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Twisted Alexander polynomials and fibered 3–manifolds

Stefan Friedl and Stefano Vidussi

Abstract. In a series of papers the authors proved that twisted Alexander
polynomials detect fibered 3-manifolds, and they showed that this implies that
a closed 3–manifold N is fibered if and only if S1 × N is symplectic. In this
note we summarize some of the key ideas of the proofs. We also give new
evidence to the conjecture that if M is a symplectic 4–manifold with a free

S1–action, then the orbit space is fibered.

1. Introduction

1.1. Definitions and previous results. A manifold pair is a pair (N,φ)
where N �= S1 × D2, N �= S1 × S2 is an orientable connected 3–manifold with
toroidal or empty boundary and φ ∈ H1(N ;Z) = Hom(π1(N),Z) is non–trivial. We
say that a manifold pair (N,φ) fibers over S1 if there exists a fibration p : N → S1

such that the induced map p∗ : π1(N) → π1(S
1) = Z coincides with φ. Given a

manifold pair (N,φ) the Thurston norm of φ is defined as

||φ||T = min{χ−(Σ) |Σ ⊂ N properly embedded surface dual to φ}.
Here, given a compact surface Σ with connected components Σ1 ∪ · · · ∪ Σk, we

define χ−(Σ) =
∑k

i=1 max{−χ(Σi), 0}. Thurston [Th86] showed that this defines
a seminorm on H1(N ;Z) which can be extended to a seminorm on H1(N ;R).

Given a manifold pair (N,φ) and a homomorphism α : π1(N) → G to a finite
group G we can consider the corresponding twisted Alexander polynomial Δα

N,φ ∈
Z[t±1]. This invariant was initially introduced by Lin [Lin01], Wada [Wa94] and
Kirk–Livingston [KL99]. We will recall the definition in Section 2 and we refer to
[FV10] for a survey of the theory of twisted Alexander polynomials.

We say that Δα
N,φ ∈ Z[t±1] is monic if its top coefficient equals ±1. Note

that Δα
N,φ is palindromic, in particular if its top coefficient equals ±1, then its

bottom coefficient also equals ±1. Given a polynomial p(t) ∈ Z[t±1] with p =∑l
i=k ait

i, ak �= 0, al �= 0 we define deg(p) = l − k.
We have the following theorem, that gives a characterization of fibered 3-

manifolds in terms of twisted Alexander polynomials.
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2 STEFAN FRIEDL AND STEFANO VIDUSSI

Theorem 1.1. Let (N,φ) be a manifold pair. Then (N,φ) is fibered if and only
if for any epimorphism α : π1(N) → G onto a finite group the twisted Alexander
polynomial Δα

N,φ ∈ Z[t±1] is monic and

deg(Δα
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα,

where φα denotes the restriction of φ : π1(N) → Z to Ker(α), and where we denote
by divφα ∈ N the divisibility of φα, i.e.

divφα = max{n ∈ N |φα = nψ for some ψ : Ker(α) → Z}.

The ‘only if’ direction has been shown at various levels of generality by Cha
[Ch03], Kitano and Morifuji [KM05], Goda, Kitano and Morifuji [GKM05], Pa-
jitnov [Pa07], Kitayama [Kiy07], [FK06] and [FV10, Theorem 6.2]. We will also
outline the proof in Section 2. The ‘if’ direction is the main result of [FV08d].

The main goal of this paper is to provide a summary of the proof, and to show
a few ways that the approach can be generalized to prove new results.

Revisiting the proof of Theorem 1.1 will also show that in fact the following
refinement of Theorem 1.1 holds:

Theorem 1.2. Let (N,φ) be a manifold pair such that π1(N) is residually finite
solvable (we refer to Section 3.4 for the definition). Then (N,φ) is fibered if and
only if for any epimorphism α : π1(N) → G onto a finite solvable group the twisted
Alexander polynomial Δα

N,φ ∈ Z[t±1] is monic and if the following equality holds

deg(Δα
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα.

Note that 3-manifolds with residually finite solvable fundamental group are
fairly frequent. For example, as we will see in Theorem 3.4, any 3-manifold has
a finite cover such that its fundamental group is residually finite solvable. Also
note that the fundamental group of a fibered 3-manifold is always residually finite
solvable.

1.2. Fibered manifolds and symplectic 4–manifolds. The main applica-
tion of the “if” direction of Theorem 1.1 is in the proof of the following Theorem.

Theorem 1.3. Let N be a closed 3–manifold. Then S1 × N is symplectic if
and only if N is fibered.

Proof. (outline) We first consider the ‘if’ direction. This direction was first
proved by Thurston [Th76], and we present here a proof that is well-known to the
experts. Let p : N → S1 be a fibration. We write ψ = p∗(dt) where dt is the
canonical non-degenerate closed 1–form on S1 = R/Z. By [Ca69] we can find a
metric on N such that ψ is harmonic. Denote by ∗ψ the dual closed 2–form. We
now consider the 1–form ds on S1 as a 1–form on S1×N by the pull back operation,
similarly we consider ψ and ∗ψ as forms on S1 ×N . With this convention we now
define:

ω = ds ∧ ψ + ∗ψ.
Clearly ω is a closed 2–form on S1 ×N . We furthermore calculate that

ω ∧ ω = 2ds ∧ ψ ∧ ∗ψ.
But since ψ is non-zero everywhere, it follows that ψ ∧ ∗ψ is a 3-form on N which
is non-zero everywhere. Hence ω ∧ ω is a 4-form on S1 × N which is non-zero
everywhere. This shows that ω is a symplectic form on S1 ×N .
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TWISTED ALEXANDER POLYNOMIALS AND FIBERED 3–MANIFOLDS 3

The ‘only if’ direction follows by showing that if S1 × N is symplectic, then
there exists a class φ ∈ H1(N,Z) determined by the symplectic form that sat-
isfies the constraints described in Theorem 1.1. This is achieved building on an
idea of Kronheimer in [Kr99]. Suppose that N is a closed 3-manifold such that
S1 × N admits a symplectic form ω. Without loss of generality we can assume
that ω represents an integral class. Taubes proved in [Ta94, Ta95] that the
Seiberg–Witten invariants of a symplectic 4–manifold satisfy very stringent con-
straints, that can be viewed as akin to a condition of “monicness.” This, to-
gether with the relation between Seiberg–Witten invariants of S1 × N and the
Alexander polynomial of N , due to Meng and Taubes, translates in the condi-
tion that ΔN,φ is monic, where φ ∈ H1(N,Z) is the Künneth component of
[ω] ∈ H2(S1 × N ;Z) ∼= H1(N ;Z) ⊕ H2(N ;Z). Next, thanks to a theorem of
Donaldson ([Do96]), there exists a symplectic surface dual to (a sufficiently large
multiple of) the symplectic form. Such surface satisfies the usual adjunction for-
mula for symplectic surfaces. This formula, played against Kronheimer’s adjunction
inequality for manifolds of type S1 ×N , gives a constraint on the top degree of the
Alexander polynomial ΔN,φ in terms of the Thurston norm, more precisely

deg(ΔN,φ) = ‖φ‖T + 2divφ.

