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Twisted Alexander Invariants Detect Trivial
Links

Stefan Friedl and Stefano Vidussi

Abstract. It follows from earlierwork of Silver andWilliams and the authors that twisted Alexander
polynomials detect the unknot and theHopf link. We now show that twisted Alexander polynomials
also detect the trefoil and the ûgure-8 knot, that twisted Alexander polynomials detect whether a
link is split and that twisted Alexander modules detect trivial links. We use this result to provide
algorithms for detecting whether a link is the unlink, whether it is split, and whether it is totally
split.

1 Introduction and Main Results

An (oriented) m-component link L = L1 ∪ ⋅ ⋅ ⋅ ∪ Lm ⊂ S3 is a collection of m disjoint
smooth oriented closed circles in S3. Given such link L we denote by ϕL the canon-
ical epimorphism π1(S3 ∖ L) → ⟨t⟩, which is given by sending each meridian to t.
Given a representation α∶ π1(S3 ∖ L)→ GL(k,C) we will introduce in Section 2.1 the
corresponding twisted Alexander C[t±1]-module Hα⊗ϕL

1 (S3 ∖ L;C[t±1]k).
_e purpose of this paper is to discuss to what degree the collection of twisted

Alexandermodules detects various types of links. _emodel example is the following.
We can extract information from these modules by looking at their order; in partic-
ular, following Lin [Lin01] andWada [Wa94] we can deûne the one-variable twisted
Alexander polynomial ∆αL ∈ C[t±1]. Silver andWilliams [SW06] proved that the col-
lection of twisted Alexander polynomials detects the trivial knot among 1-component
links, i.e., knots. More precisely, if L ⊂ S3 is a knot, then L is the unknot if and only if
∆αL = 1 for all representations α∶ π1(S3 ∖ L)→ GL(k,C).

We thus see that twistedAlexander polynomials detect the unknot, and in a similar
vein, we showed in [FV07] that twisted Alexander polynomials detect the Hopf link.
It is natural to ask whether twisted Alexander modules characterize other classes of
knots and links. _e purpose of this paper is to discuss a number of cases where the
answer is aõrmative. Wewill now present themain results, referring to the following
sections for the precise statements. Our ûrst result is _eorem 3.1,which signiûcantly
improves upon [FV07,_eorem 1.3] and can be summarized as follows.

_eorem 1.1 Twisted Alexander polynomials detect the trefoil and the ûgure-8 knot.
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_e second result asserts that twisted Alexander modules detect split links (recall
that a link L is split if there exists a 2-sphere S ⊂ S3 such that each component of S3∖S
contains at least one component of L).

In order to state the result we need two more deûnitions. First, we denote by
rk(L, α) the rank of the twisted Alexander module, i.e.,

rk(L, α) ∶= rkC[t±1] H
α⊗ϕL
1 (S3 ∖ L;C[t±1]k) .

Secondly, in this paper we say that a representation α∶ π1(S3 ∖ L) → GL(k,C) is an
almost-permutation representation if given any g the matrix α(g) has precisely one
non-zero value in each row and each column, and each non-zero entry is a root of
unity. We now have the following result.

_eorem 1.2 If a link L is split, then for any representation α∶ π1(S3∖L)→ GL(k,C),
we have rk(L, α) > 0. Conversely, if L is not split, then there exists a representation
α∶ π1(S3 ∖ L) → GL(k,C) with rk(L, α) = 0. Furthermore, the representation can be
assumed to be an almost-permutation representation.

(Amore detailed result, relating rk(L, α) with the splittability of L, is presented in
Section 2.1.)

Note that the condition rk(L, α) > 0 is equivalent to the vanishing of ∆αL . _e
ûrst statement of the theorem thus also asserts that twisted Alexander polynomials
cannot distinguish inequivalent split links; in particular, they fail to characterize the
trivial link with more than one component. However, whenever the twisted Alexan-
der module is not torsion, we can deûne a secondary invariant, deûned as the order
of the torsion part of the twisted Alexander module. More precisely, we consider the
following invariant:

∆̃αL ∶= ordC[t±1](TorC[t±1] H
α⊗ϕL
1 (S3 ∖ L;C[t±1]k)) .

(We refer to Section 2.1 for details.) We can now formulate our thirdmain result.

_eorem 1.3 An m-component link L is trivial if and only if for any almost-permu-
tation representation α∶ π1(S3 ∖ L) → GL(k,C) we have rk(L, α) = k(m − 1) and
∆̃αL = 1.

In order to prove the theorems above we will build on the results of [FV13, FV15],
where we showed that twisted Alexander polynomials determine the_urston norm
and detect the existence of ûbrations for irreducible 3-manifolds with non-empty
toroidal boundary. _ese results in turn rely on the virtual ûbering theorem of Agol
[Ag08] and the work ofWise and Przytycki [Wi09,Wi12a,Wi12b,PW12].

Remark Note that if L is non-split or non-trivial, there exists not only an almost-
permutation presentation π1(S3 ∖ L) → GL(k,C) that has the desired property, but
there also exists a rational representation π1(S3 ∖ L) → GL(k,Q) with the desired
twisted Alexander module. _is is an immediate consequence of the proofs and of
[FV15, Remark 2, p. 2]. We leave the straightforward veriûcation to the reader.
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In Section 5 we will show that the invariants rk(L, α) and ∆̃αL can be computed ef-
ûciently for almost-permutation representations. We will use this result to then show
that_eorems 1.2 and 1.3 give rise to algorithms for detecting split links and for detect-
ing unlinks. We will also indicate how these algorithms can be used for determining
the splitting number of a link as deûned by Batson and Seed [BS15].

