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Smooth Structure of Some Symplectic Surfaces

Stefano Viduss i

1. Introduction

McMullen and Taubes [MT] have constructed a remarkable simply connected
smooth 4-manifold, denoted byX, starting from a 4-component linkK ⊂ S3 and
four copies of the rational elliptic surfaceE(1). The interest in the linkK stems
from the fact that it admits several inequivalent fibrations overS1; these inequiva-
lent fibrations give rise to two inequivalent symplectic structures onX, providing
the first simply connected example of manifold with this property. The ingredients
in the construction of [MT] are reminiscent of those used by Fintushel and Stern
in defining a large class of smooth 4-manifolds, and it is natural to ask how these
constructions are related. In this note we will compare the link surgery construc-
tion of [FS] and the McMullen–Taubes example in order to prove that the latter
manifold is diffeomorphic to a Fintushel–Stern manifold. This analysis (further
developed in [V]) will lead us to introduce a new presentation ofX that allows
us to identify a new symplectic structure onX. We will assume some familiarity
with [FS] and [MT].

2. Construction of the 4-Manifolds

We start by recalling the link surgery construction of [FS], omitting (for the sake
of brevity) full generality. Consider ann-component oriented linkK ⊂ S3. Let
pi = −∑j 6=i lk(Ki,Kj ). The closed manifoldMK obtained by performingpi-
surgery on theith component has the property that the imagemi of each meridian
µ(Ki) has infinite order inH1(MK,Z) and is canonically framed; inS1×MK, the
tori S1×mi have self-intersection zero and are framed and essential in homology.
Next taken copies of the simply connected elliptic surface without multiple fibers
E(m), each containing an elliptic fiberFi, and construct, by normal connected
sum, the manifold

E(m)K =
∐

E(m)i#Fi=S1×miS
1×MK. (1)

The gluing is made so as to send the homology class of the normal circle to the
ith torusS1×mi, represented bypimi + li (whereli is the image of the preferred
longitudeλ(Ki)) to the class of a normal circle to theith elliptic fiber. These
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prescriptions can be insufficient to uniquely define the manifold: the gluing map
is defined up the action of SL(3,Z) matrices of the form a b 0

d e 0

g h 1

; (2)

sinceF is in the neighborhood of a cusp fiber inE(m), we can dispose of the in-
determinacy corresponding to the upper left SL(2,Z) factor (due to the absence of
a canonical choice for the basis ofH1(F,Z)) because any fiber- and orientation-
preserving diffeomorphism of∂(E(m) \ νF ) extends to a (fiber-preserving) dif-
feomorphism ofE(m) \ νF (see [GS, Chap. 8]); the symbolν(·) denotes the open
neighborhood of an embedded submanifold. The remaining indeterminacy, how-
ever, cannot be disposed of in general. The manifoldE(m)K is simply connected
and hasb+2 ≥ n.

We will discuss now the example of McMullen and Taubes. Consider, inS3,

the 4-component oriented linkK given by the union of the Borromean rings
K1∪K2 ∪K3 and the axis ofZ3-symmetryK4. LetN := S3 \ νK. We recall the
form of the Alexander polynomial1K(x, y, z, t) of K; herex, y, z are the vari-
ables corresponding to the meridians of the Borromean rings andt corresponds to
the meridian to the axis:

1K(x, y, z, t)

= −4+ (t + t−1)+ (x + x−1+ y + y−1+ z+ z−1)

− (xy + (xy)−1+ yz+ (yz)−1+ xz+ (xz)−1)+ (xyz+ (xyz)−1). (3)

We have another description forN : perform 0-surgery onS3 along the compo-
nents of the Borromean rings; it is well known that this surgery yieldsT 3. We can
thus writeN = S3\νK = T 3\νL,whereL is a framed link inT 3 whose first three
components give a basis ofH1(T

3,Z). In fact, when we perform the 0-surgery on
the Borromean rings, the three meridiansµ(Ki) (i = 1,2,3) to the components of
the Borromean rings go over longitudesmi of Li, while the preferred longitudes
λ(Ki) are sent to meridiansli of Li. The longitude ofK4 becomes a longitude
to the componentL4 ⊂ T 3, which satisfies the relationL4 = L1+ L2 + L3 ∈
H1(T

3,Z); the meridianµ(K4) of K4 goes instead to a meridianm4 of L4 and
is null-homotopic inT 3. It is instead nontrivial inH1(N,Z), where the four gen-
erators are given by the meridians. We haveH1(N,Z) ⊃ i∗H1(T 3,Z) = Z〈t〉⊥.
Then define the normal connected sum

X =
∐

E(1)i#Fi=S1×Li S
1× T 3. (4)

Again, the definition requires that the homology class of the normal circle toS1×Li
be sent to the homology class of the normal circle to theith elliptic fiber. The pre-
vious remarks on the ambiguity of the definition apply. This manifold is simply
connected and hasb+2 > 1.

