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Abstract: This paper is one in a series generalizing our results in
[GC, Gu4, 5, 8] on the existence of extremal metrics to the general almost-
homogeneous manifolds of cohomogeneity one. In this paper, we deal with
the affine cases with hypersurface ends. In particular, we study the exis-
tence of Kähler-Einstein metrics on these manifolds and obtain new Kähler-
Einstein manifolds as well as Fano manifolds without Kähler-Einstein met-
rics. As a consequence of our study, we also give a solution of the problem
posted by Ahiezer on the nonhomogeneity of compact almost-homogeneous
manifolds of cohomogeneity one; this clarifies the classification of these man-
ifolds as complex manifolds. We also deal with Fano properties of the affine
compact manifolds.

1 Introduction

The theory of simply connected compact Kähler homogeneous manifolds has
applications in many branches of mathematics and physics. These complex
manifolds possess significant properties: they are projective, Fano, Kähler-
Einstein, rational, etc..

One class of more general Kähler manifolds which would be useful is the
class of almost compact Kähler manifolds with two orbits. Especially those
manifolds of cohomogeneity one.

If we assume that they are simply connected, then they are automatically
projective. One of many interesting questions of them is when they are Fano,
that is, with a positive first Chern class, and therefore more interestingly
when they are Kähler-Einstein. Other questions might be: What is the
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biholomorphic classification of them? What are the automorphism groups
of them? When are they actually homogeneous?

This paper is one of a series of papers in which we answer above ques-
tions and we finished the project of the existence of Calabi extremal metrics
in any Kähler class on any compact almost-homogeneous manifolds of co-
homogeneity one.

There are three types of these kind of manifolds. We refer the readers
to the next section for the details. The type III compact complex almost
homogeneous manifolds of real cohomogeneity one were dealt in [Gu2] more
than fifteen years ago. There is no much stability involved there.

We shall deal with the type I case in [Gu9] and the type II case in this
paper and [Gu12]. This is the first class of manifolds for which the existence
is completely understood and it is equivalent to the geodesic stability.

The purpose of this paper is to prove that there is a Kähler metric
of constant scalar curvature on the affine almost-homogeneous manifold of
cohomogeneity one if the generalized Futaki invariant is positive, i.e., (10)
holds (Theorem 9). We shall prove the converse in [Gu6]. In [GC] and
[Gu4,5,8] we dealt with some examples.

We should mention that our concept of generalized Futaki invariant
might not be the same as the one in [DT] although it might appear to
be similar for our case. A very interesting question is to find a degeneration
such that Ding-Tian’s idea might apply to our case here. It is related to the
normal line bundle of the exceptional divisor, but it is not from the projec-
tive normal line bundle. The generalized Futaki invariant in our case comes
from some kind of combination of the generalized Futaki invariants along
the maximal geodesic rays in the moduli space of Kähler metric but does
not necessarily come directly from any one of them as we have described
and observed in [Gu5,8].

In [Gu8], we only dealt with one manifold which is the example (3) in
[Ak p.68]. In this separate paper, we deal with the other two essential cases
there, which might cause some difficulties, since the manifolds there are
quite unfamiliar.

These two essential cases will be given in section 3. But for the con-
venience to the readers, I will give a short description here: Let M be
a compact complex almost homogeneous manifold, G be the group action
such that M = O ∪ D with O an open orbit and D a closed orbit. M
is called affine if O is a G equivariant Cn bundle (not necessary a vector
bundle) over a compact complex homogeneous manifold. In our cases, M is
a G equivariant fiber bundle over a manifold C such that C = G/P for a
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parabolic subgroup P = SS1R of G with S, S1 semisimple and R the radical,
S1R acts on the fiber F trivially. Moreover, F itself is an affine compact
complex almost homogeneous manifold of CP n bundles with an open orbit
S/U . We have:

For the first case in [Ak p.68] S = Bn n ≥ 2, the Lie algebra of U is
generated by a Cartan subalgebra and the complex root vectors of ±(ei −
ej); ei + ej 1 ≤ i < j ≤ n (no positive roots ei, which correspond to the
Cn). F is a CP n bundle (see [Ak p.68, 73]). We denote F by F (Bn).

For the second case in [Ak p.68] S = Cn n ≥ 3, the Lie algebra of
U is generated by a Cartan subalgebra and the complex root vectors of
±(ei ± ej);±2ei 2 ≤ i < j ≤ n; and 2e1 (no positive roots e1 ± ej , which
correspond to the C2n). F is a CP 2n bundle (see [Ak p.68, 73]). We denote
F by F (Cn).

Being different from the third case in [Ak p.68] we dealt in [Gu8], in
which the manifold can only be a blow up of a homogeneous space, in these
two cases F are homogeneous (see [Ak p.69]).

In the same time, we also treated the manifolds which are fiber bundles
with typical fibers of the first and fifth cases in [Ak p.73] as one situation in
[Gu12]. Although the fiber of the last case is just CP n × (CP n)∗, it is still
in the case of affine type. Therefore, to finish the affine case we have to deal
with that case also. We originally wrote a paper for all the type II cases.
But it was too long for publication. Therefore, we finally separated it into
this paper and [Gu12]. Conceptually, this paper is much more difficult and
original than [Gu12], but technically [Gu12] is more difficult and includes
more cases.

As in [Gu8], we take our original method in [Gu4,5]. From Lie group
point of view our method can be regarded as a nilpotent path method, i. e.,
we consider a path, starting from the singular real orbit, generated by the
action of a 1-parameter subgroup generated by a nilpotent element. One
could also consider the path as a path generated by a semisimple element
Hα, where α is the root which generates the sl(2) Lie subalgebra AC.