We conclude this introduction with some observations tying in the results above
with some group-theoretic aspects. First, the fact that twisted Alexander polynomials
detect the unknot and the Hopf link is perhaps not entirely surprising, as these are
the only links whose fundamental group is abelian. Instead, the fundamental group
of any non-trivial knot is non-abelian, hence detection of the trefoil and the ûgure-8
knot requires far deeper results. Similarly, the unlink is characterized by the fact that
π1(S3 ∖ L) is a free group, but in general it is diõcult to distinguish a non-cyclic free
group fromothernon-abelian groups. (We refer the reader to [AFW15] and references
therein for a survey on 3-manifold groups fromwhich these observations can be easily
deduced.)

Convention Unless speciûed otherwise, all spaces are assumed to be compact and
connected, and links are assumed to be oriented. Furthermore, all groups are assumed
to be ûnitely presented.

2 Preliminaries

2.1 The Definition of Twisted Alexander Modules and Polynomials

In this section we quickly recall the deûnition of the twisted Alexander modules and
polynomials for links, referring to [Tu01,Hi02, FV10] for history, details and general-
izations.

Let L ⊂ S3 be an oriented m-component link. Consider the canonical morphism
ϕL ∶ π1(S3 ∖ L) → Z = ⟨t⟩ sending the meridian of each component to t and let
α∶ π1(S3 ∖ L)→ GL(k,C) be a representation. Using the tensor representation

α ⊗ ϕL ∶ π1(S3 ∖ L)Ð→ GL( k,C[t±1])
g z→ α(g) ⋅ ϕL(g),

we can deûne the homology groups Hα⊗ϕL
∗ (S3∖L;C[t±1]k) of S3∖Lwith coeõcients

in C[t±1]k , which inherit from the system of coeõcients an action of C[t±1] and, as
C[t±1] is a PID, are ûnitely presented as C[t±1]-modules. We refer to thesemodules
as twisted Alexander modules of (L, α).

We now recall that any ûnitely generated C[t±1]-module H can be written as

H = C[t±1]r ⊕
s
⊕
i=1

C[t±1]/p i(t)

with p i(t) /= 0, i = 1, . . . , s. We then refer to rkC[t±1](H) ∶= r as the rank of H and
to ordC[t±1](H) ∶=∏s

i=1 p i(t) as the order of H. Returning to the twisted Alexander
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modules, we now deûne

∆αL , i ∶= ordC[t±1] H
α⊗ϕL
i (S3 ∖ L;C[t±1]k),

∆̃αL , i ∶= ordC[t±1] TorC[t±1] H
α⊗ϕL
i (S3 ∖ L;C[t±1]k),

rk(L, α, i) ∶= rkC[t±1] H
α⊗ϕL
i (S3 ∖ L;C[t±1]k).

We refer to ∆αL , i as the i-th twisted Alexander polynomial of (L, α). Note that ∆αL , i ∈
C[t±1] and ∆̃αL , i ∈ C[t±1] are well deûned up to multiplication by a unit in C[t±1].
_roughout the paper, whenever we have an equation of the form ∆αL , i = f (t) or
∆αL , i = f (t) for some f (t) ∈ C[t±1], this equality is understood up to the indetermi-
nacy of the le�-hand side, i.e., up to multiplication by a unit in C[t±1].

(_roughout this paper we drop the i from the notation when i = 1, and drop α
from the notation if α is the trivial one-dimensional representation over C.)

We conclude this section with an elementary observation. Let α∶ π1(S3 ∖ L) →
GL(k,C) and β∶ π1(S3 ∖ L) → GL(l ,C) be two representations. We can then also
consider the diagonal sum representation α⊕β∶ π1(S3∖L)→ GL(k+ l ,C). It follows
immediately from the deûnitions that

(2.1) ∆α⊕βL , i = ∆αL , i ⋅ ∆
β
L , i .

2.2 Degrees of Twisted Alexander Polynomials and the 0-th Twisted Alexander
Polynomial

We will make use of the following lemma.

Lemma 2.1 Let L ⊂ S3 be a link and let α∶ π1(S3∖L)→ GL(k,C) be a representation.
_en Hα⊗ϕL

0 (S3 ∖ L;C[t±1]k) is C[t±1]-torsion and deg(∆αL ,0) ≤ k.

Proof Recall that if X is a space and γ∶ π1(X)→ Aut(V) a representation, then it is
well known (see, e.g., [HS97, Section VI]) that

(2.2) Hγ
0(X;V) = V/{(γ(g) − idk)v ∣ g ∈ π1(X) and v ∈ V} .

In particular in our case, we pick g ∈ π1(S3 ∖ L) such that ϕL(g) = t. It then follows
from (2.2) and the deûnition of the Alexander polynomial that

∆αL ,0 ∣ det((α ⊗ ϕL)(g) − idk) .
Note that (α ⊗ ϕL)(g) = α(g)t; in particular,

det((α ⊗ ϕL)(g) − idk) = det(α(g)t − idk) = det(α(g)) tk + ⋅ ⋅ ⋅ + (−1)k

is a polynomial of degree k. It now follows that ∆αL ,0 /= 0 and that

deg∆αL ,0 ≤ deg(α(g)t − idk)) = k.

