the contrary that α(A) ( G; then α ∈ Hom(A,α(A)) ⊂ Hom(A,G) and as

α(A) ∈ C there exists by hypothesis a map β′ ∈ Hom(B,α(A)) ⊂ Hom(B,G)

such that α = β′ ◦ ϕ. Now the two maps β, β′ ∈ Hom(B,G) (that must

differ as they have different images) induce the same map α ∈ Hom(A,G),

contradicting the bijectivity of Hom(B,G) and Hom(A,G).

We now turn to the proof of the second part of the statement. Let β :

B → G be a homomorphism to a C-group. Again, without loss of generality,

we can assume that β : B → G is surjective. Note that by the above the

homomorphism β ◦ϕ : A→ G is surjective as well. We now write B′ = Ker(β)

and A′ = Ker(β ◦ ϕ). By Shapiro’s lemma, we have the commutative diagram

H1(A′;Z)
∼= //

��

H1(A;Z[G])

��
H1(B′;Z)

∼= // H1(B;Z[G]).

The claim amounts therefore to showing that the map ϕ∗ : H1(A′;Z) →
H1(B′;Z) is an isomorphism. As A and B are finitely generated, A′ and

B′ are finitely generated as well. When C is extension closed, and contains all

finite abelian groups, Lemma 2.11 asserts that the map ϕ induces a bijection

between Hom(B′,Γ) and Hom(A′,Γ) for any finite abelian group Γ; the desired

isomorphism easily follows. �

3. Monic twisted Alexander polynomials and solvable groups

The aim of this section is to prove Proposition 1.7.

3.1. Preliminary results. We will often make use of the following propo-

sition (cf. [McM02, §4 and Prop. 6.1]).
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Proposition 3.1. Let N be a 3-manifold with empty or toroidal boundary

and let φ ∈ H1(N ;Z) be a primitive class. If ∆N,φ 6= 0, then there exists a

connected Thurston norm-minimizing surface Σ dual to φ.

Given a connected oriented surface Σ ⊂ N we will adopt the following

conventions for the rest of the paper. We choose a neighborhood Σ × [−1, 1]

⊂ N and write νΣ = Σ × (−1, 1). Let M := N \ νΣ; we will write Σ± =

Σ×{±1} ⊂ ∂M , and we will denote the inclusion induced maps Σ→ Σ± ⊂M
by ι±.

We pick a base point in M and endow N with the same base point. Also,

we pick a base point for Σ and endow Σ± with the corresponding base points.

With these choices made, we write A = π1(Σ) and B = π1(M). We also pick

paths in M connecting the base point of M with the base points of Σ− and

Σ+. We now have inclusion induced maps ι± : A → B for either inclusion

of Σ in M and, using the constant path, a map π1(M) → π1(N). Under the

assumption that Σ is incompressible (in particular, whenever Σ is Thurston

norm minimizing) these maps are injective. Since M and N have the same

base point we can view B canonically as a subgroup of π1(N).

Before we state the first proposition we have to introduce a few more

definitions. Let N be a 3-manifold with empty or toroidal boundary and let

φ ∈ H1(N ;Z) be a nontrivial class. Let π̃ ⊂ π be a finite index subgroup. We

denote by φπ̃ the restriction of φ ∈ H1(N ;Z) = Hom(π,Z) to π̃. Note that φπ̃
is necessarily nontrivial. We say that π̃ ⊂ π has Property (M) if the twisted

Alexander polynomial ∆
π/π̃
N,φ ∈ Z[t±1] is monic and if

deg(∆
π/π̃
N,φ) = [π : π̃] ‖φ‖T + (1 + b3(N))divφπ̃

holds. Note that a pair (N,φ) satisfies Condition (∗) if and only if Property

(M) is satisfied by all normal subgroups of π1(N).

The following proposition is the key tool for translating information on

twisted Alexander polynomials into information on the maps ι± : A → B.

The proposition is well known in the classical case. In the case of normal

subgroups a proof for the ‘only if’ direction of the proposition is given by

combining [FV08b, §8] with [FV08a, §4].

Proposition 3.2. Let N be a 3-manifold with empty or toroidal boundary

with N 6= S1 ×D2, N 6= S1 × S2. Let φ ∈ H1(N ;Z) be a primitive class which

is dual to a connected Thurston norm-minimizing surface Σ. Let π̃ ⊂ π be

a finite index subgroup. Then π̃ has Property (M) if and only if the maps

ι± : Hi(A;Z[π/π̃])→ Hi(B;Z[π/π̃]) are isomorphisms for i = 0, 1.

Proof. Let R = Z or R = Fp with p a prime. We have canonical isomor-
phisms Hi(Σ;R[π/π̃]) ∼= Hi(A;R[π/π̃]) and Hi(M ;R[π/π̃]) ∼= Hi(B;R[π/π̃])
for i = 0, 1. It follows from [FK06, Prop. 3.2] that splitting N along Σ gives
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rise to the following Mayer-Vietoris type exact sequence

. . . →H2(N ;R[π/π̃][t±1])

→H1(A;R[π/π̃])⊗R[t±1]→H1(B;R[π/π̃])⊗R[t±1]→ H1(N ;R[π/π̃][t±1]) →

→H0(A;R[π/π̃])⊗R[t±1]→H0(B;R[π/π̃])⊗R[t±1]→ H0(N ;R[π/π̃][t±1]) →0,

where the map

Hi(A;R[π/π̃])⊗R[t±1]→ Hi(B;R[π/π̃])⊗R[t±1]

is given by (tι+−ι−). We refer to this sequence as the Mayer–Vietoris sequence

of (N,Σ) with R[π/π̃][t±1]-coefficients. First note that by Shapiro’s lemma the

groups Hi(A;R[π/π̃]) are the i-th homology with R-coefficients of a (possibly)

disconnected surface. It follows that Hi(A;R[π/π̃]) is a free R-module, in

particular the R[t±1]-modules Hi(A;R[π/π̃])⊗R[t±1] are free R[t±1]-modules.

We will several times make use of the observation that if Hi(N ;R[π/π̃][t±1]) is

R[t±1]-torsion, then the map Hi(N ;R[π/π̃][t±1]) → Hi−1(A;R[π/π̃]) ⊗ R[t±1]

is necessarily zero.

We first assume that π̃ has Property (M). Since ∆
π/π̃
N,φ 6= 0 we have that

the module H1(N ;Z[π/π̃][t±1])⊗Z[t±1] Q(t) is trivial. Note that by Lemma 2.9

we have that H0(N ;Z[π/π̃][t±1]) is also Z[t±1]-torsion. We now consider the

Mayer-Vietoris sequence of (N,Σ) with Z[π/π̃][t±1]-coefficients. Tensoring the

exact sequence with Q(t) we see that

rankZ(H0(A;Z[π/π̃])) = rankQ(t)(H0(A;Z[π/π̃])⊗Z Q(t))

= rankQ(t)(H0(B;Z[π/π̃])⊗Z Q(t))

= rankZ(H0(B;Z[π/π̃])).

Using this observation and using Lemma 2.2 we see that the maps

ι± : H0(A;Z[π/π̃])→ H0(B;Z[π/π̃])

are epimorphisms between free abelian groups of the same rank. Hence the

maps are in fact isomorphisms.

In order to prove that the maps ι± : H1(A;Z[π/π̃]) → H1(B;Z[π/π̃]) are

isomorphisms we first consider the following claim.

Claim. H1(A;Z[π/π̃]) and H1(B;Z[π/π̃]) are free abelian groups of the

same rank.

Let p be a prime. We consider the Mayer-Vietoris sequence of (N,Σ)

with Fp[π/π̃][t±1]-coefficients. Denote by ∆
π/π̃,p
N,φ ∈ Fp[t±1] the twisted Alexan-

der polynomial with coefficients in Fp. It follows from ∆
π/π̃
N,φ monic and from

[FV08b, Prop. 6.1] that ∆
π/π̃,p
N,φ 6= 0 ∈ Fp[t±1]. Furthermore by Lemma 2.8 we
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have that ∆
π/π̃,p
N,φ,2 6= 0 ∈ Fp[t±1]. In particular Hi(N ;Fp[π/π̃][t±1]) is Fp[t±1]-

torsion for i = 1, 2. It follows from the fact that Hi(A;Fp[π/π̃]) ⊗Fp Fp[t±1]

is a free Fp[t±1]-module and the above observation that Hi(N ;Fp[π/π̃][t±1]) is

Fp[t±1]-torsion for i = 1, 2 that the Mayer-Vietoris sequence gives rise to the

following short exact sequence

0→ H1(A;Fp[π/π̃])⊗ Fp[t±1]
tι+−ι−−−−−→ H1(B;Fp[π/π̃])⊗ Fp[t±1]→ H1(N ;Fp[π/π̃][t±1])→ 0.

Tensoring with Fp(t) we see that in particularH1(A;Fp[π/π̃]) ∼= H1(B;Fp[π/π̃])

as Fp-vector spaces. The homology group H0(A;Z[π/π̃]) is Z-torsion free.

It follows from the universal coefficient theorem applied to the complex of

Z-modules C∗(‹Σ)⊗Z[A] Z[π/π̃] that

H1(A;Z[π/π̃])⊗Z Fp ∼= H1(A;Fp[π/π̃])

for every prime p. The same statement holds for B. Combining our results we

see that H1(A;Z[π/π̃])⊗Z Fp and H1(B;Z[π/π̃])⊗Z Fp are isomorphic for any

prime p. Since H1(A;Z[π/π̃]) is free abelian it follows that H1(A;Z[π/π̃]) ∼=
H1(B;Z[π/π̃]). This completes the proof of the claim.

We now equip the free Z-modules H1(A;Z[π/π̃]) and H1(B;Z[π/π̃]) with

a choice of basis. We study the Mayer-Vietoris sequence for (N,Σ) with

Z[π/π̃][t±1]-coefficients. Using an argument similar to the above, we see that

it gives rise to the following exact sequence

H1(A;Z[π/π̃])⊗ Z[t±1]
tι+−ι−−−−−→ H1(B;Z[π/π̃])⊗ Z[t±1]→ H1(N ;Z[π/π̃][t±1])→ 0.

SinceH1(A;Z[π/π̃]) andH1(B;Z[π/π̃]) are free abelian groups of the same rank,

it follows that the above exact sequence is a resolution of H1(N ;Z[π/π̃][t±1])

by free Z[t±1]-modules and that ∆
π/π̃
N,φ = det(tι+ − ι−). Recall that Property

(M) states in particular that

(1) deg∆
π/π̃
N,φ = |π/π̃| ‖φ‖T + (1 + b3(N))divφπ̃.

Recall that we assumed N 6= S1 × D2 and N 6= S1 × S2, in particular

χ(Σ) ≤ 0 and therefore −χ(Σ) = ||φ||T . Writing bi = rankZ(Hi(Σ;Z[π/π̃])) =

rankZ(Hi(A;Z[π/π̃])) a standard Euler characteristic argument now shows that

−b0 + b1 − b2 = −|π/π̃|χ(Σ) = |π/π̃| · ||φ||T .

By [FK06, Lemma 2.2] we have bi = deg∆
π/π̃
N,φ,i for i = 0 and i = 2. We

also have deg∆
π/π̃
N,φ,0 = divφπ/π̃ and deg∆

π/π̃
N,φ,2 = b3(N)divφπ̃ by Lemma 2.8.

Combining these facts with (1) we conclude that deg∆
π/π̃
N,φ = b1. So we now

have deg(det(tι+ − ι−)) = b1. Since ι+ and ι− are b1 × b1 matrices over
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Z it now follows that det(ι+) equals the top coefficient of ∆
π/π̃
N,φ, which by

Property (M) equals ±1. By the symmetry of twisted Alexander polynomials

we have that the bottom coefficient of ∆
π/π̃
N,φ also equals ±1, we deduce that

det(ι−) = ±1. This shows that ι+, ι− : H1(A;Z[π/π̃]) → H1(B;Z[π/π̃]) are

isomorphisms. We thus showed that if π̃ has Property (M), then the maps

ι : Hi(A;Z[π/π̃])→ Hi(B;Z[π/π̃]) are isomorphisms for i = 0, 1.

Now assume that we are given a finite index subgroup π̃ ⊂ π such that

the maps ι± : Hi(A;Z[π/π̃]) → Hi(B;Z[π/π̃]) are isomorphisms for i = 0, 1.

It follows from the assumption that ι± : H0(A;Z[π/π̃]) → H0(B;Z[π/π̃]) are

isomorphisms that the map

H0(A;Z[π/π̃])⊗ Z[t±1]
tι+−ι−−−−−→ H0(B;Z[π/π̃])

is injective. Specifically, the Mayer-Vietoris sequence of (N,Σ) with Z[π/π̃][t±1]-

coefficients gives rise to the following exact sequence

H1(A;Z[π/π̃])⊗ Z[t±1]
tι+−ι−−−−−→ H1(B;Z[π/π̃])⊗ Z[t±1]→ H1(N ;Z[π/π̃][t±1])→ 0.