The constraints above hold for all finite covers of N , as all finite covers of S1 ×N
are symplectic as well. The connection between the twisted Alexander polynomials
of N and the ordinary Alexander polynomials of the finite covers of N entails at
this point that for any epimorphism α : π1(N) → G to a finite group the twisted
Alexander polynomial Δα

N,φ is monic and

deg(Δα
N,φ) = |G| ‖φ‖T + 2divφα.

(We refer to [FV08b] for the details of the argument). The theorem follows at this
point from Theorem 1.1. �

We would like to mention that an alternative proof of the “only if” direction
of Theorem 1.3 in the case that b1(N) = 1, and under a technical condition in
the general case, follows from combining the work of Kutluhan–Taubes [KT09],
Kronheimer–Mrowka [KM10] and Ni [Ni08]. This proof requires a more sophisti-
cated study of the Seiberg–Witten theory of S1 ×N in the symplectic case.

1.3. Non–fibered manifolds and vanishing twisted Alexander polyno-
mials. It is natural to ask whether the conditions in Theorem 1.1 can be weakened.
In particular, in light of some partial results discussed below, we propose the fol-
lowing conjecture.

Conjecture 1.4. Let (N,φ) be a manifold pair. If (N,φ) is not fibered, then
there exists an epimorphism α : π1(N) → G onto a finite group G such that Δα

N,φ =

0 ∈ Z[t±1].

Besides the interest per se in sharpening the results of Theorem 1.1 there are
other reasons to investigate Conjecture 1.4. First, the proof of Theorem 1.3 would
be significantly simplified, bypassing the use of Kronheimer’s refined adjunction in-
equality: Taubes’ nonvanishing result for Seiberg–Witten invariants of symplectic
manifolds would suffice to carry the argument. But more importantly, Conjecture
1.4 would imply a result akin to Theorem 1.3 for all symplectic 4–manifolds that
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carry a free circle action. For those manifolds, in fact, a refined adjunction in-
equality in the spirit of [Kr99] does not seem available, and Taubes’ constraints
translate to a mere monicness of the twisted Alexander polynomials of the orbit
space. We state these observations in the following form, referring to [FV08a] for
details and for the extent to which the converse holds.

Theorem 1.5. Let M be a 4–manifold which carries a free circle action with
orbit space N . If Conjecture 1.4 holds for N , then M admits a symplectic structure
only if N fibers over the circle.

We also refer to [Ba01] and [Bo09] for related work on the problem of deter-
mining which 4–manifolds with a free circle action admit a symplectic structure.
We refer also to the work by Silver and Williams [SW09a, SW09b] and by Pajit-
nov [Pa10] for several interesting connections of Conjecture 1.4 to other problems
in 3–dimensional topology.

Conjecture 1.4 can be proven to hold for various classes of manifolds. In order
to describe them in detail, we must introduce some definitions.

Let π be a group and Γ ⊂ π a subgroup. We say Γ is separable if for any
g ∈ π \ Γ there exists an epimorphism α : π → G onto a finite group G such
that α(g) �∈ α(Γ). Put differently, we can tell that g is not in Γ by going to a
finite quotient. We say π is locally extended residually finite (LERF) if any finitely
generated subgroup of π is separable.

The following theorem proves Conjecture 1.4 in various special cases:

Theorem 1.6. Let (N,φ) be a manifold pair. Suppose that Δα
N,φ �= 0 ∈ Z[t±1]

for any epimorphism α : π1(N) → G onto a finite group G. Furthermore suppose
that one of the following holds:

(1) N = S3 \ νK and K is a genus one knot,
(2) ||φ||T = 0,
(3) N is a graph manifold,
(4) π1(N) is LERF.

Then (N,φ) fibers over S1.

We refer to [FV07a, Theorem 1.3] and [FV08c, Theorem 1, Proposition 4.6,
Corollary 5.6] for details and proofs. Note that it is conjectured (cf. [Th82]) that
π1(N) is LERF for any hyperbolic 3–manifold N .

In Section 4 we will give new conditions under which Conjecture 1.4 holds.

Acknowledgments. The first author would like to express his gratitude to the or-
ganizers of the Georgia International Topology Conference 2009 for the opportunity
to speak and for organizing a most enjoyable and interesting meeting.

2. Twisted invariants of 3–manifolds

We recall the definition of twisted homology and cohomology and their basic
properties. Let X be a topological space and let ρ : π1(X) → GL(n,R) be a

representation. Denote by X̃ the universal cover of X. Letting π = π1(X), we use

the representation ρ to regard Rn as a left Z[π]–module. The chain complex C∗(X̃)
is also a left Z[π]–module via deck transformations. Using the natural involution

g �→ g−1 on the group ring Z[π], we can view C∗(X̃) as a right Z[π]–module and
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form the twisted homology groups

Hρ
∗ (X;Rn) = H∗(C∗(X̃)⊗Z[π] R

n).

For most of the paper we will be interested in a particular type of representation.
Let φ ∈ H1(X;Z) and let α : π1(X) → GL(n,Z) be a representation. We can now
define a left Z[π1(X)]–module structure on Zn ⊗Z Z[t±1] =: Zn[t±1] as follows:

g · (v ⊗ p) := (α(g) · v)⊗ (φ(g) · p) = (α(g) · v)⊗ (tφ(g)p),

where g ∈ π1(X), v ⊗ p ∈ Zn ⊗Z Z[t±1] = Zn[t±1]. Put differently, we get a
representation α⊗ φ : π1(X) → GL(n,Z[t±1]).

We call the resulting twisted module Hα⊗φ
1 (X;Zn[t±1]) the twisted Alexan-

der module of (X,φ, α). When φ and α are understood, then we will just write
H∗(X;Zn[t±1]). Now suppose X has finitely many cells in all dimensions. Us-

ing that Z[t±1] is a Noetherian UFD it follows thatHα⊗φ
i (X;Zn[t±1]) is a finitely

generated module over Z[t±1]. We now denote by Δα
X,φ,i ∈ Z[t±1] the order of

Hα⊗φ
1 (X;Zn[t±1]) and refer to it as the twisted Alexander polynomial of (X,φ, α).