2.3 Almost-permutation Representation

Amatrix in GL(k,C) is called an almost-permutation matrix if in each row and each
column it has precisely one value that is non-zero and if all non-zero entries are roots
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of unity. We then say that a representation α∶ π → GL(k,C) is an almost-permutation
representation if given any g thematrix α(g) is an almost-permutation matrix.

Lemma 2.2 Any almost-permutation representation factors through a ûnite group.

Proof Let α∶ π → GL(k,C) be an almost-permutation representation. We ûrst pick
a ûnite generating set for π. We denote by n the least common multiple of the orders
of the roots of unity that appear as the non-zero entries of α applied to the generating
set. It is straightforward to see that any non-zero entry of any α(g) is now an n-th
root of unity.

Given g ∈ π we denote by β(g) the matrix that is given by replacing all non-zero
entries in α(g) by 1. It is straightforward to see that g ↦ β(g) also deûnes a rep-
resentation with ker(α) ⊂ ker(β). Note that the image of β is a subgroup of the
permutation group Sk .

Summarizing, we have a short exact sequence

1Ð→ K Ð→ π/ker(α)Ð→ π/ker(β)Ð→ 1,

where π/ker(β) is a subgroup of the permutation group Sk andwhereK is a subgroup
of the group of all diagonal k× k-matriceswhose entries are n-th roots of unity. _us,
we see that π/ker(α) is a ûnite group whose order is bounded above by nk ⋅ k!.

2.4 The Thurston Norm, Fibered Classes, and Twisted Alexander Polynomials

Let L ⊂ S3 be an oriented m-component link. Recall that the link L is ûbered if its
complement can be ûbered over S1 by Seifert surfaces of the link. (Note that when
m ≥ 2, this is stronger than the requirement that S3 ∖L admits a ûbration; precisely, it
is equivalent to requiring that the class of H1(S3 ∖ L;Z) determined by the canonical
morphism ϕL ∶ π1(S3 ∖ L)→ ⟨t⟩ is ûbered.)

In the sequel, given a class ϕ ∈ H1(S3 ∖ νL;Z) we denote by ∥ϕ∥T its _urston
norm [_86]. Recall that this is deûned as the minimal complexity of a surface dual
to ϕ; more precisely, it is deûned as

∥ϕ∥T ∶= min{
m

∑
i=1

max{0,−χ(S i)} ∣ S1 ∪ ⋅ ⋅ ⋅ ∪ Sm properly embedded surface
dual to ϕ with S1 , . . . , Sm connected } .

For example, if K is a non-trivial knot and ϕK ∈ H1(S3 ∖ K;Z) is a generator, then

∥ϕK∥T = 2 genus(K) − 1.

For a link we can thus view ∥ϕL∥T as a generalization of the notion of the genus of a
knot.

_e following theorem is a consequence of [FK06,_eorems 1.1 and 1.2, Proposi-
tion 2.5 and Lemma 2.8] (see also [Fr14] for an alternative proof).

_eorem 2.3 Let L ⊂ S3 be an oriented m-component link and let α∶ π1(S3 ∖ L) →
GL(k,C) be a representation such that ∆αL /= 0. _en

(2.3) max{0, deg∆αL − deg∆αL ,0} ≤ k∥ϕL∥T .

Furthermore, if L is a ûbered link, then ∆αL /= 0, and (2.3) is an equality.
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_e above theorem thus says that degrees of twisted Alexander polynomials give
lower bounds on the_urston norm of ∥ϕL∥T and that they determine it for ûbered
links. Using thework of Agol [Ag08], Liu [Liu13], Przytycki–Wise [PW14,PW12], and
Wise [Wi09,Wi12a,Wi12b], the authorsproved in [FV13,_eorem1.1] and [FV15,_e-
orem 5.9] that twisted Alexander polynomials decide the ûberability and determine
the _urston norm of ∥ϕL∥T of a non-split link. Speciûcally we have the following
theorem.

_eorem 2.4 Let L ⊂ S3 be an oriented m-component link that is non-split. _en
there exists an almost-permutation representation α∶ π1(S3 ∖ L)→ GL(k,C) such that
∆αL /= 0 and such that

max{0, deg∆αL − deg∆αL ,0} = k∥ϕL∥T .

Furthermore, if L is not ûbered, there exists an almost-permutation representation

α′∶ π1(S3 ∖ L)Ð→ GL(k,C)

such that ∆α
′

L = 0.

Proof Let L ⊂ S3 be anorientedm-component linkwhich isnon-split. Note that this
assumption implies that S3 ∖ L is irreducible. By [FV15,_eorem 5.9] there exists an
“extended character α” such that for the corresponding twisted Reidemeister torsion
ταL we have deg ταL = k∥ϕL∥T . _e ûrst statement of the theoremnow follows from the
observation that an “extended character” is an almost-permutation matrix and the
discussion in [FV10, Section 3.3.1] relating twisted Reidemeister torsions to twisted
Alexander polynomials. _e second statement follows immediately from [FV13,_e-
orem 1.1], and the observation that a representation α′∶ π1(S3 ∖ L) → GL(k,C) in-
duced by a homomorphism π1(S3 ∖ L) → G to a group with ∣G∣ = k is in fact an
almost-permutation matrix.