We show now that both constructions appear as particular cases of a general con-
struction: consider the exterior of an orientedn-component linkK ⊂ S3 together



Smooth Structure of Some Symplectic Surfaces 327

with the choice, in each boundary component, of an homology basis of simple
curves(αi, βi) of intersection 1. We introduce the following definition.

Definition 2.1. Take a linkK as above with homology basis(αi, βi) and an
elliptic surfaceE(m). Define the manifold

E(m;αi, βi) =
(∐

E(m)i \ νFi
)
∪Fi×S1=S1×αi×βi (S

1× (S3 \ νK)), (5)

where the gluing is made by lifting a diffeomorphism betweenS1× αi andFi to
an orientation-reversing diffeomorphism of the boundary tori in such a way that
the homology class ofβi is sent to the homology class of the normal circle to the
ith elliptic fiber.

The gluing condition is not enough to define the manifold completely. As in the
case of Fintushel–Stern manifolds, the ambiguity related to the absence of a chosen
basis inH1(Fi,Z) is only apparent whereas the remaining ambiguity is effective.
Moreover, the smooth manifold (as the notation suggests) can depend on the choice
of the(αi, βi),with the noteworthy exception considered in the following lemma.

Lemma 2.2. Let E(1;αi, βi) be defined as before. Then the manifold is well-
defined and moreover its definition depends uniquely onK; that is, it is unaffected
by the choice of the basis on∂(S3 \ νK).
Proof. This follows from the fact thatany orientation-preserving diffeomor-
phism of ∂(E(1) \ νF ), and not only the fiber-preserving ones, extends to an
orientation-preserving diffeomorphism of(E(1) \ νF ) (see [GS]): on each bound-
ary component we can reabsorb any orientation-preserving self-diffeomorphism of
S1× αi × βi by an orientation-preserving self-diffeomorphism of∂(E(1)i \ νFi),
which extends toE(1)i \ νFi. No matter how we glue the manifoldS1× (S3 \ νK)
(in particular, for any choice of homology basis for the boundary), the resulting
four manifolds are smoothly equivalent.

Analyzing the previous construction yields the following straightforward prop-
osition.

Proposition 2.3. The Fintushel–Stern manifoldsE(m)K and the McMullen–
Taubes manifoldX can be described via the construction in Definition 2.1.

Proof. The definition of normal connected sum shows that the manifolds defined
in equation (1) can be rewritten in the form

E(m)K =
(∐

E(m)i \ νFi
)
∪ (S1× (S3 \ νK)), (6)

where the gluing is made by lifting a diffeomorphism betweenS1×µ(Ki) andFi to
an orientation-reversing diffeomorphism of the boundary tori so that the homology
class ofpiµ(Ki)+ λ(Ki) is sent to the class of the normal circle toFi. Hence the
manifoldE(m)K corresponds to the choice(αi, βi) = (µ(Ki), piµ(Ki)+λ(Ki)).
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Concerning the McMullen–Taubes example, an analysis of the definitions via
normal connected sum of equation (4) (keeping track of the framing ofLi) shows,
asT 3 \ νL = S3 \ νK, thatX corresponds tom = 1 and to the choice(αi, βi) =
(µ(Ki), λ(Ki)) for i = 1,2,3 and(α4, β4) = (λ(K4),−µ(K4)).

Note that the latter definition differs from the Fintushel–Stern one, applied to the
same link, for the different choice of the homology basis. However, in this partic-
ular case, we have our next lemma.

Lemma 2.4. The McMullen–Taubes manifoldX is diffeomorphic to the Fintushel–
Stern manifoldE(1)K.

Proof. This follows as particular case of Lemma 2.2. The same argument implies
also that the manifold is well-defined.

3. Symplectic Structures

We now want to compare the symplectic structure arising naturally from the dif-
ferent presentations ofX. The proof of the existence of symplectic structures onX

follows by application of Gompf ’s theorem on the symplectic normal connected
sum between

∐
i E(1) andS1×MK (resp.,S1×T 3) in the Fintushel–Stern (resp.,

McMullen–Taubes) construction. BothMK andT 3 are fibered 3-manifolds ob-
tained by Dehn filling ofS3\νK along the different surgery curves. For any choice
of a fiber6 in MK (resp.,T 3) transverse to the image of the link,E(1)K (resp.,
X) inherits a natural symplectic structure induced from the closed, nondegener-
ate 1-form defining the fibration onS3 \ νK. For any linkK, fibrations onS3 \ νK
are identified with the elements ofH1(S3 \ νK,Z) laying on the cones over some
of the top-dimensional faces of the Thurston unit sphere. The latter is defined, for
ϕ ∈H1(S3 \ νK,Z), by minimizing the quantity

