SYMPLECTIC $S^1 \times N^3$ AND SUBGROUP SEPARABILITY

STEFAN FRIEDL AND STEFANO VIDUSSI

Let N be a closed 3-manifold. Thurston [Th76] showed that if N admits a fibration over S^1 , then $S^1 \times N$ is symplectic, i.e. it can be endowed with a closed, non-degenerate 2-form ω .

It is natural to ask whether the converse of this statement holds true. We can state this problem in the following form:

Conjecture 1. Let N be a closed 3-manifold. If $S^1 \times N$ is symplectic, then there exists $\phi \in H^1(N; \mathbb{Z})$ such that (N, ϕ) fibers over S^1 .

Here we say that (N, ϕ) fibers over S^1 if the homotopy class of maps $N \to S^1$ determined by $\phi \in H^1(N; \mathbb{Z}) = [N, S^1]$ contains a representative that is a fiber bundle over S^1 .

Assuming the Geometrization Conjecture, it is possible to prove that the problem is reduced to the study of irreducible 3–manifolds, and we will henceforth make that assumption for N.

In [FV06a] we related this problem to the study of twisted Alexander polynomials of N, and in particular we proved the following, that is a weaker version of the main result of [FV06a]:

Theorem 1. Let N be an irreducible 3-manifold such that $S^1 \times N$ admits a symplectic structure. Then there exists a primitive $\phi \in H^1(N; \mathbb{Z})$ such that for any epimorphism $\alpha : \pi_1(N) \to G$ onto a finite group G the associated 1-variable twisted Alexander polynomial $\Delta_{N,\phi}^{\alpha} \in \mathbb{Z}[t^{\pm 1}]$ is non-zero.

Recall that the 1-variable twisted Alexander polynomial $\Delta_{N,\phi}^{\alpha}$ associated to the pair (N,ϕ) is defined as the $\mathbb{Z}[t^{\pm 1}]$ -order of the twisted Alexander module $H_1(N;\mathbb{Z}[G][t^{\pm 1}])$. Note that $\Delta_{N,\phi}^{\alpha} \neq 0$ if and only if $H_1(N;\mathbb{Z}[G][t^{\pm 1}])$ is $\mathbb{Z}[t^{\pm 1}]$ -torsion.

Given $\alpha: \pi_1(N) \to G$, denote the corresponding regular cover of N cover by N_G . Note that, if $S^1 \times N$ is symplectic, so is $S^1 \times N_G$. The ingredients of the proof of Theorem 1 are now the following: Taubes' results on the Seiberg-Witten invariants of symplectic 4-manifolds, the relation, proved by Meng and Taubes, between the Seiberg-Witten invariants of N_G and the ordinary ordinary Alexander polynomial Δ_{N_G} , and finally a relation obtained in [FV06a] between Δ_{N_G} and $\Delta_{N,\phi}^{\alpha}$.

Theorem 1 says in particular that the following conjecture implies Conjecture 1 for irreducible manifolds.

Conjecture 2. Let $\phi \in H^1(N; \mathbb{Z})$ be a primitive class such that $\Delta_{N,\phi}^{\alpha} \neq 0$ for all $\alpha : \pi_1(N) \to G$, then (N, ϕ) fibers over S^1 .

To state our main theorem we need the following definition.

Definition. A subgroup $A \subset \pi$ is separable if for all $g \in \pi \setminus A$, there exists an epimorphism $\alpha : \pi \to G$ to a finite group G such that $\alpha(g) \notin \alpha(A)$.

We have the following result, proven in [FV06b]:

Theorem 2. Let N be an irreducible 3-manifold. Let $\phi \in H^1(N; \mathbb{Z})$ be a primitive class such that $\Delta_{N,\phi}^{\alpha} \neq 0$ for all epimorphisms $\alpha : \pi_1(N) \to G$ to a finite group. Let $\Sigma \subset N$ be an embedded surface dual to ϕ having minimal genus. If $\pi_1(\Sigma) \subset \pi_1(N)$ is separable, then (N,ϕ) fibers.

The question of which subgroups of the fundamental group of a Haken manifold are separable has been studied extensively. In particular, the fact that abelian subgroups are separable (cf. [LN91] and [Ha01]) and that incompressible surfaces in Seifert fibered spaces are classified leads to the following corollary.

Corollary 1. Conjecture 1 holds for irreducible manifolds with vanishing Thurston norm and for graph manifolds.

This corollary in particular implies that if N_K is the 0-surgery on a knot K of genus g(K) = 1, and $S^1 \times N_K$ is symplectic, then K is a trefoil or the figure-8 knot. This answers a question of Kronheimer [Kr98].