_is theoremhas the following corollary,whose secondpart reûnesoneof themain
theorems of [FV07] inasmuch as it asserts the suõciency of the use of one-variable
twisted Alexander polynomials.

Corollary 2.5 (i) Let K ⊂ S3 be a knot. If K is trivial, then for any representa-
tion α∶ π1(S3 ∖ K) → GL(k,C) we have ∆αK = 1. Conversely, if K is non-trivial, then
there exists an almost-permutation representation α∶ π1(S3 ∖K)→ GL(k,C) such that
∆αK /= 1.

(ii) Let L ⊂ S3 be a 2-component link. If L is the Hopf link, then for any representa-
tion α∶ π1(S3 ∖ L)→ GL(k,C), we have

ταL ∶= ∆αL(∆αL ,0)−1 = 1.

Conversely, if L is not the Hopf link, then there exists an almost permutation represen-
tation α∶ π1(S3 ∖ L)→ GL(k,C) such that ταL /= 1.

_e reader may have noticed that the invariant ταL introduced in the statement of
the corollary is, in fact, the twisted Reidemeister torsion; see e.g., [FV10, Section 3.3.1]
for a discussion of this point of view.
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Proof Let K ⊂ S3 be a knot. If K is trivial, then all ûrst twisted homology modules
are zero, hence all twisted Alexander polynomials are equal to 1. Conversely, if K is
non-trivial, then the genus is greater than zero, and it then follows immediately from
_eorem 2.4 that there exists an almost-permutation representationwith correspond-
ing non-constant twisted Alexander polynomial.

Now let L ⊂ S3 be a 2-component link. _en it is well known that the following
are equivalent:
(a) L is theHopf link;
(b) S3 ∖ L ≅ T2 × I;
(c) L is ûbered with ∥ϕL∥T = 0.
It follows easily from the implication (a)⇒ (b) that the twisted Alexander modules of
theHopf link are the homology groups of the inûnite cyclic cover of T2×I determined
by ϕL , i.e., homotopically a copy of S1. Given any representation α∶ π1(S3 ∖ L) →
GL(k,C) it follows that ταL = 1 (we refer to [KL99, p. 644] for details). Now suppose
that L is not theHopf link. _en ϕL is either not ûbered or ∥ϕL∥T > 0. It follows from
_eorem 2.4 that there exists an almost-permutation representation α∶ π1(S3 ∖ L) →
GL(k,C) such that either ∆αL = 0 or deg(∆αL)−deg(∆αL ,0) > 0. Eitherway, ταL /= 1.

3 Proofs of the Main Results

3.1 Twisted Alexander Polynomials Detect the Trefoil and the Figure-8 Knot

_e following theorem is the promisedmore precise version of_eorem 1.1.

_eorem 3.1 Let K be a knot. _en K is equivalent to the trefoil knot (resp. ûgure-8
knot) if and only if the following conditions hold:
(i) ∆K = 1 − t + t2 (resp. ∆K = 1 − 3t + t2)
(ii) for any almost permutation representation α∶ π1(S3 ∖ K)→ GL(k,C), we have

∆αK /= 0 and deg∆αK ≤ 2k.

Proof Let K be the trefoil knot or the ûgure-8 knot. It is well known that in the
former case, ∆K = 1 − t + t2 and that in the latter case, ∆K = 1 − 3t + t2. Note that in
either case K is a ûbered genus one knot. It now follows from _eorem 2.4 that for
any almost-permutation representation α∶ π1(S3 ∖ K) → GL(k,C), we have ∆αK /= 0
and that

deg∆αK − deg∆αK ,0 = k(2 genus(K) − 1) = k.

We deduce from Lemma 2.1 that deg∆αK ,0 ≤ k. We thus obtain the desired inequality

deg∆αK ≤ 2k.

_is concludes the proof of the “only if ” direction of the theorem.
Now suppose that K is a knot such that for any almost-permutation representation

α∶ π1(S3 ∖ K)→ GL(k,C) we have

∆αK /= 0 and deg∆αK ≤ 2k.
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It follows from_eorem 2.4 that K is ûbered and that the genus ofK equals one. From
[BZ85,Proposition 5.14]we deduce thatK is equivalent to either the trefoil knot or the
ûgure-8 knot. _e ‘if ’ direction of the theorem now follows from the fact mentioned
above that the ordinaryAlexander polynomial distinguishes the trefoil knot from the
ûgure-8 knot.

3.2 Split Links

We say that a link L is s-splittable if there exist s disjoint 3-balls B1 , . . . , Bs ⊂ S3 such
that each B i contains at least one component of L and such that S3 ∖ (B1 ∪ ⋅ ⋅ ⋅ ∪ Bs)
also contains a component of L. Furthermore,we say that L is s-split if L is s-splittable
but not (s + 1)-splittable.

_eorem 1.2 is a consequence of the following result.

_eorem 3.2 Let L ⊂ S3 be an oriented m-component link. _en the following hold:
(i) If L is s-splittable, then for any representation α∶ π1(S3 ∖ L)→ GL(k,C) we have

rk(L, α) ≥ sk.