We refer to [Tu01] or [FV10, Section 2] for the precise definitions. Note that the
twisted Alexander polynomials are well–defined up to multiplication by an element
of the form ±tk, k ∈ Z.

We adopt the convention that we drop α from the notation if α is the trivial
representation to GL(1,Z). If α : π1(N) → G is a homomorphism to a finite
group G, then we get the regular representation π1(N) → G → Aut(Z[G]) where
the second map is given by left multiplication. We can identify Aut(Z[G]) with
GL(|G|,Z) and we obtain the corresponding twisted Alexander polynomial Δα

N,φ.
As an example we give an outline of the proof of the ‘only if’ direction in

Theorem 1.1.

Lemma 2.1. Let (N,φ) be a fibered manifold pair. Then for any epimorphism
α : π1(N) → G onto a finite group the twisted Alexander polynomial Δα

N,φ ∈ Z[t±1]
is monic and the following equality holds

deg(Δα
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα.

Proof. First note that exists a short exact Mayer–Vietoris sequence

0 → H1(Σ;Z[G])⊗Z[t±1]
tι+−ι−−−−−−→ H1(N\Σ;Z[G])⊗Z[t±1] → H1(N ;Z[G][t±1]) → 0,

where Σ is a fiber of (N,φ). Note that in the case of a knot complement and
untwisted coefficients this is just the usual exact sequence relating the homology of
a Seifert surface to the Alexander module of a knot (cf. e.g. [Lic97, Theorem 6.5]).
We write r = rankH1(Σ;Z[G]), where the rank is taken as a Z–module. Picking a
basis (over Z) for H1(Σ;Z[G]) and H1(N \ Σ;Z[G]) = H1(Σ × [0, 1];Z[G]) we can
represent ι± by r × r-matrices A±. It follows from the definition of the Alexander
polynomial that

Δα
N,φ = det(tA+ −A−) = tr det(A+) + · · ·+ det(−A−).

Since ι± are homotopy equivalences it follows that det(A±) = ±1. In particular
Δα

N,φ is monic and of degree r. It remains to determine r. First note that we have

2∑
i=0

(−1)irankHi(Σ;Z[G]) = |G|·
2∑

i=0

(−1)irankHi(Σ;Z) = |G|·(−χ(Σ)) = |G| ||φ||T .
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Furthermore recall that Σ is closed if and only if N is closed. The formula for r
now follows from a direct calculation of the rank of H0(Σ;Z[G]) and from duality
in the case that Σ is closed. �

3. Summary of the proof of Theorem 1.1

Our goal is to give an outline of the proof of Theorem 1.1 given in [FV08d]
without descending into the many technical details required in a rigorous write up.
We are acutely aware of the fact that the proof in [FV08d] hides the forest behind
a wall of trees.

3.1. Step A: First observations. Let (N,φ) be a manifold pair and k ∈ N.
Note that (N,φ) fibers if and only if (N, kφ) fibers and note that ||kφ||T = k||φ||T . It
follows now easily that it suffices to prove Theorem 1.1 for primitive φ ∈ H1(N ;Z).

Theorem A. Let (N,φ) be a manifold pair with φ ∈ H1(N ;Z) primitive. Assume
that ΔN,φ �= 0. Then the following hold:

(1) There exists a connected Thurston norm minimizing surface Σ dual to φ.
(2) Any connected surface Σ dual to φ intersects any boundary torus, in par-

ticular Σ is closed if and only if N is closed.
(3) If Δα

N,φ �= 0 for any epimorphism α : π1(N) → G onto a finite group,
then N is irreducible.

(4) The pair (N,φ) fibers over S1 if and only if the maps ι± : π1(Σ) →
π1(N \ νΣ) are isomorphisms.

Proof. If ΔN,φ �= 0, then it follows from [McM02, Section 4 and Proposi-
tion 6.1] that there exists a connected Thurston norm minimizing surface Σ dual
to φ.

Now let Σ be any connected surface dual to φ. Suppose that there exists a
boundary torus T of N which Σ does not intersect. Then T lifts to the infinite cyclic
cover N̂ of N determined by φ : π1(N) → Z, in particular N̂ contains infinitely

many tori in its boundary. A standard argument now shows that b1(N̂) = ∞, but

it is well-known (cf. [Tu01]) that b1(N̂) = degΔN,φ.
Statement (3) follows from an argument of McCarthy [McC01] (see also [Bo09]

and [FV08d, Lemma 7.1]). Note that the proof of (3) relies on the fact that 3-
manifold groups are residually finite, which is a consequence of the proof of the
Geometrization Conjecture (cf. [Th82] and [He87]). The final statement is a
consequence of Stallings’ fibering theorem ([St62] and [He76]). �

Throughout this section Σ will always denote a connected Thurston norm min-
imizing surface dual to φ. We write M = N \ νΣ and denote the two canonical
inclusion maps of Σ into ∂M by ι±. Since Σ ⊂ N is Thurston norm minimizing
it follows from Dehn’s lemma that the inclusion induced maps π1(Σ) → π1(N)
and π1(M) → π1(N) are injective. In particular we can view π1(Σ) and π1(M) as
subgroups of π1(N).

Given an epimorphism α : π1(N) → G onto a finite group G we say Δα
N,φ has

Property (M) if Δα
N,φ ∈ Z[t±1] is monic and if

deg(Δα
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα

holds.
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3.2. Step B: Extracting information from twisted Alexander poly-
nomials. In view of Theorem A our strategy is now to translate the informa-
tion coming from twisted Alexander polynomials into information on the maps
ι± : π1(Σ) → π1(M). We start with considering the untwisted polynomial:

Lemma 3.1. If ΔN,φ has Property (M), then the maps ι± : H1(Σ;Z) →
H1(M ;Z) are isomorphisms.

This lemma is well-known in the case of the untwisted Alexander polynomial for
knots. An early reference is given by [CT63] but see also [Ni07, Proposition 3.1]
or [GS08].

Proof. We translate the information on twisted Alexander polynomials into
information on the maps ι± : π1(Σ) → π1(M) by considering, as in Lemma 2.1, the
following long exact Mayer–Vietoris sequence:
(3.1)

. . . → H2(N ;Z[t±1]) →

→ H1(Σ;Z)⊗ Z[t±1]
tι+−ι−−−−−−→ H1(M ;Z)⊗ Z[t±1] → H1(N ;Z[t±1]) →

→ H0(Σ;Z)⊗ Z[t±1]
tι+−ι−−−−−−→ H0(M ;Z)⊗ Z[t±1] → H0(N ;Z[t±1]) → 0.

