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Abstract: 1 compute the rational cohomology ring of the physical configuration space of gauge theories with
structure group SU(3) over a simply connected four-manifold. The consequences of this computation are
analyzed, in relation with gauge anomalies of the Dirac operator coupled with gauge field and with possible
definition of SU (3)-polynomial invariants for smooth manifolds.

Keywords: Anomalies, gauge theories.

MS classification: 55T10, 81T50; 55R20.

1. Introduction

In this letter I want to discuss the (rational) cohomological structure of the orbit space of
Yang—Mills theory over a simply-connected four-manifold M with the structure group SU (3).
As is well known this orbit space By, is mathematically defined as the quotient of the space of
connections of a principal SU (3)-bundle over M modulo gauge transformations, i.e., vertical
automorphisms of the bundle. The knowledge of the cohomology ring of the orbit space, and
in particular of the second cohomology group, allows us to make some remarks in the study of
two interesting problems, coming respectively from quantum field theory and from differential
topology of four-manifolds.

First of all, the presence of the so called gauge anomalies in quantum field theories is directly
related with the nonvanishing of the second cohomology group, which witnesses the presence of
a nontrivial line bundle over B whose sections represent the regularized determinant of Dirac
operator coupled with Yang—-Mills field: when these sections have zeroes, the usual perturbative
treatment of the quantum theory gives up, presenting “an anomaly”. The general knowledge of the
generators of the second cohomology group allows a complete treatment of the problem, at least
at the topological level, for all simply connected four-manifolds. In particular I shall prove that,
when we consider a general four-manifold, there are no significant differences, for what concerns
anomalies of the Dirac operator, with the S* case.

The second problem is related with the definition of Donaldson polynomial invariants for
smooth four-manifolds. These invariants, roughly speaking, are defined via a pairing of moduli
spaces of SU (2) anti-self-dual connections with polynomials in the second homology group of
the four-manifold, suitably interpreted as polynomials in the second cohomology group of SU (2)
gauge orbit space. Donaldson asks whether the generalization of the structure group to SU (n),
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n > 2, could give some significative upgrading of the results. In the last paragraph I will briefly
comment on this.

2. Notation and preliminaries

In this paper I shall consider an SU (3)-principal bundle P over a simply connected four-
manifold M. The space of connections A over this bundle is an affine space modeled over
Q'(M, ad P). The physical configuration space appears as a quotient of A modulo the actions of
vertical automorphisms group G of the bundle. To render the quotient a smooth Banach space the
standard procedure is to complete the aforementioned spaces in a suitable Sobolev norm and to
pick those vertical automorphisms which send a given point of M (the “point at infinity”) to the
identity of SU (3). With this procedure the quotient space By is a smooth Banach manifold. This
orbit space has weakly the homotopy type of Map®(M, BSU (3)), base point preserving maps
from M to the classifying space of SU(3) (see ref. [1]). Now, for a general simply connected
four-manifold whose intersection form has rank r, standard homotopical classification (see ref.
[2]) implies that up to homotopy equivalence there’s a cofibration

Vis2es M — §*

which, under the application of the functor Mapo( -, BSU (3)), induces the following fibration of
orbit spaces:

Bsd —> 'BM e nq 9352.

With this fibration in mind it is possible to compute the cohomology ring of B, once the coho-
mology ring of the base and the fibre is known. Our task is then to exhibit these two cohomology
rings, which appear as the cohomology rings of [T} QSU (3) and of Q35U (3).

The Poincare series of By has been computed, with different techniques and with structure
group U (n), in ref. [3].

3. Calculation

The technique involved in this calculation is basically that of Leray-Serre spectral sequence
for fibrations, applied to the fibration

QX —> PX — X

where X is a manifold and P X is the contractible space of loops over X starting from a fixed
base point. This fibration, for simply connected X, gives rise to a spectral sequence with EJ'? =
HP(X,Q) @ HY(QX,Q) and EZY = Q for p = g = 0 and zero otherwise. We shall apply
this to compute subsequently the cohomology of QSU (3) , Q2SU (3) and then, with a little trick,
Q3SU (3). We will prove the following

Lemma. H*(Q2SU(3)) is a polynomial ring generated by two elements of degree 2 and degree
4; H*(Q>SU (3)) is a polynomial ring generated by an element of degree 2.