As above H1(A;Z[π/π̃]) is a free abelian group. Therefore, by our assumption,

H1(B;Z[π/π̃]) ∼= H1(A;Z[π/π̃]) is also free abelian. In particular the above

exact sequence defines a presentation for H1(N ;Z[π/π̃][t±1]) and we deduce

that ∆
π/π̃
N,φ = det(tι+ − ι−). Since ι− and ι+ are isomorphisms it follows that

∆
π/π̃
N,φ is monic of degree b1. An argument similar to the above now shows that

deg∆
π/π̃
N,φ = |π/π̃| ‖φ‖T + (1 + b3(N))divφπ̃. �

3.2. Finite solvable quotients. Given a solvable group S we denote by `(S)

its derived length, i.e. the length of the shortest decomposition into abelian

groups. Put differently, `(S) is the minimal number such that S(`(S)) = {e}.
Note that `(S) = 0 if and only if S = {e}.

For the sake of comprehension, we briefly recall the notation. Consider

a 3-manifold N with empty or toroidal boundary, and fix a primitive class

φ ∈ H1(N ;Z). We denote by Σ a connected Thurston norm-minimizing surface

dual to φ, and write A = π1(Σ) and B = π1(M) (with M = N \ νΣ) denoting

the two inclusion induced maps A→ B by ι±. We also write π = π1(N). Note

that π = 〈B, t|ι−(A) = tι+(A)t−1〉.
Given n ∈ N ∪ {0} we denote by S(n) the statement that for any finite

solvable group S with `(S) ≤ n, for ι = ι−, ι+ the map

ι∗ : Hom(B,S)→ Hom(A,S)
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is a bijection. This is equivalent by Lemma 2.10 to asserting that ι : A → B

induces an isomorphism of pro-FS(n) completions. Recall that by Corol-

lary 2.3 and Lemma 2.12 statement S(n) implies that for any homomor-

phism β : B → S to a finite solvable group S with `(S) ≤ n we have

Im{β ◦ ι : A→ B → S} = Im{β : B → S}.
Our goal is to show that S(n) holds for all n. We will show this by

induction on n. For the induction argument we use the following auxiliary

statement: Given n ∈ N ∪ {0} we denote by H(n) the statement that for

any homomorphism β : B → S where S is finite solvable with `(S) ≤ n, for

ι = ι−, ι+ the homomorphism

ι∗ : H1(A;Z[S])→ H1(B;Z[S])

is an isomorphism.

In the next two sections we will prove the following two propositions:

Proposition 3.3. If H(n) and S(n) hold, then S(n+ 1) holds as well.

Proposition 3.4. Assume that (N,φ) satisfies Condition (∗). If S(n)

holds, then H(n) holds as well.

We can now prove the following corollary, which amounts to Proposi-

tion 1.7.

Corollary 3.5. Assume that (N,φ) satisfies Condition (∗) and that φ

is primitive. Let Σ ⊂ N be a connected Thurston norm-minimizing surface

dual to φ and let ι : A → B be one of the two injections. Then for any finite

solvable group G the map

Hom(B,G)
ι∗−→ Hom(A,G)

is a bijection ; i.e., ι : A → B induces an isomorphism of prosolvable comple-

tions.

Proof. The condition S(0) holds by fiat. It follows from Proposition 3.2

applied to the trivial group that if (N,φ) satisfies Condition (∗), then ι± :

H1(A;Z) → H1(B;Z) are isomorphisms, i.e. H(0) holds. The combination of

Propositions 3.3 and 3.4 then shows that H(n) and S(n) hold for all n. The

corollary is now immediate. �

3.3. Proof of Proposition 3.3. In this section we will prove Proposition 3.3.

Let ι = ι− or ι = ι+. Since S(n) holds we only have to consider the case of

G a finite solvable group with `(G) = n + 1. By definition G fits into a short

exact sequence

1→ I → G→ S → 1,

where I = G(n) is finite abelian and S = G/G(n) finite solvable with `(S) = n.
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We will construct a map Φ : Hom(A,G)→ Hom(B,G) which is an inverse

to ι∗ : Hom(B,G) → Hom(A,G). Let α : A → G be a homomorphism.

Without loss of generality we can assume that α is an epimorphism. Denote

A
α−→ G → S by α′ and denote the map A → A/Ker(α′)(1) by ρ. Note

that α sends Ker(α′) to the abelian group I; hence α vanishes on Ker(α′)(1).

This shows that α factors through ρ, in particular α = ψ ◦ ρ for some ψ :

A/Ker(α′)(1) → G.

Recall that `(S) = n, therefore by S(n) we have that α′ : A → S

equals ι∗(β′) for some β′ : B → S. By Lemma 2.12, S(n) guarantees that

i∗ : H0(A;Z[S]) → H0(B;Z[S]) is an isomorphism; on the other hand H(n)

asserts that i∗ : H1(A;Z[S]) → H1(B;Z[S]) is an isomorphism as well. By

Corollary 2.5 this implies that ι induces an isomorphism

ι : A/Ker(α′)(1) ∼=−→ B/Ker(β′)(1).

The various homomorphisms can be summarized in the following commutative

diagram:

A

α

��

ι //

α′

&&
ρ

��

B
β′

xx

��

S
= // S

A/Ker(α′)(1)
∼=
ι
//

ψyyyy

α′

OOOO

B/Ker(β′)(1)

β′

OOOO

G.

Now we define Φ(α) ∈ Hom(B,G) to be the homomorphism

B → B/Ker(β′)(1) ι−1

−−→ A/Ker(α′)(1) ψ−→ G.

It is now straightforward to check that Φ and ι∗ are inverses to each other.

3.4. Proof of Proposition 3.4. In this section we will prove Proposition 3.4.

Let β : B → S be a homomorphism to a finite solvable group S with `(S) ≤ n.

If β extends to π1(N), H(n) will follow immediately from Proposition 3.2. In

general β though will not extend; however, using S(n) we will construct a

homomorphism π = 〈B, t|ι−(A) = tι+(A)t−1〉 → G to a finite group G ‘which

contains β : B → S’ to get the required isomorphism.

We first need some notation. Given groups C and H we define

C(H) =
⋂

γ∈Hom(C,H)

Ker(γ).

We summarize a few properties of C(H) ⊂ C in the following lemma.
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Lemma 3.6. Let C be a finitely generated group. Then the subgroup

C(H) ⊂ C has the following properties :

(1) C(H) ⊂ C is normal and characteristic.

(2) If H is finite and solvable, then C/C(H) is finite and solvable with

`(C/C(H)) ≤ `(H).

Proof. Statement (1) is immediate. To prove the rest, consider the injec-

tion

C/C(H) = C/
⋂

γ∈Hom(C,H)

Ker(γ)→
∏

γ∈Hom(C,H)

C/Ker(γ).

If H is finite, then Hom(C,H) is a finite set (since C is finitely generated);

hence C/C(H) is finite. If H is furthermore solvable, then for any γ ∈
Hom(C,H) the groups C/Ker(γ) are solvable, hence C/C(H) is solvable as

well. Moreover for any γ ∈ Hom(C,H) we have `(C/Ker(γ)) ≤ `(H). We

therefore get

`(C/C(H)) ≤ max
γ∈Hom(C,H)

`(C/Ker(γ)) ≤ `(H). �

We will also need the following group homomorphism extension lemma.

Lemma 3.7. Assume that S(n) holds and that S is a finite solvable group

with `(S) ≤ n. Let β : B → S be a homomorphism.

Then there exists a k ∈ N, a semidirect product Z/k n B/B(S) and a

homomorphism

π = 〈B, t|ι−(A) = tι+(A)t−1〉 → Z/k nB/B(S)

which extends B → B/B(S), i.e. we have the following commutative diagram :

1 // B/B(S) // Z/k nB/B(S) // Z/k // 1

B

OO

// π.

OO

Proof. Assume that S(n) holds and that S is a finite solvable group with

`(S) ≤ n. Let β : B → S be a homomorphism. We denote the projection map

B → B/B(S) by ρ.

Claim. There exists an automorphism γ : B/B(S) → B/B(S) such that

ρ(ι+(a)) = γ(ρ(ι−(a))) for all a ∈ A.

Let ι = ι− or ι = ι+. By Lemma 3.6 we know that B/B(S) is finite

solvable with `(B/B(S)) ≤ n. It follows from S(n) that

ι∗ : A/Ker{A ι−→ B
ρ−→ B/B(S)} → B/B(S)
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is an isomorphism. On the other hand it is also a straightforward consequence

of S(n) that

Ker{A ι−→ B
ρ−→ B/B(S)} = A(S).

Combining these two observations we see that ι gives rise to an isomorphism

ι∗ : A/A(S) → B/B(S). We now take γ := ι+∗ ◦ (ι−∗)
−1. This concludes the

proof of the claim.

We now write H = B/B(S). It is now straightforward to verify that

π = 〈B, t|ι−(A) = tι+(A)t−1〉 → Z nH = 〈H, t|H = tγ(H)t−1〉
b 7→ ρ(b), b ∈ B,
t 7→ t

defines a homomorphism. Since H = B/B(S) is a finite group it follows

that the automorphism γ has finite order k; in particular the projection map

Z n B/B(S) → Z/k n B/B(S) is a homomorphism. Clearly the resulting

homomorphism π → Z/k nB/B(S) has all the required properties. �

We are in position now to prove Proposition 3.4.

Proof of Proposition 3.4. Recall that we assume that (N,φ) satisfies Con-

dition (∗) and that S(n) holds. We have to show that H(n) holds as well. So

let β : B → S be a homomorphism to a finite solvable group S with `(S) ≤ n.

We have to show that for ι = ι−, ι+ the homomorphism

ι∗ : H1(A;Z[S])→ H1(B;Z[S])

is an isomorphism. Without loss of generality we can assume that β is surjec-

tive. Recall that S(n) implies that β ◦ ι : A→ S is surjective as well.

We now apply Lemma 3.7 to find a homomorphism

π = 〈B, t|ι−(A) = tι+(A)t−1〉 → Z/k nB/B(S)

which extends B → B/B(S). Note that

Ker{γ : B → π → Z/k nB/B(S)} = Ker{B → B/B(S)},(2)

Ker{γ ◦ ι : A→ B → π → Z/k nB/B(S)} = Ker{ι : A→ B → B/B(S)}.

We let “B = Ker{B → B/B(S)},‹B = Ker(β).

Clearly “B ⊂ ‹B by the definition of B/B(S). We also write Â = ι−1(“B) and

Ã = ι−1(‹B). We now consider the epimorphism π1(N) = π → Z/knB/B(S).

By Condition (∗), equation (2), Proposition 3.2 and Corollaries 2.5 and 2.5 it

follows that the maps

ι : A/Â→ B/“B and ι : A/[Â, Â]→ B/[“B, “B]
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are isomorphisms. It now follows from Lemma 2.7 and Corollary 2.5 that the

maps

ι : A/Ã→ B/‹B and ι : A/[Ã, Ã]→ B/[‹B, ‹B]

are also isomorphisms. �

4. A product criterion

In this section we will apply a theorem of Agol to prove a criterion for a

manifold to be a product, which complements Proposition 1.7.

In order to state our result, we first recall the definition of a sutured

manifold (cf. [Gab83, Def. 2.6] or [CC03, p. 364]). A sutured manifold (M,γ)

is a compact oriented 3-manifold M together with a set γ ⊂ ∂M of pairwise

disjoint annuli A(γ) and tori T (γ). Furthermore, the structure of a sutured

manifold consists of the following choices of orientations:

(1) For each A ∈ A(γ) a choice of a simple closed, oriented curve in A

(called suture) such that A is the tubular neighborhood of the curve,

and

(2) the choice of an orientation for each component of ∂M \A(γ).

The orientations must be compatible, i.e. the orientation of the components of

∂M \A(γ) must be coherent with the orientations of the sutures.

Given a sutured manifold (M,γ) we define R+(γ) as the components of

∂M \ γ where the orientation agrees with the orientation induced by M on ∂M ,

and R−(γ) as the components of ∂M \ γ where the two orientations disagree.

We define also R(γ) = R+(γ) ∪R−(γ).

A sutured manifold (M,γ) is called taut ifM is irreducible and if each com-

ponent ofR(γ) is incompressible and Thurston norm-minimizing inH2(M,γ;Z)

(we refer to [Sch89] for information regarding the Thurston norm on sutured

manifolds).

An example of a taut sutured manifold is given by taking an oriented

surface Σ and considering Σ × I with sutures given by the annuli ∂Σ × I.

The sutures are oriented by the orientation of ∂Σ. We can pick orientations

such that R−(γ) = Σ × 0 and R+(γ) = Σ × 1. If a sutured manifold (M,γ)

is diffeomorphic (as a sutured manifold) to such a product, then we say that

(M,γ) is a product sutured manifold.

Another example of a taut sutured manifold comes from consideration

of an oriented incompressible Thurston norm-minimizing surface Σ ⊂ N in

an irreducible 3-manifold with empty or toroidal boundary. We let (M,γ) =

(N \νΣ, ∂N∩(N \νΣ)). With appropriate orientations (M,γ) is a taut sutured

manifold such that R−(γ) = Σ− and R+(γ) = Σ+.