Now suppose that ΔN,φ ∈ Z[t±1] is monic and that

degΔN,φ = ‖φ‖T + (1 + b3(N))

holds. Note that this in particular implies that H1(N ;Z[t±1]) is Z[t±1]-torsion,
since H0(Σ;Z) ⊗ Z[t±1] is a free Z[t±1]-module it follows immediately that the
map H1(N ;Z[t±1]) → H0(Σ;Z) ⊗ Z[t±1] is the trivial map. Now recall that Σ is
connected and that Σ is closed if and only if N is closed. In our context this implies
that ‖φ‖T +(1+b3(N)) equals twice the genus g of Σ. Using elementary arguments
one can show that H1(M ;Z) is a free abelian group of the same rank as H1(Σ;Z),
namely 2g. Picking bases for H1(Σ;Z) and H1(M ;Z) we denote the corresponding
2g× 2g–matrices for ι± by A±. It now follows from the definition of the Alexander
polynomial that

ΔN,φ = det(tA+ −A−) = det(A+)t
2g + · · ·+ det(−A−).

Recall that we assumed that ΔN,φ is monic and that degΔN,φ = 2g. Since ΔN,φ

is palindromic it now follows that A− and A+ are invertible matrices, in particular
the maps ι± : H1(Σ;Z) → H1(M ;Z) are isomorphisms. �

Clearly the conclusion of the claim is not enough to deduce that π1(Σ) → π1(M)
is an isomorphism. In fact there exist many non-fibered knots whose Alexander
polynomial has Property (M). We will therefore use the information coming from
all twisted Alexander polynomials.

Using the idea of the proof the previous claim we can show the following
(we refer to [FV08d, Theorem 3.2] for details). If α : π1(N) → G is an epi-
morphism onto a finite group such that Δα

N,φ has Property (M), then the maps

ι± : H1(Σ;Z[G]) → H1(M ;Z[G]) are isomorphisms. In fact, considering the ‘H0-
part’ of the Mayer–Vietoris sequence (3.1) we see that the assumption Δα

N,φ �= 0

implies that the maps ι± : H0(Σ;Z[G]) → H0(M ;Z[G]) are isomorphisms. Using
well-known properties of 0-th homology groups (cf. e.g. [HS97, Section VI]) this
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condition is equivalent to

Im{π1(Σ)
ι±−→ π1(M)

α−→ G} = Im{π1(M)
α−→ G}.

For future reference we now summarize the results of the above discussion in the
following theorem.

Theorem B. Let α : π1(N) → G be an epimorphism onto a finite group such that
Δα

N,φ �= 0, then

(3.2) Im{π1(Σ)
ι±−→ π1(M)

α−→ G} = Im{π1(M)
α−→ G}.

If furthermore Δα
N,φ has Property (M), then

(3.3) ι± : H1(Σ;Z[G]) → H1(M ;Z[G])

are isomorphisms
Our goal now is to show that the information we just obtained from twisted

Alexander polynomials is in fact enough to deduce that ι± : π1(Σ) → π1(M) are
isomorphisms.

3.3. Step C: Finite solvable quotients. First recall that in the untwisted
case we obtained the following conclusion: if ΔN,φ has Property (M), then the
maps ι± : H1(Σ;Z) → H1(M ;Z) are isomorphisms. Another way of saying this is
that the maps ι± : π1(Σ) → π1(M) ‘look like an isomorphism on the abelian level’.
Our goal is now to show that if all twisted Alexander polynomials corresponding
to finite solvable groups have Property (M), then the maps ι± : π1(Σ) → π1(M)
‘look like isomorphisms on the finite solvable level’. More precisely, we will prove
the following theorem.

Theorem C. Let (N,φ) be a manifold pair such that for any epimorphism π1(N) →
S onto a finite solvable group the polynomial Δα

N,φ has Property (M). Then for any
finite solvable group S the induced maps

ι∗± : Hom(π1(M), S) → Hom(π1(Σ), S)

are bijections.

The outline of the proof of Theorem C will require the remainder of this section.
We will now need to introduce a couple of definitions. Given a solvable group S
we denote by �(S) its derived length, i.e. the length of the shortest decomposition
into abelian groups. Note that �(S) = 0 if and only if S = {e}.

Given n ∈ N∪{0} we denote by S(n) the statement that for any finite solvable
group S with �(S) ≤ n the maps

ι∗± : Hom(π1(M), S) → Hom(π1(Σ), S)

are bijections. It is a straightforward exercise to see that ι± : H1(Σ;Z) → H1(M ;Z)
are isomorphisms if and only if S(1) holds.

Note that Theorem C says that S(n) holds for all n if all twisted Alexander
polynomials corresponding to finite solvable groups have Property (M). We will
show that this does indeed hold by induction on n. For the induction argument we
use the following auxiliary statement: Given n ∈ N ∪ {0} we denote by H(n) the
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statement that for any epimorphism β : π1(M) → T where T is finite solvable with
�(T ) ≤ n the maps

ι± : H1(Σ;Z[T ]) → H1(M ;Z[T ])

are isomorphisms.

Proposition 3.2. [FV08d, Proposition 3.3] If H(n) and S(n) hold, then S(n+
1) holds as well.

Proof. Let G be a group and α : G → S an epimorphism onto a solvable
group of derived length n. Then we obtain the following short exact sequence

0 → H1(G;Z[S]) → G/[Ker(α),Ker(α)]
α−→ S → 1.

In particular if we can control solvable quotients of derived length at most n and the
corresponding first homology groups, then we can control solvable information on
G up to length n+ 1. The proposition now follows from elaborating this principle.
We refer to [FV08d, Section 3.3] for the full details. �

Proposition 3.3. [FV08d, Proposition 3.4] Assume that Δα
N,φ has Property

(M) for any epimorphism α : π1(N) → S onto a finite solvable group S with
�(S) ≤ n+ 1. If S(n) holds, then H(n) holds as well.

Proof. In this proof we find it convenient to introduce the notation π =
π1(N), A = π1(Σ) and B = π1(M). Recall that we can view A and B as subgroups
of π. In fact we can view π as an HNN extension of B by A, more precisely we
have a canonical isomorphism

π = 〈B, t | tι−(g)t−1 = ι+(g), g ∈ A〉.
As usual we will normally just write π = 〈B, t |, ti−(A)t−1 = ι+(A)〉. Let β : B → T
be an epimorphism where T is finite solvable with �(T ) ≤ n. Given a finitely
generated group C we now define

C(T ) =
⋂

γ∈Hom(C,T )

Ker(γ).