(ii) If L is s-split, then there exists an almost-permutation representation

α∶ π1(S3 ∖ L)→ GL(k,C)
such that rk(L, α) = sk.

Proof As usual, denote by ϕL ∶ π1(S3∖L)→ ⟨t⟩ themap that is given by sending each
meridian to t. By slight abuse of notation, we will also denote by ϕL the restriction of
ϕL to any subset of S3 ∖ L.

Suppose that L ⊂ S3 is an s-splittable link. We pick disjoint 3-balls B1 , . . . , Bs ⊂
S3 such that each B i contains at least one component of L and such that
B0 ∶= S3 ∖ (B1 ∪ ⋅ ⋅ ⋅ ∪ Bs) also contains a component of L. For i = 1, . . . , s we write
S i ∶= ∂B i and for i = 0, . . . , s we write L i ∶= L ∩ B i . By assumption, L i is non-empty
for any i.

Now let α∶ π1(S3 ∖ L)→ GL(k,C) be a representation. We consider the following
Mayer–Vietoris sequence

s
⊕
i=1

H1(S i ;C[t±1]k)Ð→
s
⊕
i=0

H1(B i ∖ L i ;C[t±1]k)Ð→ H1(S3 ∖ L;C[t±1]k)Ð→

s
⊕
i=1

H0(S i ;C[t±1]k)Ð→
s
⊕
i=0

H0(B i ∖ L i ;C[t±1]k)Ð→ ⋅ ⋅ ⋅

where the representation is given by α ⊗ ϕL in each case. Note that the restriction
of α ⊗ ϕL to π1(S i), i = 1, . . . , s is necessarily trivial, but that the restriction of ϕL to
π1(B i ∖ L i), i = 0, . . . , s is non-trivial, since L i consists of at least one component.
It follows immediately from the deûnition of homology with coeõcients that for i =
1, . . . , s, we have H0(S i ;C[t±1]k) ≅ C[t±1]k and H1(S i ;C[t±1]k) ≅ 0.
Finally, note that for i = 0, . . . , s and j = 0, 1 we have inclusion induced isomor-

phisms
H j(B i ∖ L i ;C[t±1]k) ≅Ð→ H j(S3 ∖ L i ;C[t±1]k) .
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_is entails, by Lemma 2.1 that for i = 0, . . . , s themodules H0(B i ∖ L i ;C[t±1]k) are
torsion C[t±1]-modules. We thus see that the above Mayer-Vietoris sequence gives
rise to an exact sequence

(3.1) 0Ð→
s
⊕
i=0

H1(S3 ∖ L i ;C[t±1]k)Ð→ H1(S3 ∖ L;C[t±1]k)Ð→ C[t±1]ks Ð→ T

where T is a torsion C[t±1]-module. In particular we now deduce that

rk(L, α) = rkC[t±1](H1(S3 ∖ L;C[t±1]k)) ≥ rkC[t±1]C[t±1]ks = ks.

_is concludes the proof of (i).
We now suppose that L is in fact an s-split link. Note that we have a canonical

homeomorphism
S3 ∖ L ≅ S3 ∖ L0# ⋅ ⋅ ⋅ #S3 ∖ Ls .

_e links L i ⊂ S3, i = 0, . . . , s, are non-split by deûnition of an s-split link. It follows
from _eorem 2.4 that for i = 0, . . . , s there exists an almost-permutation representa-
tion α i ∶ π1(S3∖L i)→ GL(k i ,C) such that ∆α i

L i
/= 0. We now denote by k the greatest

common divisor of the k i . A�er replacing α i by the diagonal sum of k/k i-copies of
the representation α i we can in light of (2.1) assume that, in fact, k = k i , i = 0, . . . , s.
We now denote by

α∶ π1(S3 ∖ L)Ð→ GL(k,C)
the unique representationwhich has the property that for i = 0, . . . , s the restriction of
α to π1(B i ∖L i) agreeswith the restriction of α i to π1(B i ∖L i). Note that α is again an
almost-permutation representation. By the above, the modules H1(S3 ∖ L;C[t±1]k)
are C[t±1]-torsion modules. It now follows from (3.1) that

rk(L, α) = rkC[t±1](H1(S3 ∖ L;C[t±1]k)) = rkC[t±1]C[t±1]ks = ks.

_is concludes the proof of (ii).

3.3 Detecting Unlinks

We ûnally turn to the problemof detecting unlinks. _e followingwell-known lemma
gives a purely group-theoretic characterization of unlinks.

Lemma 3.3 A link L is trivial if and only if π1(S3 ∖ L) is a free group.

Proof _e “only if ” direction is obvious. So suppose that L = L1 ∪ ⋅ ⋅ ⋅ ∪ Lm is an
m-component link such that π1(S3 ∖ L) is a free group. We have to show that each L i
bounds a disk in the complement of the other components. We denote by Ti the torus
that is the boundary of a tubular neighborhood around L i . It is well known that the
kernel ofH1(Ti)→ H1(S3∖L) is spanned by the longitude λ i of L i . Since π1(S3∖L) is
a free group and since every abelian subgroup of a free group is cyclic, it now follows
easily that the longitude also lies in the kernel of π1(Ti) → π1(S3 ∖ L). By Dehn’s
lemma (see [He76, Chapter 4]), longitude bounds an embedded disk in S3 ∖ L.