The following theorem immediately implies Theorem 1.8.
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Theorem 4.1. Assume there is a taut sutured manifold (M,γ) which has

the following properties :

(1) R±(γ) consist of one component Σ± each, and the inclusion induced

maps π1(Σ±) → π1(M) give rise to isomorphisms of the respective

prosolvable completions ;

(2) π1(M) is residually finite solvable.

Then (M,γ) is a product sutured manifold.

The key ingredient to the proof of Theorem 4.1 is a result of Agol’s [Ago08]

which we recall in Section 4.1. We will then provide the proof for Theorem 4.1

in Sections 4.2 and 4.3.

Remarks. (1) It is an immediate consequence of ‘peripheral subgroup sep-

arability’ [LN91] that the theorem holds under the assumption that the inclu-

sion induced maps π1(Σ±) → π1(M) give rise to isomorphisms of the respec-

tive profinite completions. It is not clear how the approach of [LN91] can be

adapted to prove Theorem 4.1.

(2) It is also interesting to compare Theorem 4.1 with a result of Grothen-

dieck. In [Gro70, §3.1] Grothendieck proved that if ϕ : A → B is a homo-

morphism between finitely presented, residually finite groups which induces an

isomorphism of the profinite completions, and if A is arithmetic (e.g. a surface

group), then ϕ is an isomorphism. It is an interesting question whether The-

orem 4.1 can be proved using purely group theoretic arguments. We refer to

[AdlHKŠ07] for more information regarding this question.

4.1. Agol ’s theorem. Before we can state Agol’s result we have to intro-

duce more definitions. A group G is called residually finite Q-solvable or RFRS

if there exists a filtration of groups G = G0 ⊃ G1 ⊃ G2 · · · such that the fol-

lowing hold:

(1) ∩iGi = {1},
(2) Gi is a normal, finite index subgroup of G for any i,

(3) for any i the map Gi → Gi/Gi+1 factors through Gi → H1(Gi;Z)/torsion.

Note that RFRS groups are in particular residually finite solvable, but the

RFRS condition is considerably stronger than being residually finite solvable.

The notion of an RFRS group was introduced by Agol [Ago08] whose paper

we refer to for more information on RFRS groups.

Given a sutured manifold (M,γ), the double DMγ is defined to be the

double of M along R(γ), i.e. DMγ = M ∪R(γ) M . Note that the annuli A(γ)

give rise to toroidal boundary components of DMγ . By r : DMγ → M , we

denote the retraction map given by ‘folding’ the two copies of M along R(γ).

We are now in a position to state Agol’s result. The theorem as stated

here is clearly implicit in the proof of [Ago08, Th. 6.1].
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Theorem 4.2. Let (M,γ) be a connected, taut sutured manifold such

that π1(M) satisfies property RFRS. Write W = DMγ . Then there exists

an epimorphism α : π1(M) → S to a finite solvable group, such that in the

covering p : W̃ → W corresponding to α ◦ r∗ : π1(W ) → S the pull back of

the class [R−(γ)] ∈ H2(W,∂W ;Z) lies on the closure of the cone over a fibered

face of W̃ .

Note that [R+(γ)] = ±[R−(γ)] in H2(W,∂W ;Z); i.e. [R−(γ)] is a fibered

class if and only if [R+(γ)] is a fibered class. In case W̃ has vanishing Thurston

norm, we adopt the usual convention that by the fibered face we actually mean

H1(W̃ ,R) \ {0}.

4.2. Proof of Theorem 4.1. From now on assume we have a taut sutured

manifold (M,γ) with the following properties:

(1) R±(γ) consist of one component Σ± each and the inclusion induced

maps π1(Σ±) → π1(M) give rise to isomorphisms of the respective

prosolvable completions.

(2) π1(M) is residually finite solvable.

Since Theorem 4.1 is obvious in the case M = S2 × [0, 1] we will henceforth

assume that M 6= S2 × [0, 1].

Our main tool in proving Theorem 4.1 is Theorem 4.2. In order to apply

it we need the following claim.

Claim. The group π1(M) is RFRS.

Proof. By assumption the group π1(M) is residually finite solvable. This

means that we can find a sequence π1(M) = B0 ⊃ B1 ⊃ B2 . . . with the

following properties:

(1) ∩iBi = {1};
(2) Bi is a normal, finite index subgroup of π1(M) for any i;

(3) for any i, the map Bi → Bi/Bi+1 factors through Bi → H1(Bi;Z).

It remains to show that Bi → Bi/Bi+1 factors through H1(Bi;Z)/torsion. In

fact we claim that H1(Bi;Z) is torsion-free. Indeed, first note that by Shapiro’s

lemma H1(Bi;Z) ∼= H1(B;Z[B/Bi]) ∼= H1(M ;Z[B/Bi]). Furthermore, by

Lemma 2.12 we have

H1(Σ−;Z[B/Bi])
∼=−→ H1(M ;Z[B/Bi]),

but the first group is clearly torsion-free as it is the homology of a finite cover

of a surface. �

In the following, W = DMγ . By the above claim we can apply Theo-

rem 4.2 which says that there exists an epimorphism α : π1(M) → S to a

finite solvable group, such that in the covering p : W̃ → W corresponding to
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α ◦ r∗ : π1(W )→ S the pull back of the class [R−(γ)] = [Σ−] ∈ H2(W,∂W ;Z)

lies on the closure of the cone over of a fibered face of W̃ .

Note that we can view W̃ as the double of the cover (M̃, γ̃) of (M,γ)

induced by α : π1(M)→ S. We summarize the main properties of ‹Σ± and W̃

in the following lemma.

Lemma 4.3. (1) ‹Σ± := p−1(Σ±) are connected surfaces ;

(2) The inclusion induced maps π1(‹Σ±) → π1(M̃) give rise to isomor-

phisms of prosolvable completions ;

(3) If ‹Σ− is the fiber of a fibration W̃ = DM̃γ̃ → S1, then M̃ is a product

over ‹Σ−;

(4) M is a product over Σ− if and only if M̃ is a product over ‹Σ−.

Proof. First note that it follows from Lemma 2.12 and Corollary 2.3 and

the assumption that π1(Σ±) → π1(M) give rise to isomorphisms of the re-

spective prosolvable completions that π1(Σ±)→ π1(M)→ S is surjective, i.e.

the preimages ‹Σ± := p−1(Σ±) are connected. The second claim follows from

Lemma 2.11 since the maps π1(Σ±) → π1(M) give rise to isomorphisms of

their prosolvable completions.

For the third claim consider the following commutative diagram

π1(‹Σ−)

$$

// π1(W̃ \ ν‹Σ−)

π1(M̃).

88

If ‹Σ− is the fiber of a fibration DM̃γ̃ → S1, then the top map in the above com-

mutative diagram is an isomorphism. We can think of W̃ \ ν‹Σ− as M̃ ∪
Σ̃+ M̃ .

It is now clear that the lower two maps are injective. But then the lower left

map also has to be an isomorphism; i.e., M̃ is a product over ‹Σ−. The last

claim is well-known; it is for example a consequence of [Hem76, Th. 10.5]. �

By the above lemma it is now clear that the following lemma implies

Theorem 4.1.

Lemma 4.4. Let (M,γ) be a taut sutured manifold such that R±(γ) consist

of one component Σ± each. Assume the following hold :

(A) The inclusion induced maps π1(Σ±) → π1(M) give rise to isomor-

phisms of the respective prosolvable completions.

(B) The class in H1(DMγ ;Z) represented by the surface Σ− lies on the

closure of the cone over a fibered face of DMγ .

Then Σ− is the fiber of a fibration DMγ → S1.
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In the following we write W = DMγ . Note that we have a canonical

involution τ on W with fixed point set R(γ). From now on we think of W =

DMγ as M ∪R(γ) τ(M).

Our main tool in the proof of Lemma 4.4 will be the interplay between the

Thurston norm and McMullen’s Alexander norm [McM02]. Recall that given

a 3-manifold V with b1(V ) ≥ 2 the Alexander norm || − ||A : H1(V ;R)→ R≥0

has the following properties:

(a) The Alexander norm ball is dual to the Newton polyhedron defined by

the symmetrized Alexander polynomial ∆V ∈ Z[H1(V ;Z)/torsion].

(b) The Alexander norm ball is a (possibly noncompact) polyhedron with

finitely many faces.

(c) For any φ ∈ H1(V ;R) we have ||φ||A ≤ ||φ||T , and equality holds for

fibered classes.

(d) Let C ⊂ H1(V ;R) be a fibered cone, i.e. the cone on a fibered face of

the Thurston norm ball; then C is contained in the cone on the interior

of a top-dimensional face of the Alexander norm ball.

(e) When C1, C2 ⊂ H1(V ;R) are fibered cones contained in the same cone

on the interior of a top-dimensional face of the Alexander norm ball,

then C1 = C2.

Our assumption that the induced maps π1(Σ±) → π1(M) give rise to

isomorphisms of the respective prosolvable completions implies that W = DMγ

‘looks algebraically’ the same as Σ−×S1. More precisely, we have the following

lemma which to be proved in Section 4.3.

Lemma 4.5. Let (M,γ) be a taut, sutured manifold with the property that

R±(γ) consist of one component Σ± each. Assume that (A) holds. Then the

following hold :

(1) There exists an isomorphism

f : R⊕H1(Σ−, ∂Σ−;R)→ H2(W,∂W ;R)

such that f(1, 0) = [Σ−] and such that τ(f(r, h)) = f(r,−h).

(2) The class φ = PD(Σ−) ∈ H1(W ;Z) lies in the cone D on the interior

of a top-dimensional face of the Alexander norm ball.

Note that (1) implies in particular that b1(W ) ≥ 2. Assuming this lemma

we are now in a position to prove Lemma 4.4.

Proof of Lemma 4.4. Let (M,γ) be a taut sutured manifold with the prop-

erty that R±(γ) consist of one component Σ± each. Assume that (A) and (B)

hold.

By Lemma 4.5 there exists a cone D ⊂ H1(W ;R) on the interior of a top-

dimensional face of the Alexander norm ball which contains φ = PD([Σ−]).
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We denote the map

R⊕H1(Σ−, ∂Σ−;R)
f−→ H2(W,∂W ;R)

PD−−→ H1(W ;R)

by Φ.

By (B) we can find h ∈ H1(Σ−, ∂Σ−;R) such that Φ(1, h) and Φ(1,−h) lie

in D and such that Φ(1, h) lies in the cone C on a fibered face F of the Thurston

norm ball. Note that τ∗ : H1(W ;R) → H1(W ;R) sends fibered classes to

fibered classes and preserves the Thurston norm. In particular τ(Φ(1, h)) =

Φ(1,−h) is fibered as well and it lies in τ(C) which is the cone on the fibered

face τ(F ) of the Thurston norm ball. Recall that τ(Φ(1, h)) = Φ(1,−h) lies

in D; it follows from Property (d) of the Alexander norm that τ(C) ⊂ D. We

then use (e) to conclude that C = τ(C). In particular Φ(1, h) and Φ(1,−h)

lie in C. Since C is convex it follows that φ = Φ(1, 0) ∈ C, i.e., φ is a fiber

class. �

4.3. Proof of Lemma 4.5. By Lemma 2.12 the following lemma is just the

first statement of Lemma 4.5.

Lemma 4.6. Let (M,γ) be a taut sutured manifold with the property that

R±(γ) consist of one component Σ± each. Assume that ι± : H1(Σ±;R) →
H1(M ;R) are isomorphisms. Then there exists an isomorphism

f : R⊕H1(Σ−, ∂Σ−;R)→ H2(W,∂W ;R)

such that f(1, 0) = [Σ−] and such that τ(f(b, c)) = f(b,−c).

Proof. We start out with the following two claims.

Claim. M has no toroidal sutures.

Proof. Denote the toroidal sutures by T1, . . . , Tn. Recall that for any

compact 3-manifold X we have b1(∂X) ≤ 2b1(X). In our case it is easy to

see that we have b1(∂M) = b1(Σ−) + b1(Σ+) +
∑n
i=1 b1(Ti) = 2b1(Σ) + 2n.

On the other hand, since H1(Σ±;R) → H1(M ;R) are isomorphisms we have

b1(M) = b1(Σ). It now follows from b1(∂M) ≤ 2b1(M) that n = 0. �

Claim. The inclusion induced maps H1(Σ±, ∂Σ±;R) → H1(M,A(γ);R)

are isomorphisms.

Now consider the following commutative diagram:

H1(∂Σ−;R)

��

// H1(Σ−;R)

∼=
��

// H1(Σ−, ∂Σ−;R)

��

// H0(∂Σ−;R) //

��

H0(Σ−;R)

∼=
��

H1(A(γ);R) // H1(M ;R) // H1(M,A(γ);R) // H0(A(γ);R) // H0(M ;R).

Note that by the compatibility condition in the definition of sutured manifolds

we have that for each component A of A(γ) the subset ∂A∩Σ− = A∩ ∂Σ− ⊂
∂A consists of exactly one boundary component of A. This implies that the
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maps Hi(∂Σ− ∩ A;R) → Hi(A;R) are isomorphisms. The claim now follows

immediately from the above commutative diagram and from the assumption

that H1(Σ±;R)→ H1(M ;R) are isomorphisms.