It is straightforward to see that C/C(T ) is a finite solvable group with �(C/C(T )) ≤
n (see [FV08d, Lemma 3.6]). It is a consequence of S(n) that the homomorphisms

(3.4) ι± : A/A(T ) → B/B(T )

are in fact isomorphisms (see [FV08d, Lemma 3.6]). In particular we can define
an epimorphism

π = 〈B, t |, tι−(A)t−1 = ι+(A)〉 → 〈B/B(T ), t | tι−(A/A(T ))t−1 = ι+(A/A(T ))〉.
It is a consequence of (3.4) that the above group is in fact a semidirect product,
i.e. we have an isomorphism

〈B/B(T ), t | tι−(A/A(T ))t−1 = ι+(A/A(T ))〉 ∼= Z �B/B(T ),

where 1 ∈ Z acts on B/B(T ) via ι−◦ι−1
+ . Since B/B(T ) is finite this automorphism

has finite order, say k, therefore there exists an epimorphism

α : π → Z �B/B(T ) → Z/k �B/B(T ) =: S.

Note that S is a finite solvable group of length n + 1. It now follows from our
assumption that the twisted Alexander polynomial Δα

N,φ has Property (M). The
information coming from Theorem B is not quite what we wanted, since we replaced
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β : B → T by α : B → S. But since Ker(α) ⊂ Ker(β), the latter homomorphism
contains in fact the information coming from β, using a few technical arguments
we can now deduce that

ι± : H1(A;Z[T ]) → H1(B;Z[T ])

is an isomorphism as well. We refer to [FV08d, Section 3.4] for the full details. �

Theorem C is now an immediate consequence of Propositions 3.2 and 3.3 and
of the fact, observed above, that ΔN,φ having Property (M) implies that S(1) holds.

3.4. Step D: Residually finite solvable fundamental groups. The con-
clusion of Theorem C loosely says that the maps ι± ‘look like isomorphisms on the
finite solvable level’ if all Δα

N,φ have Property (M). With the methods from the

previous section Theorem C is the maximum information on the map ι± : π1(Σ) →
π1(M) we can obtain from twisted Alexander polynomials.

In order to analyze the content of the conclusion of Theorem C we need the
following definition. Let P be a property of groups (e.g. finite, finite solvable),
then we say that a group π is residually P if for any non-trivial g ∈ P there exists
a homomorphism α : π → G to a group G with Property P such that α(g) is
non-trivial. For example it is well-known that surface groups are residually finite
solvable, and that 3-manifold groups are residually finite (cf. [Th82] and [He87]).

On the other hand 3-manifold groups are in general not residually finite solv-
able. For example if K is a non-trivial knot with Alexander polynomial equal to
one, then standard arguments show that any homomorphism π1(S

3 \ νK) → S to
a solvable group S necessarily factors through the abelianization π1(S

3 \ νK) → Z.
In particular π1(S

3 \ νK) is not residually finite solvable. One can use such a knot
to construct a manifold pair (N,φ) where ι± : Hom(π1(Σ), S) → Hom(π1(M), S)
is a bijection for any solvable S, but such that π1(M) is not residually solvable. In
particular M is not a product.

This discussion shows that the conclusion of Theorem C is not strong enough
to ensure that ι± : π1(Σ) → π1(M) are isomorphisms, the problem being that
3-manifold groups are in general not residually finite solvable.

Before we continue we need to introduce a few more notions. We say a group has
a property virtually, if there exists a finite index subgroup which has this property.
Also recall, that given a prime p a p–group is a group whose order is a power of p.
If G is a group which is residually a p–group, then we will normally just say G is
residually p.

We can now formulate the following recent theorem of Matthias Aschenbrenner
and the first author.

Theorem 3.4. [AF10] Let N be a 3-manifold. Then for almost all primes p
the group π1(N) is virtually residually p.

Recall that p-groups are finite solvable, in particular Theorem 3.4 says that
3-manifold groups are virtually residually finite solvable.

If N is hyperbolic then the theorem is a consequence of the fact that linear
groups are virtually residually p (cf. e.g. [We73, Theorem 4.7]). The proof of that
fact is so short and elegant that we think it is worthwhile mentioning.
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Proof of Theorem 3.4 for hyperbolic N . We write π = π1(N). Since
we assume that N is hyperbolic we can assume that π is a subgroup of SL(2,C).
Since π is finitely generated there exists a finitely generated subring R of C such
that π ⊂ GL(n,R). It is well–known that for almost all primes p there exists a
maximal ideal m of R with char(R/m) = p (see [LS03, p. 376f]).

Now let p be a prime for which there exists a maximal ideal m of R with
char(R/m) = p. We will show that π is virtually residually p. Before we continue
note that R/mk is a finite ring for any k ≥ 1 and that

⋂∞
k=1 m

k = {0} by the Krull
Intersection Theorem. For k ≥ 1 we let

πk = Ker
(
π → GL(n,R) → GL(n,R/mk)

)
.

Each πk is a normal subgroup of π, of finite index, and clearly πk+1 ⊂ πk for every
k ≥ 1. Moreover

⋂∞
k=1 πk = {1} since

⋂∞
k=1 m

k = {0}.
We claim that π1 is residually p. We will prove this by showing that π1/πk is a

p-group for any k. This in turn follows from showing that any non–trivial element
in πk/πk+1 has order p. In order to show this pick A ∈ πk. By definition we can
write

A = id + C for some n× n-matrix C with entries in m
k.

From p ∈ m and k ≥ 1 we get that

Ap = (id + C)p = id + pC + p(p−1)
2 C2 + · · ·+ Cp

= id + (some n× n-matrix with entries in mk+1).

Hence Ap ∈ πk+1. �

The combination of Theorem C and 3.4 shows that proving Theorem 1.1 be-
comes much easier, if we can go to finite covers. Fortunately the following lemma
tells us that we can indeed do so:

Lemma 3.5. Let p : N ′ → N be a finite cover and let φ′ = p∗(φ). Then the
following hold:

(1) (N,φ) fibers if and only if (N ′, φ′) fibers,
(2) if Δα

N,φ has Property (M) for any epimorphism α from π1(N) onto a finite

group, then Δα
N,φ has Property (M) for any epimorphism α from π1(N

′)
onto a finite group.