In this paper, we first give a preliminary on compact almost homogeneous
manifolds of cohomogeneity one in the second section, and look back to what
we did in [GC], [Gu4, 5] from a Lie group point of view in the third section.
Then we apply the same argument in the third section of [Gu8] to the affine
case. We found that the same method works for the complex structure of
both the affine and the type II cases. We deal with two cases we mentioned
above.
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In the fourth section, we found that the same argument works for the
Kähler structure. This is a section in which we deal with many different
possibilities of the pairs of groups (S,G). This also shows that the affine
classes are very big and are not extraordinary at all (see also the proof of the
Lemma 6 and [Gu12] for a huge amount of this kind of manifolds). A new
ingredient is the appearing of the 3-strings, i.e., 3 dimensionl irreducible
representations of AC. It is quite different from the situation in [Gu8].
Fortunately, the determinants of 3-strings are linear functions of the energy
norm function U .

The fifth section is one of our major input in this research. To calculate
the Ricci curvature we apply a modified Koszul’s trick which was motivated
by [Ks p.567–570] as we did in [Gu8]. This is a difficult part and was missing
in [Si]. It turns out that both our earlier works in holomorphic symplectic
manifolds [Gu3] and homogeneous spaces [Gu7], [DG1,2] help us go through
this research. The formula we used from [DG1 4.11] is due to Professor
Dorfmeister.

We calculate the scalar curvature in the sixth section and setting up the
equations in the seventh section. The pattern of these equations make it
possible to reduce a fourth order ODE to a second order ODE.

We finally prove our Theorem 9 in the eighth section. One consequence
of our argument is that the manifolds we considered in this paper are all
Fano (Corollary 1). This is not true for the case in which S = An ([Gu12]).

We then treat the Kähler Einstein case in the ninth section. The pattern
of the examples seems quite bizarre in the ninth section if the asymptotic
Mumford weakly stability is the same as geodesic stability or weakly K-
stability. It is also clear to us that our geodesic stability is stronger than
the weakly K-stability. The weakly K-stability should correspond to the
nonpositivity of our integral. It is more like a semistability. So far we still
can not find an example with a zero integral for the Ricci class. Otherwise,
it should become a candidate which is weakly K-stable but not geodesically
stable.

In the last section, we obtain a result on these manifolds. We solve a
problem on the nonhomogeneous property of compact almost-homogeneous
manifolds of cohomogeneity one and with a hypersurface end. This is im-
portant for our new Kähler-Einstein manifolds since we need to know that
they are not homogeneous and therefore are new. This is also a question
raised by Ahiezer. I later found that he also obtained a solution but with a
different proof (in Russian only). In our proof we actually prove that if M is
not homogeneous, then the group is actually the identity component of the
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automorphism group and the manifolds are different from each other. This
gives a complete classification of compact almost homogeneous manifolds of
cohomogeneity one and with a hypersurface end. They are either homoge-
neous or nonhomogeneous completions of C∗ bundles, or nonhomogeneous
almost-homogeneous manifolds of cohomogeneity one with semisimple group
action and a hypersurface end. The first and the second classes in this clas-
sification are well understood for many years. Our result clarify the third
class. Then we calculate concretly that for the homogeneous cases, our
condition (10) holds. This of course should be true, but we just use it as
examples.

In this paper, as in [Gu8] we also have three natural variables: t the
nipotent time, θ the phase angle, τ the micro time. They help us understand
the equation very much. The choice θ = t2

d+t2 make the equation much
simpler. We avoided another natural variable s the semisimple time which
was in [Gu5], but it will eventually appear in [Gu6]. As in [Gu8], the energy
norm function U and the Ricci mixed energy norm function Uρ in the sections
4 and 6 are seemly God given, which are the reasons that we can solve this
probem.

By taking the advantage of the solution for higher codimensional ends
in [Gu10], we also checked the possibility of blowing down of our manifolds.
In all our calculations we also need to take care carefully of the change of
the invariant inner products when we restrict our calculation to a typical
subgroup S in G.

2 Preliminaries

Here, we summarize some known results about compact complex almost ho-
mogeneous manifolds of cohomogeneity one. In this paper, we only consider
manifolds with a Kähler structure. For earlier results on this subject, we
refer the readers to [Ak] and [HS].

We call a compact complex manifold an almost-homogeneous manifold
if its complex automorphism group has an open orbit. We say that a mani-
fold is of cohomogeneity one if the maximal compact subgroup has a (real)
hypersurface orbit. In [GC] and [Gu5], we reduced compact complex almost
homogeneous manifolds of cohomogeneity one into three types of manifolds.

We denote the manifold by M and let G be a complex subgroup of its
automorphism group which has an open orbit on M .

Let us assume first that M is simply connected. Let the open orbit be
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G/U , K be the maximal connected compact subgroup of G, L be the generic
isotropic subgroup of K, i.e., K/L be a generic K orbit. We have that (see
[GC Theorem 1]):

Proposition 1. If G is not semisimple, then M is a completion of a
C∗ bundle over a projective rational homogeneous space.

For the structure of the projective rational homogeneous spaces, we refer
the reader for the detailed discussion in [Gu7]. Here, we just recall some
results which will be used in this paper.

A projective rational homogeneous space is a quotient of a complex
semisimple Lie group G over a parabolic subgroup P . Let ∆ be a root
system of G. A subgroup P is a parabolic subgroup if its Lie algebra con-
tains all the roots and the positive root vectors.

If a compact almost-homogeneous Kähler manifold is a completion of a
C∗ bundle over a product of a torus and a projective rational homogeneous
space, we call it a manifold of type III . We have dealt with this kind of man-
ifolds in our dissertation [Gu1,2]. There always exists an extremal metric in
any Kähler class. Recently, we generalized this existence result to a family
of metrics, which connects the extremal metric [Gu2] and the generalized
quasi-einstein metric [Gu10], called the extremal-soliton metrics in [Gu11].
The existence of the extremal-soliton is the same as the geodesic stability
with respect to a generalized Mabuchi functional.

In general, if M is a compact almost homogeneous Kähler manifold and
O is the open orbit, then D = M −O is a proper closed submanifold. More-
over, D has at most two connected components. We call each component of
D an end. If D has two components (or one component), we say that M is
an almost homogeneous manifold with two ends (or one end). We have (see
[HS Theorem 3.2]):

Proposition 2. If M is a compact almost-homogeneous Kähler mani-
folds with two ends, then M is a manifold of type III.