We now define

g : H1(Σ−, ∂Σ−;R)→ H2(W,∂W ;R)

as follows: given an element c ∈ H1(Σ−, ∂Σ−;R) represent it by a chain c−.

Since the maps H1(Σ±, ∂Σ±;R) → H1(M,A(γ);R) are isomorphisms we can

find a chain c+ in Σ+ such that [c−] = [c+] ∈ H2(M,A(γ);R). Now let d be a

2-chain in M such that ∂d = c− ∪−c+. Then define g(c) to be the element in

H2(W,∂W ;R) represented by the closed 2-chain d∪−τ(d). It is easy to verify

that g is a well-defined homomorphism. Note that ∂W = A(γ) ∪ τ(A(γ))

since W has no toroidal sutures. It is now straightforward to check, using a

Mayer-Vietoris sequence, that the map

f : R ⊕ H1(Σ−, ∂Σ−;R) → H2(W,∂W ;R)

( b , c ) 7→ b[Σ−] + g(c)

is an isomorphism. Clearly f(1, 0) = [Σ−]. It is also easy to verify that

τ(f(b, c)) = f(b,−c). This shows that f has all the required properties. �

The second statement of Lemma 4.5 is more intricate. We start with the

following lemma which in light of [Gro70], [BG04] and [AdlHKŠ07] has perhaps

some independent interest.

Lemma 4.7. Let ϕ : A → B be a homomorphism of finitely generated

metabelian groups which induces an isomorphism of prosolvable completions.

Then ϕ is also an isomorphism.

Proof. We first show that A→ B is an injection. We consider the following

commutative diagram:
A

��

// B

��“AFS // “BFS .
The vertical maps are injections since metabelian groups are residually finite

(cf. [Hal59]). The bottom map is an isomorphism by assumption. It now

follows that the top map is an injection.

Now suppose that the homomorphism A→ B is not surjective. We iden-

tify H1(A;Z) = H1(A;Z)
∼=−→ H1(B;Z) = H1(B;Z) via ϕ and refer to the

group as H. Let g′ ∈ B \ ϕ(A). We can pick an a ∈ A such that ϕ(a) and

g′ represent the same element in H. Let g = ϕ(a)−1g′. Then g represents the

trivial element in H but g is also an element in B \ ϕ(A).

We will show that there exists a homomorphism α : B → G to a finite

metabelian group such that α separates g from ϕ(A), i.e. such that α(g) 6∈
α(ϕ(A)). This then immediately contradicts, via Lemma 2.10, our assumption
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that ϕ : A → B induces an isomorphism of prosolvable completions. Our

construction of finding such α builds on some ideas in the proof of [LN91,

Th. 1].

We write B1 = B2 = B and denote the inclusion maps A → Bi = B by

ϕi. We let C = B1 ∗A B2. It is then easy to see that the homomorphisms

Bi → C give rise to an isomorphism H1(Bi;Z) = H → H1(C;Z). Denote by

s : B1 ∗A B2 → B1 ∗A B2

the switching map, i.e. the map induced by s(b) = b ∈ B2 for b ∈ B1 and

s(b) = b ∈ B1 for b ∈ B2. Note that s acts as the identity on A ⊂ C. Also

note that s descends to a map C/C(2) → C/C(2) which we also denote by s.

We now view g as an element in B1 and hence as an element in C. Note that

the fact that g represents the trivial element in H implies that g represents an

element in C(1)/C(2). We will first show that s(g) 6= g ∈ C/C(2). Consider the

following commutative diagram of exact sequences

H1(A;Z[H]) → H1(B1;Z[H])⊕H1(B2;Z[H]) → H1(C;Z[H]) → 0

↓∼= ↓∼= ↓∼= ↓

A(1) → B
(1)
1 ×B(1)

2 → C(1)/C(2) → 0.

h 7→ (ϕ1(h), ϕ2(h)−1)

Since g ∈ B(1)
1 \ϕ(A(1)) it follows that (g, g−1) does not lie in the image of A(1)

in B
(1)
1 ×B

(1)
2 . It therefore follows from the above diagram that gs(g)−1 6= e ∈

C(1)/C(2).

Note that C/C(2) is metabelian, and hence by [Hal59] residually finite.

We can therefore find an epimorphism α : C/C(2) → G onto a finite group

G (which is necessarily metabelian) such that α(gs(g)−1) 6= e. Now consider

β : C/C(2) → G × G given by β(h) = (α(h), α(s(h))). Then clearly β(g) 6∈
β(A) ⊂ {(g, g) | g ∈ G}. The restriction of β to B = B1 now clearly separates

g from A. �

Corollary 4.8. Let ϕ : A→ B be a homomorphism of finitely generated

groups which induces an isomorphism of prosolvable completions. Then the

induced map A/A(2) → B/B(2) is an isomorphism.

Proof. It follows immediately from Lemma 2.10 that ϕ induces an iso-

morphism of the prosolvable completions of the metabelian groups A/A(2) and

B/B(2). It now follows from Lemma 4.7 that the induced map A/A(2) →
B/B(2) is an isomorphism. �

We now turn to the proof of the second claim of Lemma 4.5. For the re-

mainder of this section let (M,γ) be a taut sutured manifold with the property

that R±(γ) consist of one component Σ± each. We assume that (A) holds,
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i.e. the inclusion induced maps π1(Σ±) → π1(M) give rise to isomorphisms

of the respective prosolvable completions. We have to show that the class

φ = PD(Σ−) ∈ H1(W ;Z) lies in the cone on the interior of a top-dimensional

face of the Alexander norm ball.

For the remainder of the section we pick a base point x− ∈ Σ− and a

base point x+ ∈ Σ+. We endow W,M and τ(M) with the base point x−.

Furthermore we pick a path γ in M connecting x− ∈ Σ− to x+ ∈ Σ+.

Our goal is to understand the Alexander norm ball of W . In order to do

this we first have to study H = H1(W ;Z). Let t denote the element in H

represented by the closed path γ ∪ −τ(γ). It follows from a straightforward

Mayer-Vietoris sequence argument that we have an isomorphism

f : H1(Σ−;Z) ⊕ 〈t〉 → H1(W ;Z)

( b , tk ) 7→ ι(b) + kt.

In particular H is torsion-free. We write F = H1(Σ−;Z) and use f to identify

H with F × 〈t〉 and to identify Z[H] with Z[F ][t±1].

Recall that the module H1(W ;Z[H]). Recall that H1(W ;Z[H]) is the

homology of the covering of W corresponding to π1(W ) → H1(W ;Z) = H

together with the Z[H]-module structure given by deck transformations.

In the following claim we compare W with Σ × S1. We also write F =

H1(Σ;Z) and we can identify H1(Σ × S1;Z) with H = F × 〈t〉. In particular

we identify H1(Σ × S1;Z) with H1(W ;Z). With these identifications we can

now state the following lemma.

Lemma 4.9. The Z[H]-module H1(W ;Z[H]) is isomorphic to the Z[H]-

module H1(Σ× S1;Z[H]).

Proof. In the following we identify Σ with Σ− ⊂ W . We denote by X

the result of gluing M and τ(M) along Σ = Σ−. Note that we have two

canonical maps r : Σ+ →M → X and s : Σ+ → τ(M)→ X. We furthermore

denote the canonical inclusion maps Σ → M,Σ → τ(M) and Σ = Σ− → X

by i. Throughout this proof we denote by i, r, s the induced maps on solvable

quotients as well.

Claim A. The map i : π1(Σ) → π1(X) gives rise to an isomorphism

π1(Σ)/π1(Σ)(2) → π1(X)/π1(X)(2).

In the following let M ′ be either M or τ(M). Recall that we assume that

π1(Σ)→ π1(M ′) gives rise to isomorphisms of the prosolvable completions. It

now follows from Corollary 4.8 that π1(Σ)/π1(Σ)(2) → π1(M ′/π1(M ′)(2) is an

isomorphism. Now let g : π1(X) = π1(M ∪Σ τ(M))→ π1(M)) be the ‘folding

map’. Note that

π1(Σ)/π1(Σ)(2) i−→ π1(X)/π1(X)(2) g−→ π1(M)/π1(M)(2) ∼=←− π1(Σ)/π1(Σ)(2)



TWISTED ALEXANDER POLYNOMIALS DETECT FIBERED 3-MANIFOLDS 1619

is the identity map. In particular π1(Σ)/π1(Σ)(2) i−→ π1(X)/π1(X)(2) is injec-

tive. On the other hand it follows from the van Kampen theorem that

π1(X) = π1(M) ∗π1(Σ) π1(M ′).

In particular π1(X)/π1(X)(2) is generated by the images of π1(M) and π1(τ(M))

in π1(X)/π1(X)(2). But it results immediately from the following commutative
diagram

π1(Σ) //

&&

//

π1(M ′)

ww

nn

π1(Σ)/π1(Σ)(2)
∼= //

((

π1(M ′)/π1(M ′)(2)

uu
π1(X)/π1(X)(2)

that the image of π1(Σ)/π1(Σ)(2) in π1(X)/π1(X)(2) also generates the group.

This concludes the proof of Claim A.

Claim B. For any g ∈ π1(Σ+)/π1(Σ+) we have

r(g) = s(g) ∈ π1(X)/π1(X)(2).

Denote by τ : X = M ∪Σ τ(M) → X = M ∪Σ τ(M) the map given by

switching the two copies of M . Clearly r(g) = τ∗(s(g)). But τ∗ acts trivially

on the image of π1(Σ)/π1(Σ)(2) in π1(X)/π1(X)(2). By the above claim this

means that τ∗ acts trivially on π1(X)/π1(X)(2). This concludes the proof of

Claim B.

We now view W as the result of gluing the two copies of Σ+ in ∂X by the

identity map. First note that by the van Kampen theorem we have

π1(W ) = 〈t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)〉.

Note that by Claim B the obvious assignments give rise to a well-defined map

π1(W ) = 〈t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)〉 → 〈t〉 × π1(X)/π1(X)(2).

Since π1(X)/π1(X)(2) is metabelian this map descends to a map

Φ : 〈t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)〉/(. . . )(2) → 〈t〉 × π1(X)/π1(X)(2).

Claim C. The map Φ : π1(W )/π1(W )(2) → 〈t〉 × π1(X)/π1(X)(2) is an

isomorphism.
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We denote by Ψ the following map:

〈t〉 × π1(X)/π1(X)(2) → 〈t, π1(X)/π1(X)(2) | ts(g)t−1 = r(g), g ∈ π1(Σ+)〉

= 〈t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+), π1(X)(2)〉

→ 〈t, π1(X) | ts(g)t−1 = r(g), g ∈ π1(Σ+)〉/(. . . )(2).

Clearly Ψ is surjective and we have Φ ◦ Ψ = id. It follows that Φ is an

isomorphism. This concludes the proof of the claim.

Finally note that we have a canonical isomorphism

π1(Σ× S1)/π1(Σ× S1)(2) = 〈t〉 × π1(Σ)/π1(Σ)(2).

It now follows from the above discussion that there is an isomorphism

π1(W )/π1(W )(2) Φ−→ 〈t〉 × π1(X)/π1(X)(2)

∼= 〈t〉 × π1(Σ)/π1(Σ)(2)

= π1(Σ× S1)/π1(Σ× S1)(2)

which is again denoted by Φ. Under the abelianization the map Φ descends
to the above identification H1(Σ × S1;Z) = H = H1(W ;Z). We now get the
following commutative diagram of exact sequences

0 // H1(W ;Z[H])

��

// π1(W )/π1(W )(2)

Φ
��

// H := H1(W ;Z)

=

��

// 0

0 // H1(Σ× S1;Z[H]) // π1(Σ× S1)/π1(Σ× S1)(2) // H1(Σ× S1;Z) // 0.

The lemma is now immediate. �

We are now ready to prove the second statement of Lemma 4.5. The

isomorphism of Alexander modules implies that the Alexander polynomials

∆W and ∆Σ×S1 agree in Z[H]. It is well-known that ∆Σ×S1 = (t − 1)||φ||T ∈
Z[H] = Z[F ][t±1]. Recall that we are interested in φ = PD([Σ]), and that φ as

an element in Hom(H,Z) = Hom(F × 〈t〉),Z) is given by φ(t) = 1, φ|F = 0. It

is now obvious from ∆W = ∆Σ×S1 = (t − 1)||φ||T that φ lies in the interior of

a top-dimensional face of the Alexander norm ball of W . This concludes the

proof of the second statement of Lemma 4.5 modulo the proof of the claim.

5. Residual properties of 3-manifold groups

Proposition 1.7 and Theorem 4.1 are almost enough to deduce Theo-

rem 1.2, but we still have to deal with the assumption in Theorem 4.1 that

π1(W ) has to be residually finite solvable.

Using well-known arguments (see §7 for details) one can easily see that

Proposition 1.7 and Theorem 4.1 imply Theorem 1.2 for 3-manifolds N which

have virtually residually finite solvable fundamental groups. Here we say that
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a group π has virtually a property if a finite index subgroup of π has this prop-

erty. It seems reasonable to conjecture that all 3-manifold groups are virtually

residually finite solvable. For example, linear groups (and hence fundamental

groups of hyperbolic 3-manifolds and Seifert fibered spaces) are virtually resid-

ually finite solvable and (virtually) fibered 3-manifold groups are easily seen

to be (virtually) residually finite solvable.