Proof. The first statement can for example be proved using Stallings’ fibering
theorem [St62]: Indeed, (N,φ) fibers if and only if Ker(φ) is finitely generated and
(N ′, φ′) fibers if and only if Ker(φ′) is finitely generated. But Ker(φ′) is subgroup
of Ker(φ) of finite index. In particular if one is finitely generated, then so is the
other.

The second statement is fundamentally just an application of Shapiro’s lemma,
which says that the homology of a finite cover of a space N is nothing but the
twisted homology of N . Making this principle work in this context is a little delicate
though, and we refer the reader to [FV08d, Lemma 7.6] for the details. �

The following is now an immediate corollary to Theorem 3.4 and Lemma 3.5.

Theorem D. Suppose the conclusion of Theorem 1.1 holds for all 3-manifolds such
that π1(N) is residually finite solvable, then Theorem 1.1 holds for all 3-manifolds.
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Note that the original proof of Theorem 1.1 (that appeared before the first
author and M. Aschenbrenner completed the proof of Theorem 3.4) required in
[FV08d, Section 6] a rather convoluted argument based on the study of residual
properties of each piece of the JSJ decomposition of N . The result of Theorem 3.4
therefore greatly simplifies the argument.

3.5. Step E. Reformulation in terms of sutured manifolds and Agol’s
theorem. In our final step we find it convenient to switch to the language of
sutured manifolds. A sutured manifold is a triple (M,Σ−,Σ+) where M is an
oriented 3-manifold, Σ± are (possibly disconnected) disjoint oriented subsurfaces
of ∂M with the following properties:

(1) the orientation of Σ+ agrees with the orientation of ∂M ,
(2) the orientation of Σ− is the opposite orientation of ∂M ,
(3) the closure of ∂M \Σ−∪Σ+ consists of a union of annuli A1, . . . , An such

that for any i the boundary of Ai consists of a boundary curve of Σ− and
of a boundary curve of Σ+. Furthermore the boundary curves have to be
oriented the same way.

A sutured manifold (M,Σ−,Σ+) is called taut if M is irreducible and if Σ± are
Thurston norm minimizing in their homology class in H2(M,∂Σ±;Z). We refer to
[Ju06], [Ga83, Definition 2.6] or [CC03, p. 364] for more on sutured manifolds.

The following are the two most important types of examples for us:

(1) If Σ is a oriented surface, then (Σ × [−1, 1],−Σ × −1,Σ × 1) is a taut
sutured manifold. We will refer to it as a product sutured manifold.

(2) Let N be an irreducible 3–manifold with empty or toroidal boundary. Let
Σ be a Thurston norm minimizing surface which intersects all boundary
tori of N . Denote by M the result of cutting N along Σ and denote by Σ±
the two copies of Σ in M . Then (M,Σ−,Σ+) is a taut sutured manifold.

Theorem E. Let (M,Σ−,Σ+) be a taut sutured manifold. Suppose that π1(M) is
residually finite solvable and suppose that for any finite solvable group S the induced
maps

ι∗± : Hom(π1(M), S) → Hom(π1(Σ±), S)

are bijections. Then M is a product on Σ±.

Theorem 1.1 is an immediate consequence of Theorems A, C, D and E, and
Theorem 1.2 is an immediate consequence of Theorems A, C and E.

Note that the statement of Theorem E can be generalized to a question about
groups in general: Let P be a property of groups, let ϕ : A → B be a homomorphism
of finitely presented groups which are residually P such that for any group G with
Property P the map Hom(B,G) → Hom(A,G) is a bijection. Does this imply that
ϕ is an isomorphism? For P = {finite} this question goes back to Grothendieck
[Gr70] and was answered in the negative by Bridson and Grunewald [BG04]. We
refer to [AHKS07] for more on the case P = {finite solvable}.

This excursion into group theory shows that in order to prove Theorem E we
can not rely on a miracle in group theory, but we need a miracle which comes from
our 3-dimensional setting. This miracle is provided by a stunning theorem of Agol
[Ag08]. To explain it we need one more definition.
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A group π is called residually finite Q–solvable or RFRS if there exists a filtra-
tion of groups π = π0 ⊃ π1 ⊃ π2 . . . such that the following hold:

(1) ∩iπi = {1},
(2) πi is a normal, finite index subgroup of π for any i,
(3) for any i the map πi → πi/πi+1 factors through πi → H1(πi;Z),
(4) for any i the map πi → πi/πi+1 factors through πi → H1(πi;Z)/torsion.

Note that conditions (1), (2) and (3) are equivalent to saying that π is residually
finite solvable. But condition (4) means that the RFRS condition is considerably
more restrictive. The notion of an RFRS group was introduced by Agol [Ag08],
we refer to Agol’s paper for more information on RFRS groups. For our context
it is important to note that free groups and surface groups are RFRS. Indeed, it
is well-known that these groups are residually finite solvable, in particular there
exists a sequence πi with Properties (1), (2) and (3). But the extra condition (4) is
now always satisfied since the first homology of any finite index subgroup of a free
group or a surface group is always torsion free.

Given a sutured manifold M = (M,Σ−,Σ+) the double DM is defined to be
the double of M along Σ− and Σ+. Note that the annuli ∂M \ (Σ− ∪Σ+) give rise
to toroidal boundary components of DM .

The following theorem is implicit in the proof of [Ag08, Theorem 6.1].

Theorem 3.6 (Agol). Let M = (M,Σ−,Σ+) be a connected, taut sutured man-
ifold which is not a product sutured manifold. Suppose that π1(M) is RFRS. Then
there exists an epimorphism α : π1(M) → S onto a finite solvable group, such that

the corresponding cover M̃ = (M̃, Σ̃−, Σ̃+) of M = (M,Σ−,Σ+) has the property

that the class [Σ̃−] ∈ H2(DM̃ , ∂DM̃ ;Z) lies on the closure of the cone over a fibered
face of the Thurston norm ball of DM̃ .

Before we delve into the details of the proof of Theorem E, let us take a step
back and think about what Theorem 3.6 does for us. Agol’s theorem has as input
information on finite solvable quotients of π1(M) and as output it gives us a strong
topological conclusion. This is exactly the type of statement we want to make in
Theorem E. It is now just a matter of time till bending and twisting turns Theorem
3.6 into a proof of Theorem E.