Therefore, we only need to deal with the case with one end. Again, in the
case of M being simply connected, we only need to take care of the case in
which G is semisimple. If G is semisimple and M has two G orbits, one open
and one closed, and moreover if the closed orbit is a complex hypersurface,
there are two possibilities. Let K,L be the Lie algebras of K,L. Then the
centralizer of L in K is a direct sum of L and a Lie subalgebra A which is
either one dimensional or the 3-dimensional Lie algebra su(2). If A is one
dimensional, we call M a manifold of type I . If A is su(2), we call M a
manifold of type II . We also denote the complexification of A by AC.
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In general, if the closed orbit has a higher codimension, we can always
blow up the closed orbit to obtain a manifold M̃ with a hypersurface end.
We call the manifold M a manifold of type I (or II) if M̃ is of type I (or II).

There is a special case of the type II manifolds. If the open orbit is a Ck

bundle over a projective rational homogeneous manifold, we call M an affine
type manifold (not to be confused with the closed complex submanifolds of
Cm). We note that in our case, the Ck bundle is not a complex holomorphic
vector bundle.

Let Aut0(M) be the identity component of the complex automorphism of
M , then any compact almost-homogeneous manifold is either homogeneous
or almost-homogeneous of cohomogeneity one with the Aut0(M) action. The
homogeneous ones are well understood. Therefore, we are only interested in
those manifolds which are almost-homogenoues of cohomogeneity one with
Aut0(M) action. We have (see [Gu5 section 12]):

Proposition 3. Any compact almost-homogeneous Kähler manifold M
of cohomogeneity one is an Aut0(M) equivariant fibration over a product of
a rational projective homogeneous manifold Q and a complex torus T with
a fiber F . Therefore, M can be regarded as a fiber bundle over T with a
simply connected fiber M1. One of following holds:

(i) M is a manifold of type III.
(ii) M1 is of type II but not affine.
(iii) M1 is affine.
(iv) M1 is of type I.

We say that M is a manifold of type I (or type II, affine) if M1 is a
manifold of type I (or type II, affine).

We actually can also obtain a structure of the M1 bundle over T from
[HS]. We only need to understand the bundle structure for the open orbit.
By [HS Corollary 4.4], we have that the bundle structure is a product unless
when we apply Proposition 3 to M̃ we have that F = Qk is a k-dimensional
hyperquadric. In the latter case, there is an unbranched double covering M̄
of M such that the bundle structure is a product. We have that:

Proposition 4. The M1 bundle over T is a product except in the case
with which the open orbit is an F0 bundle over Q × T such that F0 is in
either the second, or the sixth, or the eighth case in [Ak p.67]. In the latter
cases the M1 bundle has an unbranched double covering which is a product
of M1 and T .

In [Gu8, 12] and this paper, we dealt with the simply connected affine
and the type II cases with a hypersurface end. In [Gu9], we shall deal with
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the simply connected type I cases with a hypersurface end. Then, we shall
deal with the simply connected cases with a higher codimensional end in
[Gu9 section 11], and the general case in [Gu9 section 12].

3 The complex structures of the affine almost ho-

mogeneous manifolds

In this section we will deal with the complex structure J of the affine al-
most homogeneous manifolds. Let us recall some basic notations of the Lie
algebras.

To make the things simpler we look at two special cases [Ak p.68] first.
We let G and U be the corresponding complex Lie groups and O = G/U
be the open orbit. U ⊂ G is always a subgroup containing a maximal torus
and:

(1) F (B2) G = B2, roots of U are ±(e1 − e2), e1 + e2.
(2) F (C3) G = C3, roots of U are ±(e2 ± e3),±2e2,±2e3, 2e1.

In the case (1), the roots of the affine space are e1 and e2. The long root
α1 = e1−e2 and the short root α2 = e2 consist a fundamental root system of
this Lie algebra. B2 has other positive roots α1+α2 = e1, α1+2α2 = e1+e2.
B2 has a Cartan subalgebra

H =









































0 −a1i 0 0 0
a1i 0 0 0 0
0 0 0 −a2i 0
0 0 a2i 0 0
0 0 0 0 0















|a1,a2∈C



























.

The vector e1 corresponds to (a1, a2) = (1, 0) and e2 corresponds to (a1, a2) =
(0, 1). The open orbit is generated by the combined action of B2 on

A = [0, 0, 0, 0, 1]T

which represents a 4 dimensional complex subspace π = kerAT of C5 and

B =

[

1 i 0 0 0
0 0 1 i 0

]T
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which represents a 2 dimensional complex subspace l ⊂ π generated by the
column vectors of B. We let

E±e1 =







02×2 02×2 BT

02×2 02×2 02×1

−B 01×2 0







with B = 1√
2
[±1, i],

Ee1±e2 =







02×2 A 02×1

−AT 02×2 02×1

01×2 01×2 0







for

A =
1

2

[

1 ±i
i ∓1

]

,

E−α = ĒT
α .

Fα = Eα − E−α, Gα = i(Eα + E−α),

then
[Fα, Gα] = 2Hα

and
[Hα, Fα] = i(Hα,Hα)0Eα,

where ( , )0 is the standard inner product such that (ei, ei)0 = 1.
We also have that

[E±ei
, E±(ej−ei)] = ∓E±ej

,

[Eei
, E±ej

] = ∓Eei±ej
,

[E−ei
, E±ej

] = ∓E−ei±ej

and
[E±ei

, E±(ei+ej)] = ±E∓ej
.

The tangent space is generated by Eα’s with

α = ±(α1 + α2),−(α1 + 2α2),±(α2).

The affine space C2 is generated by the root vectors with

α1 + α2 = e1, α2 = e2.
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As in the case of [Gu4], we consider the nilponent orbit generated by
Eα1+α2 .

Now,

pt = exp(tEα1+α2)



[0, 0, 0, 0, 1]T ×
[

1 i 0 0 0
0 0 1 i 0

]T




=

[

t√
2
,

it√
2
, 0, 0, 1

]T

×
[

1 i 0 0 0
0 0 1 i 0

]T

,

p∞ = [1, i, 0, 0, 0]T ×
[

1 i 0 0 0
0 0 1 i 0

]T

.