Note that if a ûnitely presented group is free, then one can show this using Tietze
moves. On the other hand, there is, in general, no algorithm for showing that a ûnitely
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presented group is not a free group. Our main theorem now gives, in particular, an
algorithm for showing that a given link group is not free.

_eorem 3.4 An m-component link L is the trivial link if and only if for any almost-
permutation representation α∶ π1(S3 ∖ L) → GL(k,C), we have rk(L, α) = k(m − 1)
and ∆̃αL = 1.

Proof _e proof of the “only if ” statement is very similar to the proof of _eo-
rem 3.2(i). In fact it follows easily from (3.1) that for the m-component trivial link
L and a representation α∶ π1(S3 ∖ L) → GL(k,C), we have H1(S3 ∖ L;C[t±1]k) ≅
C[t±1]k(m−1). In particular, rk(L, α) = k(m − 1) and ∆̃αL = 1.

We now suppose that L = L0∪⋅ ⋅ ⋅∪Lm−1 is anm-component link such that for every
almost-permutation representation α∶ π1(S3 ∖ L) → GL(k,C) we have rk(L, α) =
k(m − 1). It follows immediately from _eorem 3.2(ii) that L is an (m − 1)-split link.
We can therefore pick disjoint 3-balls B1 , . . . , Bm−1 ⊂ S3 such that each B i contains a
component of L and such that B0 ∶= S3∖(B1∪⋅ ⋅ ⋅∪Bs) also contains a component of L.
Without loss of generality,we can assume that for i = 0, . . . ,m−1we have L i = L∩B i .
For i = 1, . . . ,m − 1 we furthermore write S i ∶= ∂B i .

It remains to show that if one of the components L i is not the unknot, then there
exists an almost-permutation representation α∶ π1(S3 ∖ L) → GL(k,C) with ∆̃αL /= 1.
Sowe now suppose that L0 is not the unknot. It follows from _eorem 2.4 and Corol-
lary 2.5 that for i = 0, . . . ,m − 1 there exists an almost-permutation representation
α i ∶ π1(S3 ∖ L i) → GL(k i ,C) such that ∆α i

S3∖L i
/= 0 and such that ∆α0S3∖L0

is not a
constant. As in the proof of _eorem 3.2, we can assume that k ∶= k0 = ⋅ ⋅ ⋅ = km−1.
We then denote by

α∶ π1(S3 ∖ L)→ GL(k,C)

the unique representation that has the property that for i = 0, . . . ,m−1 the restriction
of α to π1(B i ∖L i) agreeswith the restriction of α i to π1(B i ∖L i). Note that α is again
an almost-permutation representation.

It now follows from (3.1) that

TorC[t±1](H1(S3 ∖ L;C[t±1]k)) ≅ TorC[t±1](
m−1
⊕
i=0

H1(S3 ∖ L i ;C[t±1]k)) .

We now conclude that

∆̃αL = ordC[t±1](TorC[t±1](H1(S3 ∖ L;C[t±1]k)))

= ordC[t±1](TorC[t±1](
m−1
⊕
i=0

H1(S3 ∖ L i ;C[t±1]k)))

=
m−1

∏
i=0

ordC[t±1](TorC[t±1](H1(S3 ∖ L i ;C[t±1]k)))
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=
m−1

∏
i=0

ordC[t±1](H1(S3 ∖ L i ;C[t±1]k))

=
m−1

∏
i=0

∆αL i =
m−1

∏
i=0

∆α i
L i
.

But this is not a constant, since ∆α0L0
is not a constant.

4 Extending the Results

Let L be an s-split. We pick disjoint 3-balls B1 , . . . , Bs ⊂ S3 such that each B i contains
a component of L and such that B0 ∶= S3 ∖ (B1 ∪ ⋅ ⋅ ⋅ ∪ Bs) also contains a component
of L. For i = 0, . . . , s we write L i ∶= L ∩ B i . We then view L0 , . . . , Ls as links in
S3. _ese links are called the split-components of L. It is well known that the set of
split-components iswell deûned and does not depend on the choice of the B1 , . . . , Bs .
As a consequence of the proofs of Corollary 2.5, _eorems 1.3 and 3.1, it is rather

straightforward to see that twistedAlexandermodules determine any s-split link such
that each of the split-components is either the unknot, the trefoil, the ûgure-8 knot or
theHopf link.

_is result now begs the following question.

Question 4.1 Are there any other links that are determined by twisted Alexander
modules?

In fact, we propose the following conjecture.

Conjecture 4.2 Any torus knot is detected by twisted Alexander polynomials.

Note that torus knots are ûbered and that twisted Alexander polynomials detect
ûbered knots. It thus remains to detect torus knots among the class of ûbered knots.
A positive answer to [Ko12,Question 7.1]would come close to proving the conjecture.

5 An Algorithm for Detecting Unlinks and Split Links

In this section we will ûrst outline how the invariants ∆̃αL , i and rk(L, α, i) for i = 0, 1
can be calculated eõciently for almost-permutation representations of link groups.
We will then show that _eorems 3.4 and 3.2 give rise to algorithms for detecting
whether a given link is the unlink or a split link. Finally we outline some applications
for determining the unlinking and the splitting number of a link.