Proof of Theorem E. Let M = (M,Σ−,Σ+) be a taut sutured manifold
such that π1(M) is residually finite solvable and such that for any finite solvable
group S the induced maps

(3.5) ι∗ : Hom(π1(M), S) → Hom(π1(Σ±), S)

are bijections. We have to show that M is a product sutured manifold.
Let us now suppose that M is not a product sutured manifold. We write

Σ = Σ−. Recall that we pointed out above that the surface group π1(Σ) is RFRS.
By assumption π1(M) is residually finite solvable and by (3.5) the finite solvable
quotients of π1(M) and π1(Σ) ‘look the same’. It is now fairly elementary to show
that π1(M) is also RFRS (see [FV08d, Section 4.2] for details).

We can thus apply Theorem 3.6 to the taut sutured manifold (M,Σ−,Σ+). In
fact applying arguments similar to the ones used in Lemma 3.5 we can without
loss of generality assume that already the class [Σ−] ∈ H2(DM , ∂DM ;Z) lies on
the closure of the cone over a fibered face F of the Thurston norm ball of DM .
Moreover, as by hypothesis M is not a product, we can assume that [Σ−] lies in
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the cone over the boundary of F , as otherwise (N,φ) would fiber already. We refer
to [FV08d, Lemma 4.3] for details.

Note that DM has an obvious involution r given by ‘reflection’, i.e. inter-
changing the two copies of M . Also recall that (3.5) implies in particular that the
inclusion induced maps H1(Σ±;Z) → H1(M ;Z) are isomorphisms. This means
that homologically M looks like a product, and hence homologically DM looks like

S1 ×Σ. More precisely, there exists a canonical isomorphism Z · t⊕H1(Σ−;Z)
∼=−→

H1(DM ;Z), where t is an oriented curve with r(t) = −t which intersects each of
Σ− and Σ+ once. Note that the map r : H1(DM ;Z) → H1(DM ;Z) restricts to the
identity on H1(Σ;Z) and sends t to −t.

Applying duality we now obtain a dual isomorphism H2(DM , ∂DM ;Z) = Z ·
[Σ]⊕V where r acts as −id on V . Recall that r([Σ]) = [Σ] and that [Σ] sits on the
boundary of the face F . It follows that [Σ] also sits on the boundary of the face
r(F ). Clearly r(F ) is also a fibered face, and since r acts as −id on V we see that
F and r(F ) are distinct faces. Also note that by the convexity of the Thurston
norm ball F and r(F ) can not sit on the same plane. Schematically we now have
the situation presented in Figure 1.

r(F)

V
F

Figure 1. Thurston norm ball on H2(DM , ∂DM ;R) = R · Σ⊕ V .

We now consider the information contained in (3.5) that comes from finite
metabelian groups. We see that M looks like a product on the ‘metabelian level,’
and hence DM looks like S1 × Σ on the ‘metabelian level.’ Now recall that the
multivariable Alexander polynomial of a 3-manifold is a metabelian invariant, we
conclude that the multivariable Alexander polynomial of DM equals the multivari-
able Alexander polynomial of S1×Σ which is well-known to be given by (1−t)−χ(Σ),
where t ∈ H1(S

1 × M ;Z) = H1(DM ;Z) is the same generator introduced above
(we refer to [FV08d, Lemma 4.9] for details).

The norm ball dual to the Newton polygon of the multivariable Alexander
polynomial is called the Alexander norm ball ([McM02]). Note that the Alexander
norm ball of DM is a convex subset of Hom(H1(DM ;Z);R) = H2(DM , ∂DM ;R).
Since the Alexander polynomial is given by (1− t)−χ(Σ) and since Σ is dual to t we
see that the Alexander norm ball in our case is given by Figure 2. Note that for
fibered classes the Thurston norm and the Alexander norm agree (see [McM02]).
In particular the distinct fibered faces F and r(F ) of the Thurston norm ball have
to lie on distinct faces of the Alexander norm ball. But the Alexander norm ball
only has two faces, both preserved under reflection. This leads to a contradiction,
which is schematically indicated by the mismatch of Figure 1 and Figure 2. This
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V

Figure 2. Alexander norm ball on H2(DM , ∂DM ;R) = R · Σ⊕ V .

shows that the assumption that M is not a product leads to a contradiction. We
refer to [FV08d, Section 4] for a formal and completely rigorous version of the
above argument. �

4. Vanishing twisted Alexander polynomials for non–fibered manifolds

Throughout this section we use the notation from the previous section. In par-
ticular given a manifold pair (N,φ) where φ ∈ H1(N,Z) is a primitive class with
ΔN,φ �= 0, we will denote by Σ a connected Thurston norm minimizing surface dual
to φ and we will write M = N \ νΣ. Furthermore we will denote the two natural
inclusion maps of Σ into M by ι±. We recall the following theorem, whose proof
we had outlined above:

Theorem B. Let (N,φ) be a manifold pair and let α : π1(N) → G be an epimor-
phism onto a finite group such that Δα

N,φ �= 0, then

Im{π1(Σ)
ι±−→ π1(M)

α−→ G} = Im{π1(M)
α−→ G}.

We will see in this section that Theorem B can be used in many situations to
show that a non-fibered manifold pair has zero twisted Alexander polynomials.

Theorem 4.1. [FV08c, Theorem 4.2] Let (N,φ) be a non-fibered manifold pair
such that φ is dual to a connected incompressible surface Σ. If π1(N) is LERF,
then there exists an epimorphism α : π1(N) → G onto a finite group G such that
Δα

N,φ = 0.

Proof. We write Σ = Σ−. By Theorem A we know that the monomorphism
π1(Σ) → π1(M) is not an isomorphism, in particular the set π1(M) \ π1(Σ) is
nonempty. By the separability of π1(Σ) ⊂ π1(N) we can now find for any g ∈
π1(M) \ π1(Σ) an epimorphism α : π1(N) → G onto a finite group G such that
α(g) �∈ α(π1(Σ)). In particular we have

Im{π1(Σ)
ι−→ π1(M)

α−→ G} � Im{π1(M)
α−→ G}.

The theorem now follows from Theorem B. �

It is an important open question whether fundamental groups of hyperbolic
3–manifolds are LERF (see [Th82, Question 15]), and various partial results of
separability are known. In particular, Long and Niblo [LN91, Theorem 2] showed
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that the subgroup carried by an embedded torus is separable. It follows that the
separability condition required in the proof of Theorem 4.1 is always satisfied if Σ
is a torus. We now easily obtain the following.

Theorem 4.2. [FV08c, Proposition 4.6] Let N be a closed 3-manifold and
φ ∈ H1(N ;Z) a non-trivial class with ||φ||T = 0. Then (N,φ) is fibered if and only
if for any epimorphism α : π1(N) → G onto a finite group G we have Δα

N,φ �= 0.