It is not known though whether all 3-manifold groups are linear. In

the case of 3-manifolds with nontrivial JSJ decomposition we therefore use

a slightly different route to deduce Theorem 1.2 from Proposition 1.7 and

Theorem 4.1. In Lemmas 7.1 and 7.2 we first show that it suffices in the proof

of Theorem 1.2 to consider closed prime 3-manifolds. In this section we will

show that given a closed prime 3-manifold N , there exists a finite cover N ′ of

N such that all pieces of the JSJ decomposition of N ′ have residually finite

solvable fundamental groups (Theorem 5.1). Finally in Section 6 we will prove

a result which allows us in the proof of Theorem 1.2 to work with each JSJ

piece separately (Theorem 6.4).

5.1. Statement of the theorem. We first recall some definitions. Let p be

a prime. A p-group is a group such that the order of the group is a power

of p. Note that any p-group is in particular finite solvable. A group π is

called residually p if for any nontrivial g ∈ π there exists a homomorphism

α : π → P to a p-group such that α(g) 6= e. A residually p group is evidently

also residually finite solvable.

For the reader’s convenience we recall the statement of Theorem 1.9 which

we will prove in this section.

Theorem 5.1. Let N be a closed irreducible 3-manifold. Then for all

but finitely many primes p there exists a finite cover N ′ of N such that the

fundamental group of any JSJ component of N ′ is residually p.

Remarks. (1) Note that this theorem relies on the geometrization re-

sults of Thurston and Perelman.

(2) A slight modification of our proof shows that the statement of the

theorem also holds for irreducible 3-manifolds with toroidal boundary.

5.2. Proof of Theorem 5.1. The proof of the theorem combines in a straight-

forward way ideas from the proof that finitely generated subgroups of GL(n,C)

are virtually residually p for all but finitely many primes p (cf. e.g. [Weh73,

Th. 4.7] or [LS03, Window 7, Prop. 9]) with ideas from the proof that 3-

manifold groups are residually finite (cf. [Hem87]). Since all technical results

can be found in either [Weh73] or [Hem87], and in order to save space, we only

give an outline of the proof by referring heavily to [Weh73] and [Hem87].
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In the following recall that given a positive integer n there exists a unique

characteristic subgroup of Z⊕ Z = π1(torus) of index n2, namely n(Z⊕ Z).

Definition 5.2. Let N be a 3-manifold which is either closed or has toroidal

boundary. Given a prime p we say that a subgroup Γ ⊂ π1(N) has Property

(p) if it satisfies the following two conditions:

(1) Γ is residually p, and

(2) for any torus T ⊂ ∂N the group Γ∩ π1(T ) is the unique characteristic

subgroup of π1(T ) of index p2.

Proposition 5.3. Let N be a compact orientable 3-manifold with empty

or toroidal boundary such that the interior has a complete hyperbolic structure

of finite volume. Then for all but finitely many primes p there exists a finite

index subgroup of π1(N) which has Property (p).

Proof. Proposition 5.3 is essentially a combination of [Hem87, Lemma 4.1]

with the proof that finitely generated linear groups are virtually residually p.

We will use the notation of the proof of [Hem87, Lemma 4.1]. First we pick

a finitely generated subring A ⊂ C as in [Hem87, Proof of Lemma 4.1]. In

particular we can assume that π1(N) ⊂ SL(2, A) where A ⊂ C. We pick a

prime p and a maximal ideal m ⊂ A as in [Hem87, p. 391]. We then have

in particular that char(A/m) = p. For i ≥ 1 we now let Γi = Ker{π1(N) →
SL(2, A/mi) × H/piH} where H = H1(N ;Z)/torsion. We claim that Γ1 ⊂
π1(N) is a finite index subgroup which has Property (p). Clearly Γ1 is of finite

index in π1(N) and by [Hem87, p. 391] the subgroup Γ1 also satisfies condition

(2). The proof that finitely generated linear groups are virtually residually p

(cf. [Weh73, Th. 4.7] or [LS03, Window 7, Prop. 9]) then shows immediately

that all the groups Γ1/Γi, i ≥ 1 are p-groups and that ∩∞i=1Γi = {1}. In

particular Γ1 is residually p. �

Proposition 5.4. Let N be a Seifert fibered space. Then for all but

finitely many primes p, there exists a finite index subgroup of π1(N) which has

Property (p).

Proof. If N is a closed Seifert fibered space, then it is well-known that

π1(N) is linear, and the proposition immediately follows from the fact that

linear groups are virtually residually p for almost all primes p.

Now consider the case that N has a boundary. It is well-known (cf. for

example [Ham01, Lemma 6] and see also [Hem87, p. 391]) that there exists a

finite cover q : N ′ → N with the following two properties:

(1) N ′ = S1 × F for some surface F ,

(2) for any torus T ⊂ ∂N the group π1(N ′) ∩ π1(T ) is the unique charac-

teristic subgroup of π1(T ) of index p2.
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We now write Γ := π1(N ′) ⊂ π1(N). The group Γ is residually p since free

groups are residually p. It now follows from (2) that Γ has the required prop-

erties. �

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. Let N be a closed irreducible 3-manifold. Let N1,

. . . , Nr be the JSJ components. For all but finitely many primes p we can by

Propositions 5.3 and 5.4 find finite index subgroups Γi ⊂ π1(Ni) for i = 1, . . . , r

which have Property (p). We denote by N ′i the cover of Ni corresponding to Γi.

By the second condition of Property (p) the intersections of the subgroups

Γi, i = 1, . . . , r with the fundamental group of any torus of the JSJ decomposi-

tion coincide. We can therefore appeal to [Hem87, Th. 2.2] to find a finite cover

N ′ of N such that any component in the JSJ decomposition of N ′ is homeo-

morphic to some N ′i , i ∈ {1, . . . , r}. Recall that π1(N ′i) = Γi is residually p for

any i; hence the cover N ′ of N has the desired properties. �

6. The JSJ decomposition and prosolvable completions

LetN be a closed 3-manifold and let φ∈H1(N ;Z) primitive with ||φ||T >0.

If (N,φ) fibers, and if Σ ⊂ N is a surface dual to φ which is the fiber of the

fibration, then it is well-known (cf. e.g. [EN85]) that the JSJ tori of N cut the

product N \ νΣ ∼= Σ× [0, 1] into smaller products.

If (N,φ) satisfies Condition (∗), and if Σ ⊂ N is a connected Thurston

norm-minimizing surface dual to φ, then we will see in Lemma 6.3 and The-

orem 6.4 that the JSJ tori of N cut the manifold N \ νΣ into smaller pieces

which look like products ‘on the level of prosolvable completions’. This result

will play an important role in the proof of Theorem 1.2 as it allows us to work

with each JSJ piece separately.

6.1. The statement of the theorem. Throughout this section let N be a

closed irreducible 3-manifold. Furthermore let φ ∈ H1(N ;Z) be a primitive

class which is dual to a connected Thurston norm-minimizing surface. (Re-

call that by Proposition 3.1 this is in particular the case if (N,φ) satisfies

Condition (∗).) Finally we assume that ||φ||T > 0.

We now fix once and for all embedded tori T1, . . . , Tr ⊂ N which give

the JSJ decomposition of N . (Recall that the T1, . . . , Tr are unique up to

reordering and isotopy.)

We will make use several times of the following well-known observations:

Lemma 6.1. Let Σ ⊂ N be an incompressible surface in general position

with the JSJ torus Ti, i ∈ 1, . . . , r. Let c be a component of Σ ∩ Ti. Then c

represents a nontrivial element in π1(Ti) if and only if c represents a nontrivial

element in π1(Σ).
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Lemma 6.2. There exists an embedded Thurston norm-minimizing sur-

face Σ ⊂ N dual to φ with the following three properties :

(1) Σ is connected,

(2) the tori Ti, i = 1, . . . , r and the surface Σ are in general position,

(3) any component of Σ ∩ Ti, i = 1, . . . , r, represents a nontrivial element

in π1(Ti).

Now, among all surfaces dual to φ satisfying the properties of the lemma

we pick a surface Σ which minimizes the number
∑r
i=1 b0(Σ ∩ Ti).

Given Σ we can and will fix a tubular neighborhood Σ× [−1, 1] ⊂ N such

that the tori Ti, i = 1, . . . , r, and the surface Σ × t are in general position for

any t ∈ [−1, 1]. We from now on write M = N \Σ× (−1, 1) and Σ± = Σ×±1.

We denote the components of N cut along T1, . . . , Tr by N1, . . . , Ns. Let

{A1, . . . , Am} be the set of components of the intersection of the tori T1 ∪ · · ·
∪ Tr with M . Note that the surfaces Ai ⊂ M , i = 1, . . . ,m are properly

embedded since we assumed that the tori Ti and the surfaces Σ± = Σ × ±1

are in general position. We also let {M1, . . . ,Mn} be the set of components of

the intersection of Ni with M for i = 1, . . . , s. Put differently, M1, . . . ,Mn are

the components of M cut along A1, . . . , Am. For i = 1, . . . , n we furthermore

write Σ±i = Mi ∩ Σ±.

Let i ∈ {1, . . . ,m}. If the surface Ai is an annulus, then we say that Ai
connects Σ− and Σ+ if one boundary component of Ai lies on Σ− and the

other boundary component lies on Σ+. The following lemma will be proved in

Section 6.2

Lemma 6.3. When (N,φ) satisfies Condition (∗), then for i = 1, . . . ,m

the surface Ai is an annulus which connects Σ− and Σ+.

We can now formulate the main theorem of this section. The proof will

be given in Sections 6.2, 6.3 and 6.4.

Theorem 6.4. Assume that for i = 1, . . . ,m the surface Ai is an annulus

which connects Σ− and Σ+. Furthermore assume that the inclusion induced

maps π1(Σ±)→ π1(M) give rise to an isomorphism of prosolvable completions.

Then for i = 1, . . . , n the following hold :

(1) The surfaces Σ±i are connected.

(2) Given j ∈ {1, . . . , n} with Mi ⊂ Nj the inclusion induced map π1(Mi)

→ π1(Nj) is injective.

(3) The inclusion induced maps π1(Σ±i ) → π1(Mi) give rise to isomor-

phisms of the respective prosolvable completions.

We remind the reader that at the beginning of the section we assumed

that ||φ||T > 0.
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6.2. Proof of Lemma 6.3. We first recall the following theorem from an

earlier paper (cf. [FV08a, Th. 5.2]).

Theorem 6.5. Let Y be a closed irreducible 3-manifold. Let ψ ∈ H1(Y ;Z)

be a primitive class. Assume that for any epimorphism α : π1(Y )→ G onto a

finite group G the twisted Alexander polynomial ∆α
Y,ψ ∈ Z[t±1] is nonzero. Let

T ⊂ Y be an incompressible embedded torus. Then either ψ|T ∈ H1(T ;Z) is

nonzero, or (Y, ψ) fibers over S1 with fiber T .

With this theorem we are now able to prove Lemma 6.3. We use the

notation from the previous section and assume that (N,φ) is a pair which

satisfies Condition (∗). In particular, ∆α
N,φ 6= 0 for any epimorphism α :

π1(N)→ G onto a finite group G. We can therefore apply Theorem 6.5 to the

tori T1, . . . , Tr ⊂ N to conclude that either (N,φ) fibers over S1 with toroidal

fiber, or φ|Ti ∈ H1(Ti;Z) is nonzero for i = 1, . . . , r. Recall that we assumed

that ||φ||T > 0, we therefore only have to deal with the latter case. From

φ|Ti ∈ H1(Ti;Z) nonzero we obtain that Σ (which is dual to φ) necessarily

intersects Ti in at least one curve which is homologically essential on Ti. In

fact by our assumption on Σ and T1, . . . , Tr any intersection curve Σ∩ Ti ⊂ Ti
is essential; in particular the components of Ti cut along Σ are indeed annuli.

In order to prove Lemma 6.3 it now remains to show that each of the

annuli Ai connects Σ− and Σ+. So assume there exists an i ∈ {1, . . . ,m} such

that the annulus Ai does not connect Σ− and Σ+. Without loss of generality

we can assume that Σ+ ∩ Ai = ∅. We equip Ai with an orientation. Denote

the two oriented components of ∂Ai by c and −d. By our assumption c and d

lie in Σ−, and they cobound the annulus Ai ⊂M .

Now recall that by Proposition 3.2 our assumption that (N,φ) satisfies

Condition (∗) implies in particular that H1(Σ−;Z) → H1(M ;Z) is an iso-

morphism. Note that c, d are homologous in M via the annulus A := Ai,

and since H1(Σ−;Z) → H1(M ;Z) is an isomorphism we deduce that c and

d are homologous in Σ− as well. Since Σ− is closed we can now find two

subsurfaces Σ1,Σ2 ⊂ Σ− such that ∂Σ1 = −c ∪ d, and such that (with the

orientations induced from Σ−) the following hold: Σ1 ∪Σ2 = Σ, ∂Σ2 = c∪−d
and Σ1 ∩ Σ2 = c ∪ d. Note that possibly one of Σ1 or Σ2 is disconnected.