χ(6) =
∑

χ(6i)<0

(−χ(6i)) (7)

among properly embedded representatives6 of the Poincaré dual ofϕ and then
extending by linearity and continuity to real cohomology classes. The fibration on
MK restricts by construction (see [FS]) to the fibration ofS3 \ νK with fiber given
by the minimal spanning surface of the linkK, that is, to the class(1,1,1,1) ∈
H1(S3 \ νK,Z). OnT 3, as discussed in [MT], every fibration that restricts to the
cone over the top-dimensional faces of the Thurston unit sphere oni∗H1(T 3,Z) ⊂
H1(S3 \ νK,Z) induces a symplectic structure onX. We can relate the fibration
of class(1,1,1,1) and the fibrations laying ini∗H1(T 3,Z): the analysis of the
Thurston norm onH1(S3 \ νK,Z), detailed in [MT], shows that(1,1,1,1) lies in
the cone over the top-dimensional face identified by the dual vertexxyz (we use
the same notation as equation (3)), a face that already contains fibered elements of
i∗H1(T 3,Z). As a consequence, the canonical bundle corresponding to the sym-
plectic structure induced onX by this fibration cannot be used to distinguish it
from the ones exhibited in [MT].
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Let’s now discuss how we can produce a new symplectic structure that can
be distinguished from the known ones by studying the canonical class. The unit
sphere of the Thurston norm ofS3 \ νK is given, as discussed in [MT], by the
product of the unit sphere in the subspacei∗H1(T 3,Z) and the interval

[− 1
2,

1
2

]
of

the orthogonal subspace: every fibered face is determined by a dual vertex among
the sixteen vertices of the Newton polyhedron of the Alexander polynomial. We
can represent the orthogonal subspace toi∗H1(T 3,Z) as a pullback under inclu-
sion of the first cohomology group ofS1×S2: in fact, 0-surgery on the axisK4 of
the Borromean ring exhibitsN as complement of a link̂L in S1× S2. The images
of the meridiansµ(Ki) for i = 1,2,3 are (null-homotopic) meridians to the com-
ponents ofL̂with the same index;µ(K4) goes to a preferred longitude ofL̂4. The
longitudesλ(Ki) for i = 1,2,3 go to preferred longitudes of the respectiveL̂i ,
while λ(K4) goes to a meridian tôL4. The fiber ofS1× S2 restricts to the fiber of
S3 \ νK identified by the cohomology class(0,0,0,1) ∈H1(S3 \ νK,Z) (a disk
spanning the axis, pierced once by each component of the Borromean rings). We
have now the following.

Definition 3.1. Consider the framed symplectic toriS1× L̂i ⊂ S1× S1× S2

of self-intersection zero together with four copies of the rational elliptic surface
E(1). We define the normal connected sum

Y =
∐

E(1)i#Fi=S1×L̂i S
1× S1× S2. (8)

The definition of normal connected sum imposes that the homology class of the
normal circle toS1× L̂i be sent over the homology class of the normal circle to
theith elliptic fiber.

This definition immediately yields our next proposition.

Proposition 3.2. The manifoldY introduced in Definition 3.1 is a manifold of
typeE(1;αi, βi); it is, moreover, diffeomorphic toX and to the Fintushel–Stern
manifoldE(1)K.

Proof. The first statement follows by observing that the definition ofY corre-
sponds to the choiceS1×S2\νL̂ = S3\νK and to the homology basis(αi, βi) =
(λ(Ki),−µ(Ki)) for i = 1,2,3 and(α4, β4) = (µ(K4), λ(K4)). The second
statement is a corollary, as Lemma 2.4, of Proposition 2.2.

The construction ofX introduced in Definition 3.1 induces naturally a symplectic
structure on the manifold: the fibration ofS3 \ νK with class(0,0,0,1) has dual
vertext, as we can see by looking at the Alexander polynomial in equation (3).
Theorem 3.4 of [MT] identifies the canonical bundle of this symplectic struc-
ture as the image of twice this vertex under the injective mapH1(S

3 \ νK,Z)→
H 2(X,Z). This canonical bundle has different valence, as vertex of the Newton
polyhedron of the SW polynomial, than the canonical bundles obtained from the
previous two construction ofX (see [MT]) and so is combinatorially different. As
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a consequence, it lies in a different orbit with respect to the action of the diffeo-
morphism group ofX that acts by preserving the Newton polyhedron. This proves
the following.

Theorem 3.3. The symplectic structure induced by normal connected sum onY

is not equivalent(up to combination of pullback and homotopies) to the previous
ones.

The Seiberg–Witten polynomial ofX is given by1K(x
2, y2, z2, t 2); the new

symplectic structure (and its conjugate), together with the fourteen constructed in
[MT], exhaust the sixteen basic classes with coefficient±1.

In [V] we discuss how these constructions can be extended to obtain further
generalizations of the Fintushel–Stern link surgery construction.
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