Expanding on the ideas of Theorem 4.1 and 4.2 one can then continue to prove
Theorem 1.6. We refer to [FV08c] for details.

Unfortunately not all 3-manifold groups are LERF (see [NW01]) and little
is known even conjecturally about the separability properties of non-geometric 3-
manifold groups. In the remainder of this section we will therefore give two examples
of types of non-fibered manifold pairs where Theorem 4.1 cannot be applied, but
where the weaker assumptions of Theorem B allow us to show that these pairs have
twisted Alexander polynomials which are zero.

In order to prove our theorems we recall the following result of Long and Niblo
[LN91]: Let Σ be an incompressible subsurface of the boundary of a 3–manifold M .
Then π1(Σ) ⊂ π1(M) is separable. This is often referred to as peripheral subgroup
separability. We will exploit this result in two cases. The first is the case of the
double of the complement of a nonfibered surface Σ ⊂ N . The second, perhaps of
more conceptual breadth, is an application of ‘virtual retractibility’.

We start with the first case. Let W be a 3–manifold with empty or toroidal
boundary and let Σ ⊂ W be an incompressible nonseparating connected properly
embedded surface. Consider the manifold with boundary M = W \ νΣ. This
manifold has two copies Σ± sitting in the boundary. Consider the double DM of
M along Σ− ∪Σ+ ⊂ ∂M . The images Σ± ⊂ DM are nonseparating incompressible
surfaces which are homologous in H2(DM , ∂DM ;Z).

Theorem 4.3. Let DM be defined as above, and let φ ∈ H1(DM ,Z) be the
primitive class Poincaré dual to [Σ±]. If (DM , φ) is a non-fibered pair, then there
exists an epimorphism α : π1(DM ) → G onto a finite group G such that Δα

DM ,φ = 0.

Proof. Suppose that (DM , φ) is a non–fibered pair. First note that it is well-
known that Σ+ ⊂ DM is a fiber if and only if M is a product on Σ+.

Note that we have a folding map r : DM → M that is a retraction. In particular
the induced map in homotopy r∗ : π1(DM ) → π1(M) is an epimorphism, and has
as right inverse the inclusion–induced map i∗ : π1(M) → π1(DM ). Note that
both r∗ and i∗ restrict to an isomorphism on the proper subgroups of the domain
and image determined by a copy of π1(Σ+). Consider now the proper subgroup
π1(Σ+) ⊂ π1(M); by peripheral subgroup separability, there is an epimorphism
β : π1(M) → G to a finite group such that β(π1(Σ+)) � β(π1(M)). The surface
Σ+ ⊂ DM is an incompressible surface dual to φ; define Z := DM \ νΣ+. By the
usual argument based on the incompressibility of Σ+, π1(Σ+) can be viewed as
subgroup of π1(Z) and the latter is a subgroup of π1(DM ).

The inclusion–induced map i∗ : π1(M) → π1(DM ) has image in π1(Z). It
follows that if we let α = β ◦ r∗ : π1(DM ) → G, then we have

Im{π1(Σ+)
ι−→ π1(Z)

α−→ G} � Im{π1(Z)
α−→ G}.

It now follows from Theorem B that Δα
DM ,φ = 0.

�
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The second application of peripheral subgroup separability is in the context
of virtual retractions. In [LR08] (see also [LR05]), Darren Long and Alan Reid
define and explore the notion of virtual retraction of a group to one of its finitely
generated subgroup, as well as various related properties. As the authors of [LR08]
discuss, these notions are closely connected with subgroup separability properties
of the group.

We start by giving the proper definitions, from [LR08], using a notation that
adapts to the case we have in mind.

Definition 4.4. Let π be a group and B a subgroup. Then a homomorphism
θ : B → G extends over the finite index subgroup π̂ ⊂ π if B ⊂ π̂ and if there exists
a homomorphism Θ : π̂ → G such that Θ|B = θ.

Definition 4.5. Let π be a group and B a subgroup. Then π virtually retracts
onto B if the identity homomorphism θ = idB extends over some finite index
subgroup of π.

Quite clearly, if π virtually retracts onto B, any homomorphism θ : B → G
extends over some finite index subgroup of π. A less trivial fact, observed in
[LR08, Theorem 2.1], is that if π is LERF and if B is finitely generated, then
any homomorphism θ onto a finite group extends over a finite index subgroup. In
light of that the following theorem can be viewed as a generalization of Theorem
4.1.

Theorem 4.6. Let (N,φ) be a non-fibered manifold pair. Suppose that there
exists a connected Thurston norm minimizing surface Σ dual to φ such that any
homomorphism of π1(N \ νΣ) to a finite group extends to a finite index subgroup
of π1(N). Then there exists an epimorphism α : π1(N) → G onto a finite group G
such that Δα

N,φ = 0.

Proof. We write M := N \ νΣ and we write π = π1(N), A = π1(Σ) and B =
π1(M). The manifold M has, as boundary, two copies of Σ; the incompressibility
of Σ entails in particular the existence of inclusion–induced injective morphisms
ι± : A ↪→ B ⊂ π.

As (a copy of) Σ occurs as boundary component of M , the image under say i+
of A in B (that we will denote by A as well) is separable by peripheral subgroup
separability. This means that for any element γ ∈ B \A there exist an epimorphism
θ : B → H onto some finite group such that θ(γ) /∈ θ(A). Pick such an element
γ. By assumption, θ extends to an epimorphism Θ : π̂ → H where π̂ ⊂ π is a
finite index subgroup. The kernel ker Θ ⊂ π̂ is a normal finite index subgroup of
π. This subgroup may fail to be normal in π; define Γ = ∩g∈πg (ker Θ) g−1 to be
its normal core in π, a normal finite index subgroup of both π̂ and π. Denote by
G := π/Γ, a finite group, and let α : π → G be the quotient map. As π̂/Γ surjects
on π̂/ker Θ, it is not difficult to verify that the condition Θ(A) � Θ(B) entails that
α(A) � α(B) ⊂ G. The theorem is now an immediate consequence of Theorem
B. �

Clearly, Theorem 4.6 applies when π1(N) virtually retracts to π1(M). Exam-
ples where this occurs are 3–manifolds whose fundamental group embeds into an all
right hyperbolic Coxeter subgroup of Isom(Hn) (see [LR08, Theorem 2.6]): these
groups retract to any finitely generated geometrically finite subgroup, and the only
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finitely generated geometrically infinite subgroups are virtual fiber groups, hence
excluded in the statement of Theorem 4.6.
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