Claim. The surfaces Σ1 = Σ1∪A and Σ2 = Σ2∪−A are closed, orientable

and connected. Furthermore, there exists a j ∈ {1, 2} such that genus(Σj) =

genus(Σ) and such that Σj is homologous to Σ in N .

Proof. It is clear that Σ1 and Σ2 are closed, orientable and connected. We

give Σk, k = 1, 2 the orientation which restricts to the orientation of Σk. We

therefore only have to show the second claim.
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Recall that Condition (∗) implies that the inclusion induced maps

Hj(Σ
−;Z)→ Hj(M ;Z), j = 0, 1

are isomorphisms. It follows from Lemma 2.6 that we also have an isomorphism

H2(Σ−;Z) → H2(M ;Z). In particular H2(M ;Z) is generated by [Σ−]. Now

note that Σ1 and Σ2 represent elements in H2(M ;Z). We can write [Σk] =

lk[Σ
−], k = 1, 2, for some lk ∈ Z. Note that [Σ1] + [Σ2] = [Σ−]; i.e., l1 + l2 = 1.

Now let k ∈ {1, . . . , r} such that Ai ⊂ Tk. Recall that any component of

Σ∩Tk represents a nontrivial element in π1(Tk). By Lemma 6.1 any component

of Σ∩Tk therefore also represents a nontrivial element in π1(Σ). In particular c

and d do not bound disks on Σ, which in turn implies that χ(Σk) ≤ 0, k = 1, 2.

It follows that

(3) −χ(Σk) = −χ((Σ−\Σ3−k)∪A) = −χ(Σ)+χ(Σ3−k) ≤ −χ(Σ), k = 1, 2.

On the other hand, by the linearity of the Thurston norm and the genus

minimality of Σ we have

(4) − χ(Σk) ≥ −|lk|χ(Σ), k = 1, 2.

Now recall our assumption that χ(Σ) = ||φ||T > 0. It follows that l1 + l2 = 1

and the inequalities (3) and (4) can only be satisfied if there exists a j with

lj = 1 and χ(Σj) = χ(Σ). (Necessarily, l3−j = 0 and Σ3−j is a torus.) �

Now, there exists a proper isotopy of A ⊂ M to an annulus A′ ⊂ M

such that ∂A′ lies entirely in Σj and such that A′ is disjoint from all the other

Aj , j = 1, . . . , r. We then let Σ′j ⊂ Σj be the subsurface of Σj such that

∂Σ′j = ∂A′. Clearly Σ′ := Σ′j ∪ −A′ is isotopic to Σj ∪ −A, in particular

by the claim, Σ′ is a closed connected surface homologous to Σ in N with

genus(Σ′) = genus(Σ) which satisfies all the properties listed in Lemma 6.2.

On the other hand we evidently have b0(Σ′∩Tj) ≤ b0(Σ)−2. Since we did not

create any new intersections we in fact have
∑r
i=1 b0(Σ′∩Ti) <

∑r
i=1 b0(Σ∩Ti).

But this contradicts the minimality of
∑r
i=1 b0(Σ ∩ Ti) in our choice of the

surface Σ. We therefore showed that the assumption that Ai does not connect

Σ− and Σ+ leads to a contradiction. This concludes the proof of Lemma 6.3.

6.3. Preliminaries on the components M1, . . . ,Mn. We continue with the

notation from the previous sections. Using Lemma 6.3 we can now prove the

following lemma, which in particular implies the first statement of Theorem 6.4.

Lemma 6.6. Assume that the inclusion induced maps π1(Σ±) → π1(M)

give rise to isomorphisms of the prosolvable completions. Let i ∈ {1, . . . , n}.
Then the following hold :

(1) The surfaces Σ±i are connected.
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(2) For any homomorphism α : π1(M) → S to a finite solvable group the

inclusion maps induce isomorphisms

Hj(Σ
±
i ;Z[S])→ Hj(Mi;Z[S])

for j = 0, 1.

Proof. We first consider statement (1). Recall that M1, . . . ,Mn are the
components of M split along A1, . . . , Am. We therefore get the following com-
mutative diagram of Mayer-Vietoris sequences

. . . //
m⊕
k=1

Hj(Ak ∩ Σ±;Z) //

��

n⊕
l=1

Hj(Ml ∩ Σ±;Z)

��

// Hj(Σ
±;Z)

��

// . . .

. . . //
m⊕
k=1

Hj(Ak;Z) //
n⊕
l=1

Hj(Ml;Z) // Hj(M ;Z) // . . . .

Note that the vertical homomorphisms on the left are isomorphisms since by

Lemma 6.3 for any i = 1, . . . ,m the Ai is an annulus which connects Σ− and

Σ+, i.e. Ai is a product on Ai ∩ Σ±. Also note that the vertical homomor-

phisms on the right are isomorphisms for j = 0, 1 by Proposition 3.2 and for

j = 2 by Lemma 2.6. We can now appeal to the 5-Lemma to deduce that the

middle homomorphisms are isomorphisms as well. But for any j the middle

homomorphism is a direct sum of homomorphisms. It therefore follows in par-

ticular that the maps Hj(Σ
±
i ;Z) → Hj(Mi;Z), j = 0, 1 are isomorphisms for

any i ∈ {1, . . . , n}. In particular b0(Σ±i ) = b0(Mi) = 1; i.e., the surfaces Σ±i
are connected.

We now prove statement (2). Let α : π1(M) → S be a homomorphism

to a finite solvable group. Recall that by Lemmas 2.12 and 2.6, the inclusion

induced maps Hj(Σ
±;Z[S]) → Hj(M ;Z[S]) are isomorphisms for j = 0, 1, 2.

It now follows from the commutative diagram of Mayer-Vietoris sequences as

above, but with Z[S]-coefficients (cf. [FK06] for details) that

Hj(Σ
±
i ;Z[S])→ Hj(Mi;Z[S])

is an isomorphism for any i ∈ {1, . . . , n} and j = 0, 1. �

The following lemma in particular implies the second statement of Theo-

rem 6.4.

Lemma 6.7. For any pair (i, j) such that Mi ⊂ Nj we have a commutative

diagram of injective maps as follows :

π1(Σ±i )

��

// π1(Mi)

��

// π1(Nj)

��
π1(Σ±) // π1(M) // π1(N).
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Proof. First note that since Σ is incompressible we know that the two

bottom maps are injective. Furthermore recall that Nj is a JSJ component of

N , i.e. a component of the result of cutting N along incompressible tori, hence

π1(Nj)→ π1(N) is injective.

Claim. For any k ∈ {1, . . . , n} the maps π1(Σ±k )→ π1(Σ) are injective.

Let c be a component of Σ∩Tl for some l ∈ {1, . . . , r}. Recall that by our

choice of tori T1, . . . , Tr the curve c represents a nontrivial element in π1(Tl).

By Lemma 6.1 the curve c also represents a nontrivial element in π1(Σ). In

particular none of the components of Σ± \Σ±k are disks and therefore the maps

π1(Σ±k )→ π1(Σ±) are injective. This concludes the proof of the claim.

Now let K = {k ∈ {1, . . . , n} |Mk ⊂ Nj}. It follows from the claim and

the above commutative diagram that for any k ∈ K the inclusion induced

map π1(Σk) → π1(Nj) is injective; i.e., for any k ∈ K the surface Σk ⊂ Nj is

incompressible. SinceMi is a component of cuttingNj along the incompressible

surfaces Σ−k ⊂ Nj , k ∈ K we have that π1(Mi)→ π1(Nj) is injective.

By commutativity of the above diagram we now obtain that all other maps

are injective as well. �

6.4. The conclusion of the proof of Theorem 6.4. In this section we will

finally prove the third statement of Theorem 6.4. The main ingredient in the

proof is the following result.

Proposition 6.8. Let Σ be a closed surface and Σ′ ⊂ Σ a connected

subsurface such that π1(Σ′) → π1(Σ) is injective. Let α : π1(Σ′) → S be a

homomorphism to a finite solvable group. Then there exists a homomorphism

to a finite solvable group β : π1(Σ) → T and a homomorphism π : T ′ :=

Im{π1(Σ′)→ T} → S such that the following diagram commutes :

π1(Σ′)

α

�� ""

// π1(Σ)

β

��
S T ′

πoo // T.

Put differently, the prosolvable topology on π1(Σ′) agrees with the topol-

ogy on π1(Σ′) induced from the prosolvable topology on π1(Σ).

Remark. Note that in general H1(Σ′;Z)→ H1(Σ;Z) is not injective, even

if π1(Σ′) → π1(Σ) is an injection. In particular in general a homomorphism

π1(Σ′) → S to an abelian group will not extend to a homomorphism from

π1(Σ) to an abelian group. This shows that in general we cannot take T = S

or T of the same solvability length as S in the above proposition.

Proof. The statement of the proposition is trivial if Σ′ = Σ; we will there-

fore henceforth only consider the case that Σ′ 6= Σ. Let α : π1(Σ′) → S be
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a homomorphism to a finite solvable group. It suffices to show that there

exists a homomorphism β : π1(Σ) → T to a finite solvable group such that

Ker(β) ∩ π1(Σ′) ⊂ Ker(α).

Denote by Σ1, . . . ,Σl the components of Σ \ Σ′. Note that the condition

that π1(Σ′) → π1(Σ) is injective is equivalent to saying that none of the sub-

surfaces Σ1, . . . ,Σl is a disk.

It is straightforward to see that for each j = 1, . . . , l we can find an annulus

Aj ∈ int(Σj) such that (Σ′ ∪ Σj) \Aj is still connected.

1

2

3
'

A
1

2
A

A
3

Σ ΣΣ

Σ

Figure 1. Surface Σ′ ⊂ Σ with annuli Ai ⊂ Σi, i = 1, 2, 3.

Now let Σ′′ = Σ \ ∪j∈JAj . Clearly Σ′′ is a connected surface with bound-

ary. By assumption π1(Σ′)→ π1(Σ) is injective. Since π1(Σ′)→ π1(Σ) factors

through π1(Σ′′) we see that Σ′ is a subsurface of Σ′′ such that π1(Σ′)→ π1(Σ′′)

is injective. Since Σ′′ is a surface with boundary (contrary to Σ) this implies

that π1(Σ′) is in fact a free factor of π1(Σ′′); i.e., we have an isomorphism

γ : π1(Σ′′)
∼=−→ π1(Σ′) ∗F where F is a free group such that the map π1(Σ′′)

γ−→
π1(Σ′) ∗ F → π1(Σ′) splits the inclusion induced map π1(Σ′)→ π1(Σ′′).

We now write π := π1(Σ′′) and we denote by α′′ the projection map

π → π/π(S) (referring to §3.4 for the definition and the properties of the

characteristic subgroup π(S) of π). We can extend α : π1(Σ′)→ S to π1(Σ′′)
γ−→

π1(Σ′) ∗ F → π1(Σ′)
α−→ S. It follows immediately that Ker(α′′) ∩ π1(Σ′) ⊂

Ker(α).

We now extend α′′ : π1(Σ′′) → π/π(S) to a homomorphism β : π1(Σ) →
Z/nn π/π(S) where 1 ∈ Z/n acts in an appropriate way on π/π(S). In order

to do this we will first study the relationship between π1(Σ′′) and π1(Σ).

Evidently Σ = Σ′′ ∪ ∪k
i=1Ai. We pick an orientation for Σ and give

A1, . . . , Ak the induced orientations. We write ∂Ai = −ai ∪ bi, i = 1, . . . , k

(see Figure 2). We now pick a base point for Σ′′. We can find based curves

c1, . . . , cl, d1, . . . , dl and paths from the base point to the curves a1, . . . , ak,

b1, . . . , bk (and from now on we do not distinguish in the notation between
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2
a
b2

a
1

1b
''

a
b

3
3

Σ

Figure 2. Surface Σ′′ ⊂ Σ with oriented boundary curves ai, bi.

a a a b b b
2 21 33 1

. . . .
c d
1 1

c d
3 3

''Σ

Figure 3. Surface Σ′′ ⊂ Σ with oriented based curves ai, bi, ci, di.

curves and based curves) such that

π =
¨
a1, . . . , ak, b1, . . . , bk, c1, . . . , cl, d1, . . . , dl | a1 . . . akb

−1
k . . . b−1

1

= [cl, dl] . . . [c1, d1]
∂
.

(See Figure 3 for an illustration.) By the van Kampen theorem we then have

π1(Σ) = 〈π1(Σ′′), t1, . . . , tk | tiait−1
i = bi, i = 1, . . . , k〉.

Claim. There exists an automorphism ϕ : π → π such that ϕ(ai) = bi and

ϕ(bi) = ai for any i ∈ {1, . . . , k}.