Let

F = Eα1+α2 − E−α1−α2 , G = i(Eα1+α2 + E−α1−α2),H = Hα1+α2 ,

then as before

JF = −G +
2H

t
.

Let T be the tangent vector of the curve pt, then

JH = −tT.

Similarly, JFα1 = −Gα1 , JFα1+2α2 = −Gα1+2α2 , JFα2 = −Gα2 +
2Gα1

t .
In particular, at P∞ we have JFα = −Gα.

Similarly, we consider F (Bn), then the roots of U are

±(ei − ej), ei + ej

with 1 ≤ i < j ≤ n. The open orbit is a combination of the Bn action on

[0, · · · , 0, 1]T1×(2n+1) ×











1 i 0 0 · · · 0 0 0
0 0 1 i · · · 0 0 0

· · ·
0 0 0 0 · · · 1 i 0











T

.

For the complex Lie group Bn, we have αi = ei − ei+1 for 1 ≤ i < n
and αn = en. Therefore, ei =

∑n
j=i αj , ei − ek =

∑k−1
j=i αj , ei + ek =

∑k−1
j=i αj + 2

∑n
j=k αj . In particular e1 =

∑n
1 αj. Therefore, similarly we

have that:
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The vector space Cn is generated by root vectors with ei.

Proposition 5. For F (Bn),

JFe1 = −Ge1 +
2H

t
,

JFei+ek
= −Gei+ek

,

JFei
= −Gei

+
2Ge1−ei

t

and
JFe1−ei

= −Ge1−ei
.

We also have
Fei−ek

= Gei−ek
= 0

for i > 1. In particular, at p∞, JFα = −Gα for α 6= ei − ek with 1 < i < k.

In F (C3) of the case (2), the roots of the affine space are e1 ± e2 and
e1 ± e3. The two short roots α1 = e1 − e2, α2 = e2 − e3 and the long root
α3 = 2e3 consist a fundamental root system of the Lie algebra. C3 has other
positive roots α1+α2 = e1−e3, α1+α2+α3 = e1+e3, α1+2α2+α3 = e1+e2,
α2 + α3 = e2 + e3, 2α2 + α3 = 2e2 and 2α1 + 2α2 + α3 = 2e1.

The complex Lie group C3 has a Cartan subalgebra

H =





















































a1 0 0 0 0 0
0 a2 0 0 0 0
0 0 a3 0 0 0
0 0 0 −a1 0 0
0 0 0 0 −a2 0
0 0 0 0 0 −a3



















|a1,a2,a3∈C



































.

The vector e1 corresponds to (a1, a2, a3) = (1, 0, 0), e2 to (0, 1, 0), e3 to
(0, 0, 1). The open orbit is generated by the combined C3 action on A =
[1, 0, 0, 0, 0, 0]T which represents a complex 1 dimensional subspace l of C6

generated by A and

B =

[

1 0 0 0 0 0
0 0 0 1 0 0

]T

which represents the complex 2 dimensional column space π of B. We have
l ⊂ π.
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We let

Eα =

[

Aα 0
0 −AT

α

]

with

Ae1−e2 =







0 1 0
0 0 0
0 0 0







and

A−e1+e2 =







0 0 0
1 0 0
0 0 0






.

We let

Eβ =

[

0 Bβ

0 0

]

with

B2e1 =







√
2 0 0

0 0 0
0 0 0







and

Be1+e2 =







0 1 0
1 0 0
0 0 0






.

We also let E−β = ET
β .

We have that [Fα, Gα] = 2Hα and [Hα, Eα] = i(Hα,Hα)0Eα, where ( , )0
is the standard inner product such that (e1 − e2, e1 − e2)0 = 2,

[E±2ei
, E∓(ei+ej)] = ±

√
2E±(ei−ej), [E±(ei−ej), E±2ej

] = ±
√

2E±(ei+ej),

[E±(ei−ej), E±(ei+ej)] = ±
√

2E±2ei
, [Eei−ej

, Eej−ek
] = Eei−ek

,

[E±(ei−ej), E±(ej+ek)] = ±E±(ei+ek).

The tangent space is generated by Eα’s with

α = ±(e1 ± ej),−2e1.

The affine space C4 is generated by

e1 ± ej .
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As above, we consider the nilponent orbit generated by Eα1 .
Now,

pt = exp(tEα1)



[1, 0, 0, 0, 0, 0]T ×
[

1 0 0 0 0 0
0 0 0 1 0 0

]T




= [1, 0, 0, 0, 0, 0]T ×
[

1 0 0 0 0 0
0 0 0 1 −t 0

]T

,

p∞ = [1, 0, 0, 0, 0, 0]T ×
[

1 0 0 0 0 0
0 0 0 0 1 0

]T

.

Let
F = Eα1 − E−α1 , G = i(Eα1 + E−α1),

then as above we have that

JF = −G +
H

t
.

Let T be the tangent vector of the curve pt, then

JH = −2tT.

Similarly,
JFα2 = Gα2 , Fα3 = Gα3 = 0,

JFα2+α3 = Gα2+α3 , JF2α2+α3 = G2α2+α3 ,

JF2α1+2α2+α3 = −G2α1+2α2+α3 ,

JFα1+2α2+α3 = −Gα1+2α2+α3 −
√

2G2α2+α3

t
,

JFα1+α2+α3 = −Gα1+α2+α3 −
2Gα2+α3

t

and

JFα1+α2 = −Gα1+α2 −
2Gα2

t
.

At p∞, F2e3 = G2e3 = 0, JF2e2 = G2e2 , JFe2±e3 = Ge2±e3 . For other roots
α we have that JFα = −Gα.

Similarly, we consider F (Cn), then the roots of U are

±(ei ± ej)
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with 1 < i < j ≤ n and
±2ei, 2e1.

The open orbit is a combination of the Cn action on

[1, 0, · · · , 0; 0, 0, · · · , 0]T ×
[

1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0

]T

.

For Cn we have αi = ei − ei+1 for 1 ≤ i < n and αn = 2en, Therefore,

ei − ek =
k−1
∑

j=i

αj,

ei + ek =
k−1
∑

j=i

αj + 2
n−1
∑

j=k

αj + αn,

2ei = 2
n−1
∑

j=i

αj + αn.