5.1 Computing the Invariants for Almost-permutation Representations

Let L be a link and let α∶ π ∶= π1(S3 ∖ L) → GL(k,C) be an almost-permutation
representation. We denote by ϕ∶ π → Z the canonical epimorphism sending each
meridian to 1. In the proof of Lemma 2.2 we saw that there exists an n such that α
takes values in GL(k,F) with F = Q(e2πi/n). Note thatC[t±1] is �at over F[t±1]; i.e.,
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we have a canonical isomorphism

Hα⊗ϕ
i (S3 ∖ L;C[t±1]k) ≅ Hα⊗ϕ

i (S3 ∖ L;F[t±1]k) ⊗F[t±1] C[t±1]
of C[t±1]-modules. It thus follows that

∆̃αL , i = ordF[t±1] TorF[t±1] H
α⊗ϕ
i (S3 ∖ L;F[t±1]k),

rk(L, α, i) = rkF[t±1] H
α⊗ϕ
i (S3 ∖ L;F[t±1]k).

Let ⟨g1 , . . . , gm ∣ r1 , . . . , rn⟩ be a presentation for π. A�er possibly adding trivial
relators we can and will assume that n ≥ m − 1. We denote by X the corresponding 2-
complex with one 0-cell, k 1-cells, and n 2-cells a,nd we identify π1(X) with π. In the
following we extend the tensor representation α ⊗ ϕ∶ π = π1(X) → GL(k,F[t±1]) to
a representation Z[π]→ M(k,F[t±1]), whichwe also denote by α⊗ϕ. Furthermore,
given an r × s-matrix A over Z[π] we denote by (α ⊗ ϕ)(A) the rk × sk-matrix over
F[t±1] which is given b,y applying α ⊗ ϕ to each entry of A. For i = 1, . . . ,m we now
denote by

∂
∂i
∶Z[π]Ð→ Z[π]

the i-th Fox derivative (where we follow the convention of [Ha05, Section 6]). _e
twisted chain complex X with coeõcients provided by α ⊗ ϕ is then isomorphic to
the chain complex

(5.1) 0→ F[t±1]nk
(α⊗ϕ)( ∂rh

∂gi
)

ÐÐÐÐÐÐ→ F[t±1]mk (α⊗ϕ)(1−g j)ÐÐÐÐÐÐ→ F[t±1]k → 0,

where h = 1, . . . , n, i = 1, . . . ,m and j = 1, . . . ,m. In the sequel we refer to the bound-
ary matrix on the le� as B1 and to the boundary matrix on the right as B0. It is well
known that twisted homology modules in dimensions 0 and 1 only depend on the
fundamental group. We can thus use the chain complex (5.1) to calculate ∆̃αL , i , i = 0, 1
and rk(L, α, 1).

Since F[t±1] is a PID we can appeal to standard algorithms to ûnd a matrix P1 ∈
GL(mk,F[t±1]) such that

B0P1 = (0 A0) ,
where A0 is a k × k-matrix. It follows from the theory ofmodules over PIDs that

∆αL ,0 = det(A0).
Note that by Lemma 2.1 we have det(A0) /= 0. Also note that the fact that

(B0P1)(P−1
1 B1) = B0B1 = 0

implies that the last k row of P−1
1 B1 are zero. Again, using standard algorithms over a

PID we can ûnd amatrix P2 ∈ GL(nk,F[t±1]) such that

P−1
1 B1P2 = (A1 0

0 0) ,

where A1 is a diagonal (m − 1)k × (m − 1)k-matrix over F[t±1] with diagonal entries
d1 , . . . , d(m−1)k . It then follows from the deûnitions that

∆̃αL ,1 = ∏
d i /=0

d i and rk(L, α, 1) = #{i ∣ d i = 0}.
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Finally, we point out that since F is a ûnite extension ofQ, all these base changes can
be performed by a computer without diõculty.

5.2 The Algorithms

_eorem 5.1 _ere exists an algorithm that takes as input a diagram for a link in S3

and decides a�er ûnitely many steps whether L is the unlink or not.

Note that there are various other ways of detecting the unlink. For example, Ozs-
váth and Szabó [OS08] showed that Link Floer Homology detects the unlink, and
the combinatorial description of Link Floer Homology in [MOST07] then gives an
algorithm for detecting the unlink.

In a similar vein,Hedden–Ni [HN13,_eorem 1.3] showed that an m-component
link is the unlink if and only if the Khovanov module is isomorphic to

F2[x0 , . . . , xm−1]/(x2
0 , . . . , x

2
m−1).

In general, at least it is diõcult though to checkwhether or not two F2[x0 , . . . , xm−1]-
modules are isomorphic.

Proof Let L = L1 ∪ ⋅ ⋅ ⋅ ∪ Lm ⊂ S3 be a link. We start out with a few observations.
(i) If L is the unlink, then it follows fromReidemeister’s theorem that any diagram

of L can be turned into the standard diagram of the unlink, using a ûnite sequence of
Reidemeister moves.

(ii) If L is the unlink, then it follows from _eorem 3.4 that given any almost-
permutation representation α∶ π1(S3 ∖ L) → GL(k,C), we have rk(L, α) = m(k − 1)
and ∆̃αL /= 1.