Let Γ be the free group generated by ai, bi, i = 1, . . . , k and ci, di, i =

1, . . . , l and consider the isomorphism ϕ : Γ→ Γ defined by ϕ(ai) = bi, ϕ(bi) =

ai, i = 1, . . . , k and ϕ(ci) = dl+1−i, ϕ(di) = cl+1−i, i = 1, . . . , l. In the fol-

lowing we write w = [cl, dl] . . . [c1, d1] and we write r = a1 . . . akb
−1
k . . . b−1

1 ·
[c1, d1]−1 . . . [cl, dl]

−1 for the relator. Note that we have a canonical isomor-

phism π ∼= Γ/〈〈r〉〉. We calculate
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ϕ(r) = ϕ
Ä
a1 . . . akb

−1
k . . . b−1

1 · [c1, d1]−1 . . . [cl, dl]
−1
ä

= b1 . . . bka
−1
k . . . a−1

1 · [dl, cl]
−1 . . . [d1, c1]−1

= b1 . . . bka
−1
k . . . a−1

1 · [cl, dl] . . . [c1, d1]

= w−1[cl, dl] . . . [c1, d1]b1 . . . bka
−1
k . . . a−1

1 w

= w−1r−1w.

This shows that ϕ restricts to an automorphism of the subgroup of Γ normally

generated by the relator r. In particular ϕ descends to an automorphism of π.

This concludes the proof of the claim.

Recall that π(S) is a characteristic subgroup of π, hence ϕ : π → π

descends to an automorphism π/π(S) → π/π(S) which we again denote by

ϕ. Furthermore recall that π/π(S) is a finite solvable group. Since π/π(S) is

finite there exists n > 0 such that ϕn : π/π(S)→ π/π(S) acts as the identity.

We can therefore consider the semidirect product Z/nnπ/π(S) where 1 ∈ Z/n
acts on π/π(S) via ϕ.

It is now straightforward to check that the assignment

g 7→ (0, α′′(g)), g ∈ π1(Σ′′),

ti 7→ (1, 0)

defines a homomorphism

π1(Σ) = 〈π1(Σ′′), t1, . . . , tk | tiait−1
i = bi, i = 1, . . . , k〉 → Z/nn π/π(S)

which we denote by β. Clearly β : π1(Σ)→ Z/nnπ/π(S) restricts to π1(Σ′′)→
π/π(S) and hence has the required properties. �

We can now prove the third statement of Theorem 6.4.

Proof of Theorem 6.4(3). In light of Lemma 6.6 (together with Corol-

lary 2.3) and Lemma 6.7 it suffices to show the following claim:

Claim. Let M be a 3-manifold and Σ ⊂ ∂M such that π1(Σ) → π1(M)

induces an isomorphism of prosolvable completions. Furthermore let M ′ ⊂M
be a submanifold with the following properties:

(A) Σ′ := Σ ∩M ′ is a connected subsurface of Σ′,

(B) π1(Σ′)→ π1(Σ) is injective, and

(C) for any homomorphism α : π1(M) → S to a finite solvable group the

inclusion map induces isomorphisms

Hj(Σ
′;Z[S])→ Hj(M

′;Z[S])

for j = 0, 1 and we have

Im{π1(Σ′)→ π1(M)
α−→ S} = Im{π1(M ′)→ π1(M)

α−→ S}.
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Then π1(Σ′)→ π1(M ′) induces an isomorphism of prosolvable completions.

By Lemma 2.10 we have to show that for any finite solvable group S the

map

ι∗ : Hom(π1(M ′), S)→ Hom(π1(Σ′), S)

is a bijection.

So let S be a finite solvable group. We first show that ι∗ : Hom(π1(M ′), S)

→ Hom(π1(Σ′), S) is surjective. The various groups and maps in the proof are

summarized in the diagram below. Assume we are given a homomorphism

α′ : π1(Σ′) → S. By (B) and Proposition 6.8 there exists a homomorphism

β : π1(Σ)→ T to a finite solvable group and a homomorphism π : Im{π1(Σ′)→
T} → S such that π ◦ (β ◦ ι) = α′. We write T ′ = Im{π1(Σ′) → T} and

β′ = β ◦ ι : π1(Σ′)→ T ′.

By our assumption π1(Σ) → π1(M) induces isomorphisms of prosolvable

completions and by Lemma 2.10 there exists a homomorphism ϕ : π1(M)→ T

such that β = ϕ ◦ ι. By (C) we have

Im{π1(M ′)→ π1(M)
ϕ−→ T} = Im{π1(Σ′)

ι−→ π1(M)
ϕ−→ T}

= Im{π1(Σ′)
β−→ T} = T ′.

Now denote the induced homomorphism π1(M ′)→ T ′ by ϕ′. Clearly ϕ′◦ι = β′.

Hence α′ = π ◦ β′ = (π ◦ ϕ′) ◦ ι. This shows that ι∗ : Hom(π1(M ′), S) →
Hom(π1(Σ′), S) is surjective. The following diagram summarizes the homo-

morphisms in the proof of the previous claim:

π1(Σ′)

α′ ""

β′=β◦ι

((
ι

��

ι // π1(Σ)
β

||
ι

��

S T ′
π
oo � � // T

π1(M ′)
ϕ′

66

ι // π1(M).

ϕ

bb

We now show that ι∗ : Hom(π1(M ′), S) → Hom(π1(Σ′), S) is injective.

Let α1, α2 : π1(M ′) → S be two different homomorphisms. Let n be the

maximal integer such that the homomorphisms π1(M ′)→ S → S/S(n) induced

by α1 and α2 agree. We will show that the restriction to π1(Σ′) of the maps

π1(M ′)→ S → S/S(n+1) induced by α1 and α2 are different. Without loss of

generality we can therefore assume that S = S/S(n+1).

We denote by ψ′ the homomorphism π1(M ′)→ S → S/S(n) =: G, induced

by α1 and α2.
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Claim. There exists a homomorphism ϕ : π1(M)→ H to a finite solvable

group and a homomorphism π : Im{π1(M ′) → π1(M) → H} → G such that

ψ′ = π ◦ (ϕ ◦ ι).

By (B) and Proposition 6.8 there exists a homomorphism β : π1(Σ)→ H

to a finite solvable group H and a homomorphism π : Im{π1(Σ′) → H} → G

such that π′ ◦ (β ◦ ι) = ψ′ ◦ ι. By our assumption and by Lemma 2.10 there

exists a homomorphism ϕ : π1(M)→ H such that β = ϕ ◦ ι. By (C) we have

Im{π1(Σ′) → H} = Im{π1(M ′) → H} =: H ′. It is now clear that ϕ and π

have the required properties. This concludes the proof of the claim.

The following diagram summarizes the homomorphisms in the proof of

the previous claim:

π1(Σ′)

ψ′◦ι ## ((
ι

��

ι // π1(Σ)
β

{{
ι

��

G H ′
π
oo � � // H

π1(M ′)

ψ′
;;

ϕ′=ϕ◦ι

66

ι // π1(M).

ϕ

cc

We now apply (C) and Corollary 2.5 to the case A = π1(Σ′), B = π1(M ′) and

ϕ′ : B → H ′ to conclude that the inclusion map induces an isomorphism

π1(Σ′)/[Ker(ϕ′ ◦ ι),Ker(ϕ′ ◦ ι)]→ π1(M ′)/[Ker(ϕ′),Ker(ϕ′].

We now consider the homomorphisms α1, α2 : π1(M ′) → S = S/S(n+1).

First note that they factor through π1(M ′)/[Ker(ψ′),Ker(ψ′)]. Now note that

Ker(ϕ′)⊂Ker(ψ′)⊂π1(M ′); in particular we have a surjection π1(M ′)/Ker(ϕ′)

→ π1(M ′)/Ker(ψ′) which gives rise to a surjection

π1(M ′)/[Ker(ϕ′),Ker(ϕ′)]→ π1(M ′)/[Ker(ψ′),Ker(ψ′)].

In particular α1, α2 factor through π1(M ′)/[Ker(ϕ′),Ker(ϕ′)]. We therefore
obtain the following commutative diagram

π1(Σ′)

��

ι // π1(M ′)

uu

α1α2

��

π1(Σ′)/[Ker(ϕ′ ◦ ι),Ker(ϕ′ ◦ ι)]
∼= // π1(M ′)/[Ker(ϕ′),Ker(ϕ′)]

��
π1(M ′)/[Ker(ψ′),Ker(ψ′)]

))
S.
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It is now clear that α1 ◦ ι and α2 ◦ ι are different. This concludes the proof

that ι∗ : Hom(π1(M ′), S) → Hom(π1(Σ′), S) is injective. As we pointed out

before, it now follows from Lemma 2.10 that ι : π1(Σ′) → π1(M ′) induces an

isomorphism of prosolvable completions. �

7. The proof of Theorem 1.2

We start out with the following two results which allow us to reduce the

proof of Theorem 1.2 to the case of closed prime 3-manifolds.

Lemma 7.1. Let N be a 3-manifold with empty or toroidal boundary and

let φ ∈ H1(N ;Z) be nontrivial. If ∆α
N,φ is nonzero for any homomorphism

α : π1(N)→ G to a finite group G, then N is prime.

Note that the main idea for the proof of this lemma can already be found

in [McC01].

Proof. Let N be a 3-manifold with empty or toroidal boundary which is

not prime, i.e. N = N1 #N2 with N1, N2 6= S3. We have to show that there

exists a homomorphism α : π1(N) → G to a finite group such that ∆α
N,φ = 0.

Recall that by Lemma 2.9 we have ∆α
N,φ = 0 if and only if H1(N ;Q[G][t±1]) is

not Q[t±1]-torsion. Note that we can write N = (N1 \ intD3)∪S2 (N2 \ intD3)

and that Hj(Ni \ intD3;Q[t±1]) = Hj(Ni;Q[t±1]) for j = 0, 1 and i = 1, 2. The

Mayer-Vietoris sequence corresponding to N = (N1 \ intD3) ∪S2 (N2 \ intD3)

now gives rise to the following long exact sequence:

H1(S2;Q[t±1])→ H1(N1;Q[t±1])⊕H1(N2;Q[t±1])→ H1(N ;Q[t±1])→

H0(S2;Q[t±1])→ H0(N1;Q[t±1])⊕H0(N2;Q[t±1])→ H0(N ;Q[t±1])→ 0.

A straightforward computation shows that H0(S2;Q[t±1]) = Q[t±1] and that

H1(S2;Q[t±1]) = 0.

First assume that b1(Ni) > 0 for i = 1, 2. Denote by φi the restriction of

φ : H1(N ;Q)→ Q to H1(Ni;Q). If φi is nontrivial for i = 1 and i = 2, then it

follows from Lemmas 2.2 and 2.9 that H0(Ni;Q[t±1]) is Q[t±1]-torsion for i =

1, 2. On the other hand we have H0(S2;Q[t±1]) = Q[t±1]. It follows from the

above Mayer-Vietoris sequence that H1(N ;Q[t±1]) cannot be Q[t±1]-torsion.

On the other hand, if φi is trivial for some i ∈ {1, 2}, then H1(Ni;Q[t±1]) is

isomorphic to H1(Ni;Q) ⊗ Q[t±1]. In particular H1(Ni;Q[t±1]) is not Q[t±1]-

torsion, and by use of H1(S2;Q[t±1]) = 0 it follows again from the above

Mayer-Vietoris sequence that H1(N ;Q[t±1]) is not Q[t±1]-torsion.

Now assume that either b1(N1) = 0 or b1(N2) = 0. Without loss of

generality we can assume that b1(N2) = 0. Since b1(N) = b1(N1) + b1(N2)

we have b1(N1) > 0. By the Geometrization Conjecture π1(N2) is nontrivial

and residually finite (cf. [Thu82] and [Hem87]). In particular there exists an
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epimorphism α : π1(N2) → G onto a nontrivial finite group G. Denote the

homomorphism π1(N) = π1(N1) ∗ π1(N2) → π1(N2) → G by α as well. Then

by Lemma 2.8 we have

∆α
N,φ = ∆NG,φG

where p : NG → N is the cover of N corresponding to α and φG = p∗(φ). But

the prime decomposition of NG has |G| copies of N1. By the argument above

we now have ∆NG,φG = 0, which implies that ∆α
N,φ = ∆NG,φG = 0. �

Lemma 7.2. Let N be an irreducible 3-manifold with nonempty toroidal

boundary and let φ ∈ H1(N ;Z) be nontrivial. Let W = N ∪∂N N be the double

of N along the boundary of N . Let Φ = p∗(φ) ∈ H1(W ;Z) where p : W → N

denotes the folding map. Then the following hold :

(1) (W,Φ) fibers over S1 if and only if (N,φ) fibers over S1;

(2) if (N,φ) satisfies Condition (∗), then (W,Φ) satisfies Condition (∗).

In the proof of Lemma 7.2 we will make use of the following well-known

lemma. We refer to [EN85, Th. 4.2] and [Rou74] for the first statement, and

to [EN85, p. 33] for the second statement.

Lemma 7.3. Let Y be a closed 3-manifold. Let T ⊂ Y be a union of

incompressible tori such that T separates Y into two connected components Y1

and Y2. Let ψ ∈ H1(Y ;Z). Then the following hold :

(1) If ||φ||T,Y > 0, then (Y, ψ) fibers over S1 if and only if (Y1, ψ|Y1) and

(Y2, ψ|Y2) fiber over S1;

(2) ||ψ||T,Y = ||ψ|Y1 ||T,Y1 + ||ψ|Y2 ||T,Y2 .