Therefore, similarly we have that:
The vector space is generated by the root vectors with e1 ± ej .

Proposition 6. For F (Cn),

JFα1 = −Gα1 +
H

t
,

JF2e1 = −G2e1 ,

JF2e2 = G2e2 .

We also have that
Fα = Gα = 0

for
α = ei − ek, 2ei, ei + ek

with i > 2.
And

JFe1+e2 = −Ge1+e2 −
√

2G2e2

t
,

JFe2+ek
= Ge2+ek

,

JFe1+ek
= −Ge1+ek

− 2Ge2+ek

t

14



for k > 2.
Moreover,

JFe2−ek
= Ge2−ek

,

JFe1−ek
= −Ge1−ek

− 2Ge2−ek

t
.

At p∞ we have that Fα = Gα = 0 if α = 2ei, ei ± ek, i > 2; JF2e2 =
G2e2 , JFe2±ek

= Ge2±ek
. For other roots α we have that JFα = −Gα.

In general, as in [Ak] G is semisimple, UG is the 1-subgroup. There
is a parabolic subgroup P = SS1R with S, S1 semisimple and R solvable
such that UG = US1R where U is a 1-subgroup of S. The manifold is
a fibration over G/P with the completion of P/UG = S/U as the affine
almost homogeneous fiber. In this case, the root system of S is a subsystem
of the root system of G. In the Lie algebra of G, we also have Fα, Gα for
those roots of G which are not in S. The tangent space of G/UG along
pt is decomposed into irreducible AC representations, which we call strings.
Fα, Gα are in the complement representation of S. But JFα = −Gα (mod S)
as it is in the tangent space of G/P . Therefore, we have JFα = −Gα for
any α which is not in the root system of S. This discussion is corresponding
to the discussion in the last paragraph of the second section of [Gu8].

Proposition 7. For affine almost homogeneous manifolds of cohomo-
geneity one with S,U in the cases (1), (2) of [Ak p.68] we have:

JFα = −Gα

if α is not in the Lie algebra of S, and JFα follows the same formula in
Propositions 5 and 6 if α is in the Lie algebra of S.

If S is B2, the bigger complex Lie group G can be Bn, Cn, F4. If S is
B3, G can be Bn, F4. If S is C3, G can be Cn, F4. If S is Bn with n > 3,
G can only be Bm+n. If S is Cn with n > 3, then G can be Cm+n.

4 The Kähler structures

In this section, we shall deal with the Kähler structures. The method is
basically the same as that in the section 5 of [Gu8]. In [Gu8], we dealt with
a 4-string for the case S = G2, i.e., a 4 dimensional ireducible representation
of the Lie subalgebra AC. It happens that for the cases S = Bn or Cn and
the case S = An later on in [Gu12] we have to deal with 3 dimensional
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irreducible representations of AC. We call them 3-strings. It is a miracle
that our method still works for the 3-strings.

In general, we call an irreducible AC representation V an n-string if
dimC V = n.

For F (B2), G = S = B2, by regarding the open B2 orbit as a homo-
geneous space, the vector fields which corresponding to the Lie algebra are
the pushdown of the right invariant vector fields on the Lie group B2. As
we did in [Gu8], we study the corresponding left invariant vector fields on
the Lie group. To make the things simpler, we still use our original notation
for the left invariant vector fields. Since the Kähler form is (left)invariant
under the action of the maximal compact Lie subalgebra K of the complex
Lie algebra B2, the pullback of this Kähler form is left K invariant form on
B2. Therefore, T (ω(X,Y )) = −ω(T, [X,Y ]) for any X,Y ∈ K.

Now,

T (ω(G,H)) = −ω(T, F )

= −ω(JT, JF )

= −ω(
H

t
,−G +

2H

t
)

= −t−1ω(G,H),

that is, ω(G,H) = Ct−1 for a constant C. Then C = 0, otherwise ω(G,H)
is infinity at p0. Therefore,

ω(G,H) = ω(T, F ) = 0.

Similarly,

tT (ω(H,F )) − T (ω(F,G)) = ω(tT,−G +
2H

t
)

= ω(tJT, J2F )

= −ω(H,F ),

i.e., T (tω(H,F )) = T (ω(F,G)). Therefore,

ω(F,G) = tω(H,F ) + A

for some constant A.
Let ( , )B be an invariant metric on K such that (H,H)B = 1. If there

is no confusion we write ( , ) = ( , )B . Then H, G√
2
, F√

2
is an unitary basis
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of the Lie algebra A. Therefore

[X,Y ] = ([X,Y ],H)H + 2−1([X,Y ], F )F + 2−1([X,Y ], G)G

+ [X,Y ]l + [X,Y ](A+L)⊥ .

Therefore,

ω(T, [X,Y ]) = ([X,Y ],H)ω(T,H) + 2−1([X,Y ], G)ω(T,G)

+ ω(T, [X,Y ](A+L)⊥).

But
ω(T, [X,Y ](A+L)⊥) = ω(tH, J([X,Y ](A+L)⊥)) = 0,

since JX ∈ (A + L)⊥ if X ∈ (A + L)⊥. We also have

ω(X,Y ) = (aH + bF + cG + I, [X,Y ])

with I in the center of l.

ω(G,H) = (aH + bF + cG + I, [G,H]) = (bF, F ) = 2b = 0,

i.e., b = 0. Therefore,

T (ω(X,Y )) = (a′H + c′G + I ′, [X,Y ])

= −ω(T, [X,Y ])

= −([X,Y ], ω(T,H)H + 2−1ω(T,G)G),

i.e., I ′ = 0 and a′ = −ω(T,H), c′ = −2−1ω(T,G). The last two equalities
are actually already known to us. We actually obtained

ω(T,−G +
2H

t
) = 2c′ − 2a′

t

= ω(JT, J2F )

= −ω(
H

t
, F )

= −t−1(aH + cG,G)

= −2ct−1,

that is, tc′ + c = a′. Therefore, a = tc + C. That is,

ω(F,G) = 2a = 2tc + 2C = tω(H,F ) + 2C.
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Therefore, we already have this equality with A = 2C. We also see that
c(0) = 0 since H(0) = 0. The first equality means that I does not depend
on t, i.e.,

I = Biα2

for some constant B. Therefore, the Kähler form is

ω(X,Y ) = ((tf(t) + C)H + f(t)G + Biα2, [X,Y ])

= (H(t), [X,Y ]),

where f(t) = c and H(t) = aH + cG + I.
As an observation, we see that if

V1 = span(T, Fα),

V2 = span(H,Gα),

then
JV1 = V2

and
V ⊥

1 = V2

with respect to ω. Moreover,

[V1, V1], [V2, V2] ⊂ V1,

[V1, V2] ⊂ V2.