(iii) If L is not the unlink, then it follows from _eorem 3.4 that there exists
an almost-permutation representation α∶ π1(S3 ∖ L) → GL(k,C) such that either
rk(L, α) /= m(k − 1) or ∆̃αL /= 1.
_e algorithm consists of two programs running simultaneously.
(a) _e ûrst program goes systematically over all ûnite sequences of Reidemeister

moves applied to the given diagram. We terminate this program once it turns
the given diagram of L into the standard diagram of the unlink. By the above
discussion this program will terminate a�er ûnitely many steps if L is the split
link.

(b) _e second program ûrst determines aWirtinger presentation

⟨g1 , . . . , gk ∣ r1 , . . . , r l ⟩

for π1(S3 ∖ L) from the given link diagram. _e program then systematically
goes through all almost-permutation representations of π1(S3 ∖ L). _is can be
done by going through all assignments of almost-permutation matrices to the g i
and verifying that the relations hold. As we discussed in Section 5.1, it is possi-
ble to calculate rk(L, α) /= m(k − 1) and ∆̃αL /= 1 for any such representation α.
We terminate the program once we ûnd an almost-permutation representation
α∶ π1(S3 ∖ L) → GL(k,C) such that either rk(L, α) /= m(k − 1) or ∆̃αL /= 1. It
follows from the above discussion that this program will terminate only if L is
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the unlink, and it will terminate a�er ûnitely many steps if the link is not the
unlink.

We also have the following theorem.

_eorem 5.2 _ere exists an algorithm that takes as input a link in S3 and decides
a�er ûnitely many steps whether L is split or not.

Proof _e proof is very similar to the proof of _eorem 5.1. We thus only outline
the changes one has to make in the proof. So let L = L1 ∪ ⋅ ⋅ ⋅ ∪ Lm ⊂ S3 be a link. We
again start out with three observations.

(i) If L is a split link, then it follows fromReidemeister’s theorem that any diagram
of L can be turned into a split diagram, using a ûnite sequence ofReidemeistermoves.
Here we say that a diagram for the link L is split if it is contained in two disjoint disks
such that each disks contains a non-empty diagram.

(ii) If L is a split link, then L is 1-splittable. It follows from _eorem 3.2 that
given any almost-permutation representation α∶ π1(S3 ∖ L) → GL(k,C), we have
rk(L, α) > 0.

(iii) If L is not a split link, then L is 0-split. It follows from _eorem 3.2 that
there exists an almost-permutation representation α∶ π1(S3 ∖ L) → GL(k,C) such
that rk(L, α) = 0.
As in the proof of_eorem 5.1we now run two programs,with obviousmodiûcations,
one of which will terminate a�er ûnitely many steps precisely if L is a split link, and
the other will terminate a�er ûnitely many steps precisely if L is not a split link.

We now say that an m-component link L = L1 ∪ ⋅ ⋅ ⋅ ∪ Lm ⊂ S3 is totally split if it is
(m − 1)-split, i.e., if it is the split union of its components. An obvious modiûcation
of the proof of_eorem 5.2 now gives us the following result.

_eorem 5.3 _ere exists an algorithm taking as input a link in S3 and decides a�er
ûnitely many steps whether L is totally split or not.

With our present understanding of representations of link groups it is impossible
to give a rigorous estimate for how eõcient these algorithms are. But from our expe-
rience (see, e.g., [FK06, DFJ12]), in practice, twisted Alexander polynomials tend to
be extremely eõcient at detecting ûberedness and the _urston norm. We are thus
quite conûdent that twisted Alexander polynomials andmodules are very eõcient at
showing that a non-trivial link is indeed non-trivial and at showing that a non-split
link is indeed non-split.

5.3 The Splitting Number

In a recent paper Batson–Seed [BS15] deûned the splitting number sp(L) of a link L
to be theminimal number of crossing changes between diòerent components that are
needed to turn L into a totally split link. (Note that this diòers from the notion of
“splitting number” used in [Ad96, Sh12] where crossing changes between the same
component are allowed.)
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_e splitting number of a link is usually determined by ûnding upper and lower
bounds on the splitting number. _e upper bounds are obtained by performing cross-
ing changes until one obtains a totally split link. _is makes it necessary to have an
eõcient algorithm for detecting whether or not a given link is totally split.

_e lower bounds on the splitting number usually come from invariants, e.g.,Kho-
vanov homology [BS15], linking numbers of covering links and Alexander polynomi-
als in [CFP13]. We now quickly recall a further lower bound on the splitting number
which was introduced in [CFP13] and which turns out to be very eõcient for many
links.
A sublink of a link is called obstructive if it is not totally split and if all the linking

numbers are zero. Given a link L we then deûne c(L) to be the maximal size of a
collection of distinct obstructive sublinks of L, such that any two sublinks in the col-
lection have at most one component in common. In [CFP13, Lemma 2.1] it is shown
that for any link L = L1 ∪ ⋅ ⋅ ⋅ ∪ Λm we have

(5.2) sp(L) ≥∑
i> j

∣ lk(L i , L j)∣ + 2c(L).

For example, consider the link L = L1 ∪ L2 ∪ L3 shown in the ûgure. _e sublinks
L1 ∪ L2 and L2 ∪ L3 are non-split links, which can be seen by the observation that
their Alexander polynomials are non-zero. Since L1 ∪ L3 is a split link it now follows
that c(L) = 2. It thus follows from (5.2) that sp(L) ≥ 4. In order to apply the inequality

L2

L3
L1

(5.2), one once again needs an eõcient algorithm for determining whether or not a
given link is totally split.
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