Proof of Lemma 7.2.First note that an irreducible 3-manifold with bound-

ary a union of tori has compressible boundary if and only if it is the solid torus.

Since the lemma holds trivially in the case that N = S1 × D2 we will from

now on assume that N has incompressible boundary. This implies in partic-

ular that ||φ||T > 0. The first statement is now an immediate consequence of

Lemma 7.3 and the observation that Φ|N = φ.

Now assume that (N,φ) satisfies Condition (∗). In the following we write

Ni=N , i=1, 2 and we think of W as W =N1∪∂N1=∂N2 N2. Let α : π1(N)→G

be a homomorphism to a finite group G. We write n = |G|, V = Z[G] and we

slightly abuse notation by denoting by α the representation π1(W )→ Aut(V )

given by left multiplication. We have to show that ∆α
W,Φ ∈ Z[t±1] is monic and

that

deg(∆α
W,Φ)− deg(∆α

W,Φ,0)− deg(∆α
W,Φ,2) = n ‖Φ‖T

(here we used Lemma 2.8 to rephrase the last condition). For any submanifold

X ⊂ W we denote the restriction of Φ and α to π1(X) by Φ and α as well.

Evidently the restriction of Φ to N = Ni, i = 1, 2 just agrees with φ.
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In order to prove the claims on ∆α
W,Φ we will in the following express ∆α

W,Φ

in terms of ∆α
Ni,φi

, i = 1, 2. The following statement combines the assumption

that (N,φ) satisfies Condition (∗) with Lemmas 2.8 and 2.9.

Fact 1. For i = 1, 2,

deg(∆α
Ni,Φ)− deg(∆α

Ni,Φ,0)− deg(∆α
Ni,Φ,2) = n ‖Φ‖T,Ni .

Furthermore for all j we have that ∆α
Ni,Φ,j

is monic.

We now turn to the twisted Alexander polynomials of the boundary tori

of ∂N . The following is an immediate consequence of Theorem 6.5.

Fact 2. If ∆N,φ 6= 0 (in particular if (N,φ) satisfies Condition (∗)), then

for any boundary component T ⊂ ∂N the restriction of φ (and hence of Φ) to

π1(T ) is nontrivial.

This fact and a straightforward computation now gives us the following

fact (cf. e.g. [KL99]).

Fact 3. Let T ⊂ ∂N be any boundary component. Then

(1) ∆α
T,Φ,i is monic for any i.

(2) Hi(T ;V [t±1]) = 0 for i ≥ 2; in particular ∆α
T,Φ,i = 1 for i ≥ 2,

(3) ∆α
T,Φ,0 = ∆α

T,Φ,1.

We now consider the following Mayer-Vietoris sequence:

0 → H2(N1;V [t±1])⊕H2(N2;V [t±1]) → H2(W ;V [t±1]) →
H1(∂N ;V [t±1]) → H1(N1;V [t±1])⊕H1(N2;V [t±1]) → H1(W ;V [t±1]) →
H0(∂N ;V [t±1]) → H0(N1;V [t±1])⊕H0(N2;V [t±1]) → H0(W ;V [t±1]) → 0.

Recall that we assume that (N,φ) (and hence (Ni, φ), i = 1, 2) satisfy Con-

dition (∗). By Lemmas 2.8 and 2.9 and Facts 1 and 3 it follows that all ho-

mology modules in the above long exact sequence but possibly H1(W ;V [t±1])

and H2(W ;V [t±1]) are Z[t±1]-torsion. But then evidently H1(W ;V [t±1]) and

H2(W ;V [t±1]) also have to be Z[t±1]-torsion. Furthermore it follows from

Fact 3, [Tur01, Th. 3.4] and [Tur01, Th. 4.7] that

(5)
∆α
W,Φ,1

∆α
W,Φ,0∆α

W,Φ,2

=
∆α
N1,Φ,1

∆α
N1,Φ,0

∆α
N1,Φ,2

·
∆α
N2,Φ,1

∆α
N2,Φ,0

∆α
N2,Φ,0

.

Note that ∆α
W,Φ,0 and ∆α

W,Φ,2 are monic by Lemma 2.8, it now follows from

Fact 1 and equality (5) that ∆α
W,Φ,1 is monic as desired.

Finally we can appeal to Lemma 7.3 to conclude that ||Φ||T,W = ||Φ||T,N1+

||Φ||T,N2 . It therefore follows from Fact 1 and equation (5) that

deg(∆α
W,Φ)− deg(∆α

W,Φ,0)− deg(∆α
W,Φ,2) = n ‖Φ‖T,W

as required. �
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Let N be a 3-manifold with empty or toroidal boundary. We write π =

π1(N). Let π̃ ⊂ π be a finite index subgroup and φ ∈ H1(N ;Z) be nontrivial.

We now say that the pair (π̃, φ) has Property (M) if the twisted Alexander

polynomial ∆
π/π̃
N,φ ∈ Z[t±1] is monic and if

deg(∆
π/π̃
N,φ) = [π : π̃] ‖φ‖T + (1 + b3(N))divφπ̃

holds.

The first statement of the following lemma is well-known; the second one

can be easily verified and the third is an immediate consequence of the second

statement.

Lemma 7.4. Let N be a 3-manifold with empty or toroidal boundary and

let φ ∈ H1(N ;Z) be nontrivial. Let k 6= 0 ∈ Z. Then the following hold :

(1) (N,φ) fibers over S1 if and only if (N, kφ) fibers over S1.

(2) Let π̃ ⊂ π be a finite index subgroup. Then (π̃, φ) has Property (M) if

and only if (π̃, kφ) has Property (M).

(3) (N,φ) satisfies Condition (∗) if and only if (N, kφ) satisfies Condition (∗).

We will also need the following lemma.

Lemma 7.5. Let N be a 3-manifold with empty or toroidal boundary and

let φ ∈ H1(N ;Z) be nontrivial. Suppose that all finite index normal subgroups

of π1(N) have Property (M); then in fact all finite index subgroups of π1(N)

have Property (M).

Proof. We write π := π1(N). Let φ ∈ H1(N ;Z) be nontrivial. By

Lemma 7.4(2) we can without loss of generality assume that φ is primitive.

Let π̃ ⊂ π be a finite index subgroup. We denote by π̂ ⊂ π the core of π̃, i.e.

π̂ = ∩g∈πgπ̃g−1. Note that π̂ is normal in π and contained in π̃.

By Proposition 3.1 the class φ is dual to a connected Thurston norm-

minimizing surface Σ. We write A = π1(Σ) and B = π1(N \ νΣ) as before.

We write “B := B ∩ π̂ and Â± := (ι±)−1(“B). We now pick representatives

g1, . . . , gm for the equivalence classes of B\π/π̃. For i = 1, . . . ,m we write‹Bi := B ∩ giπ̃g−1
i and Ã±i := (ι±)−1(‹Bi).

Since π̂ ⊂ π is normal and since we assume that normal finite index

subgroups have Property (M) we can now apply Proposition 3.2 and Lemma 2.1

to conclude that

ι± : Hj(A;Z[B/“B])→ Hj(B;Z[B/“B])

are isomorphisms for j = 0, 1. It now follows from Corollary 2.5 that the maps

ι± : A/Â± → B/“B and ι± : A/[Â±, Â±]→ B/[“B, “B]

are isomorphisms. Recall that π̂ is normal in π, it follows that “B ⊂ B is normal

and for any i we have “B = B ∩ giπ̂g−1
i ⊂ B ∩ giπ̃g−1

i = ‹Bi. We now deduce
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from Lemma 2.7 that

ι± : A/Ã±i → B/‹Bi and ι± : A/[Ã±i , Ã
±
i ]→ B/[‹Bi, ‹Bi]

are bijections for i = 1, . . . ,m. It now follows from Lemma 2.4 that the maps

ι± : Hj(A;Z[π/π̃])→ Hj(B;Z[π/π̃])

are isomorphisms. It now follows from Proposition 3.2 that π̃ also has Prop-

erty (M). �

We will now use the previous lemma to prove the following lemma.

Lemma 7.6. Let N be a 3-manifold with empty or toroidal boundary and

let φ ∈ H1(N ;Z) be nontrivial. Let p : N ′ → N be a finite cover. We write

φ′ = p∗(φ) ∈ H1(N ′;Z). Then the following hold :

(1) φ′ is nontrivial ;

(2) (N,φ) fibers over S1 if and only if (N ′, φ′) fibers over S1;

(3) if (N,φ) satisfies Condition (∗), then (N ′, φ′) satisfies Condition (∗).

Proof. The first statement is well-known. The second statement is a con-

sequence of [Hem76, Th. 10.5]. We now turn to the third statement. Assume

that (N,φ) satisfies Condition (∗).
Let π̃ be a normal finite index subgroup of π′ = π1(N ′). We have to show

that (π̃, φ′) has Property (M). Note that π̃ viewed as a subgroup of π = π1(N)

is not necessarily normal. It nonetheless follows from the assumption that

(N,φ) satisfies Condition (∗) and from Lemma 7.5 that the twisted Alexander

polynomial ∆
π/π̃
N,φ ∈ Z[t±1] is monic and that

deg(∆
π/π̃
N,φ) = [π : π̃] ‖φ‖T + (1 + b3(N))divφπ̃

holds. It now follows easily from Lemma 2.8, b3(N) = b3(N ′), and the mul-

tiplicative property of the Thurston norm under finite covers (cf. [Gab83,

Cor. 6.13]) that the twisted Alexander polynomial ∆
π′/π̃
N ′,φ′ ∈ Z[t±1] is monic

and that the following equality holds:

deg(∆
π′/π̃
N ′,φ′) = [π′ : π̃] ‖φ′‖T + (1 + b3(N ′))divφ′π̃.

In particular (π̃, φ′) has Property (M). �

We are now finally in a position to prove Theorem 1.2.

Proof of Theorem 1.2.First note that the combination of Theorem 1.9 and

Lemmas 7.1, 7.2, 7.6 and 7.4 shows that it suffices to observe the following:

Claim. Assume we are given a pair (N,φ) where

(1) N is a closed irreducible 3-manifold such that the fundamental group

of each JSJ component is residually p, and
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(2) φ is primitive.

If (N,φ) satisfies Condition (∗), then (N,φ) fibers over S1.

Let (N,φ) be a pair (as in the claim) which satisfies Condition (∗). If

||φ||T = 0, then it follows from [FV08a, Prop. 4.6] that (N,φ) fibers over S1.

We can and will henceforth assume that ||φ||T > 0. We denote the tori

of the JSJ decomposition of N by T1, . . . , Tr. We pick a connected Thurston

norm-minimizing surface Σ dual to φ and a tubular neighborhood νΣ = Σ ×
[−1, 1] ⊂ N as in Section 6.1. In particular we can and will throughout assume

that Σ × t and the tori T1, . . . , Tr are in general position for any t ∈ [−1, 1]

and that for any i ∈ {1, . . . , r} any component of Σ∩Ti represents a nontrivial

element in π1(Ti). Furthermore, as in Section 6, we assume that our choice of

Σ minimizes the number
∑r
i=1 b0(Σ ∩ Ti).

Let A1, . . . , Am be the components of the intersection of the tori T1, . . . , Tr
with M := N \ Σ × (−1, 1). Furthermore let M1, . . . ,Mn be the components

of M cut along A1 ∪ · · · ∪ Am. Recall that any Mi is a submanifold of a JSJ

component of N .

For i = 1, . . . ,m write Ci = Ai ∩ Σ−. It follows from Lemma 6.3 that

for i = 1, . . . ,m the surface Ai is an annulus which is a product on Ci, i.e. Ci
consists of one component and π1(Ci)→ π1(Ai) is an isomorphism.

In order to show that M is a product on Σ− it suffices to show that

π1(Σ−i ) → π1(Mi) is an isomorphism for any i ∈ {1, . . . , n}. So let i ∈
{1, . . . , n}. Since (N,φ) satisfies Condition (∗) it follows from Proposition 1.7

that the maps π1(Σ±) → π1(M) induce an isomorphism of prosolvable com-

pletions. By Theorem 6.4(1) the surfaces Σ±i are connected, and by Theo-

rem 6.4(3) the inclusion induced maps π1(Σ±i ) → π1(Mi), i = 1, . . . , n, also

induce isomorphisms of prosolvable completions. By Theorem 6.4(2) we have

that the group π1(Mi) is a subgroup of the fundamental group of a JSJ com-

ponent of N . By our assumption this implies that π1(Mi) is residually p, in

particular residually finite solvable.

In the following we view Mi as a sutured manifold with sutures given

by γi = ∂N ∩ Mi. We can pick orientations such that R−(γi) = Σ−i and

R+(γi) = Σ+
i . Since Σ ⊂ N is Thurston norm minimizing it follows that

(Mi, γi) is a taut sutured manifold. We can therefore now apply Theorem 4.1

to conclude that (Mi, γi) is a product sutured manifold, i.e. π1(Σ−i )→ π1(Mi)

is an isomorphism. �
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