Proposition 8. For F (B2), the Kähler metric is a direct sum of its
restriction on the subspaces

W = span(T,H, F,G),

W1 = span(Eα|α = α1, α2, α1 + 2α2).

On W , let c = f then the metric is

[

ω(T, JT ) ω(T, JF )
ω(F, JT ) ω(F, JF )

]

=

[

ω(T, H
t ) ω(JT,−F )

ω(F, H
t ) ω(F,−G + 2H

t )

]

=

[

− tf ′+f
t −2f

t

−2f
t −2(2+t2)f

t − 2C

]

.
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The determinant is equal to

t−1 det

[

ω(T,H) ω(T,−G)
ω(F,H) ω(F,−G)

]

= −t−1 det

[

−a′ −2c′

−2c 2a

]

= 2t−1(aa′ + 2cc′)

=
U ′

t
,

where U = a2 + 2c2.
We notice that U is the square norm (H(t),H(t)) up to a constant, i.e.,

the energy of H(t) up to a constant.
We also see that U is increasing. We also see that f(0) = 0,−(tf)′ > 0

when t > 0, therefore, −f > 0 when t > 0 and −tf is increasing. We also
notice that f(−t)

−t = f(t)
t , that is, f(t) is an odd function.

On W1 we have that:






ω(Fα1 , JFα1) ω(Fα1 , JFα2) ω(Fα1 , JFα1+2α2)
ω(Fα2 , JFα1) ω(Fα2 , JFα2) ω(Fα2 , JFα1+2α2)

ω(Fα1+2α2 , JFα1) ω(Fα1+2α2 , JFα2) ω(Fα1+2α2 , JFα1+2α2)







= −2







a − B −c 0
−c B + 2c

t c
0 c a + B






.

The determinant is equal to

det(ω(Fαi
,−Gαj

)) = −8B(U − B2).

Since Fα1(0) = 0, we have that a(0) = C = B and U(0) = B2. By U
increasing, we have that U −B2 > 0 and therefore −8B > 0, i. e., −B > 0.

For F (Bn), G = S = Bn, we can do the same. And almost everything are
the same except we have In = Bi

∑n
2 ej instead of I2 = Biα2 = Bie2. In that

case, we have n−1 of e1 3-strings e1−ek, ek, e1+ek instead of α1, α2, α1+2α2.
That is, we have triples of positive roots such that the corresponding root
vectors generates 3 dimensional irreducible representations of the sl(2) Lie
subalgebra AC which is generated by e1.

In general, we say that n positive roots an n-string of a root α if they
generate n dimensional irreducible representations of the sl(2) Lie subalge-
bra generated by α.
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The restricted metrics for these 3-strings are exactly the same as that
of α1, α2, α1 + 2α2 for the B2 case. However, there are also (n−1)(n−2)

2 e1

1-strings ei + ek for 1 < i < k ≤ n. We have

ω(Fei+ek
, JFei+ek

) = −ω(Fei+ek
, Gei+ek

) = −2B.

Therefore, the volume is

V =
U ′

t
(−8B(U − B2))n−1(−2B)

(n−1)(n−2)
2 .

When G 6= S, we have

ω(X,Y ) = (aH + cG + IS + IP .[X,Y ])

with IS ∈ L ∩ S and IS is in the center of L, IP is in the center of L but is
perpendicular to S. We denote IS + IP by IG, and if there is no confusion
we write I = IS .

In the case F = F (Bn), i.e., S = Bn, G = Bm+n and the Cn is generated
by em+1, · · · , em+n, we have other em+1 3-strings el − em+1, el, el + em+1 for
l ≤ m and other em+1 1-strings.

ω(X,Y ) = (aH + cG + I + i
m

∑

i=1

Biei, [X,Y ]).

The determinants of the 1-strings are constants. The restricted metrics to
the subspaces generated by 3-strings el − em+1, el, el + em+1 are

−2







Bl − a −c 0
−c Bl c
0 c Bl + a






.

Therefore, the determinant for the 3-strings is

−8Bl(B
2
l − U).

We have Bl < B,U < B2
l .

The volume is

V = M
U ′

t
(U − B2)n−1

m
∏

i=1

(B2
i − U)

20



with a constant M > 0.

Now, let us consider the case of G = F4. According to [Hu p.64], F4 has
a root system with roots ±ei for any 0 ≤ i ≤ 4 and

±(ei ± ej) i 6= j,±1

2
(e1 ± e2 ± e3 ± e4)

with a basis

(e2 − e3, e3 − e4, e4, α4 =
1

2
(e1 − e2 − e3 − e4)).

A B2 type complex Lie subgroup is generated by e3 − e4, e4. A B3 type
complex Lie subgroup is generated by e2−e3, e3−e4, e4. A C3 type complex
Lie subgroup is generated by e3 − e4, e4, α4.

If F = F (B2), there are two other e3 3-strings e1 − e3, e1, e1 + e3 and
e2 − e3, e2, e2 + e3. There are also four other e3 2-strings 1

2 (e1 ± e2 − e3 ±
e4),

1
2(e1 ± e2 + e3 ± e4). There are also some more other e3 1-strings, but

their determinants are constants.

ω(X,Y ) = (aH + cG + Bie4 + iB1e1 + iB2e2, [X,Y ]).

All the e3 3-strings and e3 are in B3 and the restriction of the ω is

(aH + cG + iB1e1 + iB2e2, [X,Y ]).