Scott [Sc78] showed that any subgroup of a hyperbolic 2-manifolds is separable. It has been conjectured by Thurston [Th82] that all (surface) subgroups of hyperbolic 3-manifolds are separable. Clearly a positive solution to Thurston's conjecture would imply Conjecture 1 for hyperbolic manifolds. Furthermore suitable subgroup separability properties of the hyperbolic pieces in the geometric decomposition can be shown to imply Conjecture 1 for all irreducible manifolds.

We conclude with a short outline of the proof of Theorem 2. Let $M = N \setminus \nu \Sigma$. We have two embeddings $i_{\pm} : \Sigma \to \partial M$. By Stallings' theorem, (N, ϕ) fibers if the inclusion induced maps $i_{\pm} : \pi_1(\Sigma) \to \pi_1(M)$ are isomorphisms. Since Σ has minimal genus we know that the maps $i_{\pm} : \pi_1(\Sigma) \to \pi_1(M)$ are injective and that $\pi_1(M) \to \pi_1(N)$ is injective.

Assume, by contradiction, that one of the i_{\pm} is not an isomorphism. We use the corresponding inclusion to view $\pi_1(\Sigma)$ and $\pi_1(M)$ as subgroups of $\pi_1(N)$.

Given an epimorphism $\alpha: \pi_1(N) \to G$ to any finite group G we have a long exact Mayer–Vietoris sequence

$$H_1(N;\mathbb{Z}[G][t^{\pm 1}]) \to H_0(\Sigma;\mathbb{Z}[G]) \otimes \mathbb{Z}[t^{\pm 1}] \to H_0(M;\mathbb{Z}[G]) \otimes \mathbb{Z}[t^{\pm 1}] \to H_0(N;\mathbb{Z}[G][t^{\pm 1}]).$$

Now consider the ranks of the modules over $\mathbb{Z}[t^{\pm 1}]$: we have

$$\begin{aligned} \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_1(N;\mathbb{Z}[G][t^{\pm 1}])) &= 0 \text{ since } \Delta_{N,\phi}^{\alpha} \neq 0, \\ \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(N;\mathbb{Z}[G][t^{\pm 1}])) &= 0 \text{ since } \phi \neq 0, \\ \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma;\mathbb{Z}[G]) \otimes \mathbb{Z}[t^{\pm 1}]) &= \operatorname{rank}_{\mathbb{Z}}(H_0(\Sigma;\mathbb{Z}[G])), \\ \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(M;\mathbb{Z}[G]) \otimes \mathbb{Z}[t^{\pm 1}]) &= \operatorname{rank}_{\mathbb{Z}}(H_0(M;\mathbb{Z}[G])). \end{aligned}$$

Therefore

$$\frac{|G|}{|\alpha(\pi_1(\Sigma))|} = \operatorname{rank}_{\mathbb{Z}}(H_0(\Sigma; \mathbb{Z}[G])) = \operatorname{rank}_{\mathbb{Z}}(H_0(M; \mathbb{Z}[G])) = \frac{|G|}{|\alpha(\pi_1(M))|}.$$

In particular we get that $\alpha(\pi_1(\Sigma)) = \alpha(\pi_1(M)) \subset G$. On the other hand it follows immediately from the assumption that $\pi_1(\Sigma) \subset \pi_1(N)$ is separable, and from the assumption that $\pi_1(\Sigma) \to \pi_1(M)$ is not an epimorphism, that there exists an epimorphism $\alpha : \pi_1(N) \to G$ to a finite group with $\alpha(\pi_1(\Sigma)) \neq \alpha(\pi_1(M))$. This contradiction concludes the proof of Theorem 2.

References

- [FV06a] S. Friedl, S. Vidussi, Twisted Alexander polynomials and symplectic structures, Preprint (2006)
- [FV06b] S. Friedl, S. Vidussi, Symplectic $S^1 \times N^3$, subgroup separability, and vanishing Thurston norm, Preprint (2006)
- [Ha01] E. Hamilton, Abelian Subgroup Separability of Haken 3-manifolds and Closed Hyperbolic n-orbifolds, Proc. London Math. Soc. 83 no. 3: 626-646 (2001)
- [Kr98] P. Kronheimer, Embedded surfaces and gauge theory in three and four dimensions, Surveys in differential geometry, Vol. III (Cambridge, MA, 1996), 243–298, Int. Press, Boston, MA (1998)
- [LN91] D. Long, G. Niblo, Subgroup separability and 3-manifold groups, Math. Z. 207, no. 2: 209–215 (1991)
- [Sc78] P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17, no. 3: 555-565 (1978)
- [Th76] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467–468.
- [Th82] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982)