The input for the proof of this lemma resides in the structure of the cohomology ring for
SU(3); this group has the same cohomology ring of S x $3, as could be easily proven via, e.g.,
the fibration SU (2) < SU(3) — S°. Thus the Oth row of the E; term of the spectral sequence
associated to the path fibration

Cohomology of SU(3)

QSUQ3) — PSU@B) — SU(3)

appears as

H?”(SU@3))=1,0,0,x3,0,x5,0,0, x3 - x5,0

where I have denoted by x3 and x5 the generators of the respective cohomology groups. (Note: I
will frequently switch in the notation from cohomology groups to their generators).
As we require all elements of the spectral sequence to be killed (with the trivial exception

of ES‘O) it is easy to verify that H*(2SU (3)) is a polynomial ring generated by two elements y,

and y, such that d3(y2) = x3 and ds(y4) = xs, as the full E, term shows:

Iterating the previous procedure for the path fibration

QXSU@3) — PQSU@3) — QSU((3)

we obtain, from a careful study of the E, term of the spectral sequence, the result that the
cohomology ring of Q2SU (3) is an exterior algebra generated by two elements of degree 1 and 3,

as the figure shows:
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(as usual the Oth column represents the cohomology group of the fibre).
It is not possible now to apply directly the spectral sequence technique to the path fibration

QLSUQB) — PQISUB) — Q2SUB)

as the base space is not simply connected: but the difficulty is mild and can be solved, following
the trick of ref. [1], passing to the universal covering of the base space, whose cohomology ring
is an exterior algebra generated by an element of degree 3 (the element of degree 1, cause of the
non simply connectedness, is killed by the covering procedure—the case is perfectly analogous
to the covering S> x R — §° x S') and interpreting the kth component of Q3SU (3) as the
paths starting from the base point in Q2SU (3) and ending at the kth translate. With this trick the
cohomology ring of (235U (3))« appears immediately as a polynomial ring in one generator of
degree 2.

The consequence of the lemma is that we can compute the cohomology ring of the orbit space
for the simply connected M in the light of the fibration of orbit spaces which, up to homotopy
equivalence, appears as

Q38U (3) — By — [11 QSUQ).

From the form of the E, term, which contains nonzero elements only in all entries of type
(2n, 2m), is immediate to verify that the spectral sequence associated to this fibration degenerates
at £, = E,, as all derivations must be zero.

This proves the main aim:

Proposition. The cohomology ring of the orbit space is a polynomial ring generated by r + 1
forms of degree 2 and r forms of degree 4.

4. Anomalies

My aim is now to discuss the result trying to identify the geometrical and physical meaning of
the generators of the cohomology ring: first of all I will relate the result with the a priori study of
gauge anomalies. Basically these anomalies appear when we consider a spin four-manifold and
try to define a regularized determinant of the Dirac operator g4 which maps spinors (i.e., sections
of a spin bundle over M) of opposite chiralities. The natural treatment of this problems consists
in considering the determinant as a section of the determinant bundle of the index bundle of the
Dirac operator over the gauge orbit space. When this determinant bundle is not trivial (i.e., the first
Chern character of the index bundle, computed via Atiyah-Singer theorem, does not vanish), every
section has zeroes and the quantization procedure, which requires the definition of the logarithm of
det @4, fails. To obtain a similar case it is thus necessary, a priori, that H 2(B ., Q) does not vanish,
otherwise all line bundles would be trivial. It is apparent from my construction how H2(B, Q) is
related to H2(Bg+, Q): this witnesses the fact that the determinant index bundle over B gs—which
generates, as proven in ref. [4], H2(Bs:, Q)—enters in play for a general M giving a generator of
degree 2 (which is not present in the case of SU (2)-principal bundles; this is related to the fact that
for SU (2) there are not standard anomalies but only global ones, which being torsion terms are
invisible for a rational cohomology ring). Moreover it is apparent from the construction that the
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topological nature of the gauge anomaly is related with the 4-cell composing the four-manifold.
Note that our procedure can be easily extended to a general structure group of the kind SU (m),
which cohomologically appears as S° x $5 x ... x $§2"~1: it is an easy (but lengthy) exercise
to generalize the previous proposition at least for SU (m) gauge theories over (n — 1)-connected
2n-manifolds. On the same vein, the results can be obtained by computing the rational homotopy
type of the orbit space, but at the price of losing somehow the clearness of the relation with the
S* case.

5. Conclusions

In this paper I have shown how the gauge anomaly, which is usually studied, in physical
literature, for gauge theories over S*, appears for general simply connected four-manifold. The
presence of other nontrivial line bundles over the orbit space suggests the presence of other
observables, whose definition is affected of anomaly when we consider a four-manifold different
from S*: it might be tempting to understand if these new anomalies could be of physical relevance.
The result I have obtained might be of some interest also in the construction of smooth invariants
of the type defined by Donaldson. It is easily recognizable that the » “horizontal” generators of
degree 2 are of the same origin of those of the SU(2) case, i.e., images under slant product,
evaluated on the homology generators of M, of the second chern class of the universal bundle
over By x M; similarly the generators of degree 4 appear as images under slant product of
the third chern class of the same bundle. Instead the anomaly generator has not such an origin,
as its presence is explained in terms of the four dimensional cell. The possibility of defining
new polynomial invariants, which is suggested by these results, faces up immediately with the
analytical difficulties involved in the study of SU (3) moduli spaces.
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