As above we have that the determinants for these 3-strings are

−8Bi(B
2
i −U)

with i = 1, 2. We also have that Bi < B and U < B2
i . Any e3 2-string and

e3 generates an A2 Lie algebra and the restriction of ω is

(aH + cG +
i

3
(B1 ± B ± B2)(e1 ± e2 ± e4), [X,Y ]).

We have that the determinants for these 2-strings are

(B1 ± B2 ± B)2 − U

and B1 < B2 + 2B,U < (B1 − B2 − B)2. The volume is

V = M
U ′

t
(U − B2)

2
∏

i=1

(B2
i − U)

∏

((B1 ± B2 ± B)2 − U).
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If F = F (B3), there is another e2 3-strings e1 − e2, e1, e1 + e2 and four
other e2 2-strings 1

2 (e1 − e2 ± e3 ± e4),
1
2(e1 + e2 ± e3 ± e4). There are also

some e2 1-strings, but their determinants are constants.

ω(X,Y ) = (aH + cG + iB(e3 + e4) + iB1e1, [X,Y ]).

This e2 3-string and e2 is in a B2 type complex Lie subgroup with a restricted
ω of

(aH + cG + iB1e1, [X,Y ]).

The determinant is
−8B1(B

2
1 − U)

and B1 < B, U < B2
1 . Any e2 2-string and e2 generate an A2 Lie algebra.

The restricted ω is

(aH + cG +
i

3
(B1 + B(±1 ± 1))(e1 ± e3 ± e4), [X,Y ]).

The determinants are

(B1 + B(±1 ± 1))2 − U

and B1 < 3B, U < (B1 − 2B)2. The volume is

V = M
U ′

t
(U − B2)2(B2

1 − U)
∏

((B1 + B(±1 ± 1))2 − U).

Similarly, for F (C3), i.e., G = S = C3 we have

ω(X,Y ) = (aH + cG + I, [X,Y ])

= (H(t), [X,Y ])

with a = tc + C = tf(t) + B, I = Bi(e1 + e2) = Bi(α1 + 2α2 + α3) where
( , ) = ( , )C (we omit C if there is no confusion) is the invariant form with

(H,H)C = (F, F )C = (G,G)C = 1.

α1 has only one 3-strings 2e2, e1 + e2, 2e1. The determinant of the metric on
this 3-strings is −8B(U − B2) where U = a2 + c2 is the norm (H(t),H(t))
up to a constant. The determinant of the metric on the space generated by
T,H, F,G is U ′

2t . α1 has two 2-strings e2 − e3, e1 − e3 and e2 + e3, e1 + e3.
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The matrices of the restriction of the metric on them are identical and the
determinants are U − B2. Therefore, the volume is

V =
U ′

2t
(−8B(U − B2)3).

For the case of F (Cn), G = S = Cn, we also have

ω(X,Y ) = (aH + cG + I, [X,Y ])

with I = Bi(e1 + e2). α1 has only one 3-string 2e2, e1 + e2, 2e1 and 2(n− 2)
2-strings (e2 − ek, e1 − ek), (e2 + ek, e1 + ek) with k > 2. Therefore, the
volume is

V =
U ′

2t
(−8B(U − B2)2n−3).

Here, we compare the case of S = B2 and S = C2. For S = B2,
[He1 , Fe1 ] = Ge1 and for S = C2, [He1−e2 , Fe1−e2 ] = 2Ge1−e2 . We can
assume that He1 = k1He1−e2 and Fe1 = k2Fe1−e2 with positive k1, k2,

then k1 = 1
2 and k2 = 2−

1
2 . Let ( , )B = k3( , )C then (He1 ,He1)B =

k3(2
−1He1−e2 , 2

−1He1−e2)C . Therefore, we have k3 = 4. Let BB and BC be
the corresponding B for the cases of S = B2 and S = C2, then

([X,Y ], iBBe2)B = ([X,Y ], iBC(e1 + e2))C ,

i.e.,
4([X,Y ], 2−1iBB(e1 + e2))C = ([X,Y ], iBC(e1 + e2))C .

Thus, 2BB = BC .
We also have that Ee1 = 2−

1
2 Ee1−e2 and therefore tB = 2

1
2 tC . From

([X,Y ], cB(
√

2tC)Ge1)B = ([X,Y ], cC(tC)Ge1−e2)C ,

we have that

4([X,Y ], 2−
1
2 cB(

√
2t)Ge1−e2)C = ([X,Y ], cC(t)Ge1−e2)C ,

i.e., 2
3
2 cB(

√
2t) = cC(t). We can also check that 2aB(

√
2t) = aC(t). There-

fore, 4UB = 4(aB)2 + 8(cB)2 = (aC)2 + (cC)2 = UC .

For the case of G = F4 and S = C3, C3 is generated by α4, e4, e3 − e4.
The α1 in the basis of C3 is our α4 here. However, H = 2α4 and I =
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2iB(α4 + 2e4 + e3 − e4) = iB(e1 − e2 + e3 + e4). Therefore, by (H.H) = 1
we have (e1, e1) = 1

4 .

ω(X,Y ) = (aH + cG + I + iB1(e1 + e2), [X,Y ]).

There are two other α4 3-strings e2 + e3,
1
2(e1 + e2 + e3 − e4), e1 − e4

and e2 + e4,
1
2(e1 + e2 − e3 + e4), e1 − e3. There are two other α4 2-strings

e2,
1
2 (e1 + e2 − e3 − e4) and e1,

1
2 (e1 + e2 + e3 + e4). Any α4 3-string and α4

generate a B2 type complex Lie subalgebra. The restricted ω is

(aH + cG +
iB1

2
(e1 + e2 ± (e3 − e4)), [X,Y ]).

By regarding B1
2 as the B1 in the usual case in which G = B2, we have that

the determinants are

−8(
B1

2
)((

B1

2
)2 − U)

and B1 < 2B, 4U < B2
1 . Any α4 2-string and α4 generate an A2 type of

complex Lie subalgebra. For the first 2-string, the restricted ω is

(aH + cG +
i

3
(B1 − B)(e1 + 3e2 − e3 − e4), [X,Y ]).

The determinant is
(B1 − B)2 − U

and B1 < 2B, U < (B1 − B)2. For the second 2-string, the restricted ω is

(aH + cG +
i

3
(B1 + B)(3e1 + e2 + e3 + e4), [X,Y ]).

The determinant is
(B1 + B)2 − U .

Therefore, the volume is

V = M
U ′

t
(U − B2)3((

B1

2
)2 − U)2

∏

((B1 ± B)2 − U).

For the case F = F (Cn), i.e., S = Cn and G = Cm+n, we have no other
αm+1 = em+1 − em+2 3-string but 2m other αm+1 2-strings (ei + em+2, ei +
em+1) and (ei − em+2, ei − em+1) with i ≤ m.

ω(X,Y ) = (aH + cG + I + i
m

∑

i=1

Biei, [X,Y ]).
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The other αm+1 2-strings have determinants (Bi ± B)2 −U . Therefore, the
volume is

V = M
U ′

t
(U − B2)2n−3

m
∏

i=1

((Bi ± B)2 − U)2

and −Bi > 0,U < (Bi ± B)2.

For the case S = B2 and G = Cn, the B2 is generated by the simple roots
en−1 − en and 2en. α = en−1 + en is the root generated the Lie subalgebra
A. In this case, H = 1

2Hen−1−en and

ω(X,Y ) = (aH + cG + i
B

2
(en−1 − en) + i

n−2
∑

k=1

Bkek, [X,Y ])

= (H(t), [X,Y ]).

α has 2(n − 2) other 2-strings ek − en−1, ek + en and ek + en−1, ek − en.
As above, their determinants are (2Bk ± B)2 − U with U being the norm
(H(t),H(t)) up to a constant and U(0) = B2. Bk < 0,U < (2Bk ± B)2.
Therefore,

V = M
U ′

t
(U − B2)

n−2
∏

k=1

((2Bk ± B)2 − U)2.

We notice that all the I and therefore the coefficients B, Bi depend on
the inner product ( . ) we choose. And, we can write the volume formula as

MU ′t−1(U − B2)k−1
∏

(a2
i − U).

For each string, by changing the sign of the eigenvalues we can exchange the
eigenvectors. This induces a mirror symmetry of the eigenvectors. Formally,
we can let c = 0 (and assume a 6= 0), then we have for each eigenvector βi

(aH + I, βi) = kβi
(ai ± a). Therefore, we can choose ai = −

∣

∣

∣

(I,βi)
(H,βi)

∣

∣

∣ if

(H,βi) 6= 0. And if βi1 are βi2 are mirror symmetry to each other, then we
have the same ai. We say that a mirror symmetry class is the set [i] of two
different roots which are mirror symmetry to each other and denote a[i] = ai

for i ∈ [i]. We also let I be the all mirror symmetry classes.
We also have in [Gu8] that in the case of the third example in [Ak p.68]

the volume is

V =
MU ′

t
(U − B2)(9B2 − U),

and a similar result for the case of S = An in [Gu12].
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Now, we summarize what we have in this section: Let H be the vector
field as in Propositions 5 and 6. We take (H, G√

2
, F√

2
) to be the orthonomal

basis of A if S = Bn and (H,G,F ) to be the orthonormal basis of A if
S = Cn, IG = I + IP ∈ L be the constant center elements of L in the
representation of the Kähler metrics. Let H(t) = (tf(t) + B)H + f(t) and
U = (H(t),H(t)), then

Theorem 1. For the cases in which F = F (Bn) or F (Cn), if we repre-
sent the Kähler metrics as

ω(X,Y ) = ((tf(t) + B)H + f(t)G + IG, [X,Y ])

then the volume is

V =
MU ′

t
(U − B2)k−1

∏

[i]∈I
(a2

i − U) (1)

for some positive numbers M and a2
i with

ai = −
∣

∣

∣

∣

(IG, βi)

(H,βi)

∣

∣

∣

∣

,

where k is the dimension of the affine space. k = n if F = F (Bn) and
k = 2n − 2 if F = F (Cn). Moreover, U(0) = B2 and B2 ≤ U < a2

i . In
particular, if G = S, we have that V = Mt−1U ′(U − B2)k−1.

5 Calculating the Ricci curvature

Now, we calculate the Ricci curvature. Let α1 be the root which generates
AC and h = log V . Following Koszul [Ks p.567], we have that

ρ(X, JY ) =
LJ [Xr,JYr](ω

n)(T, JT, F, JF, Fα, JFα)

2ωn(T, JT, F, JF, Fα, JFα)
,

where Xr, Yr are the corresponding right invariant vector fields and here we
use Fα, JFα to represent

Fα2 , JFα2 , · · · , Fαl
, JFαl

the array of Fα with its conjugate for positive roots α other than α1 which
have nonzero Fα and Gα.
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To calculate the Ricci curvature for the case F (B2), we only need to
consider X,Y for

Fα2 , Fα1+2α2 .

We have that

[Fα1+2α2 , JFα1+2α2 ] = [Fα1+2α2 ,−Gα1+2α2 ]

= −2Hα1+2α2

= −2H − 2Hα2 ,

J [Fα1+2α2,r, JFα1+2α2,r] = 2JHα1+2α2,r = 2J(H + Hα2) = −2tT.

[Fα2 , JFα1+2α2 ] = [Fα2 ,−Gα1+2α2 ] = −G.

J [Fα2 ,r, JFα1+2α2,r] = JG

= J

(

G − 2H

t
+

2H

t

)

= F − 2T.

Again as what happened in [Ks p.567–570], usually it is not clear how to
find JX for a right invariant vector field X along pt and to deal with the left
invariant form with right invariant vector fields. Therefore, the argument
in [Si] does not work as we can see for our situation. We need something
similar to the Koszul’s trick in [Ks p.567–570]. It turns out that all the
arguments there still go through for our situation. Therefore, as above we
let h = log V and have that:

ρ(Fα1+2α2 , JFα1+2α2) = −th′ +
1

2ω5(T, JT, F, JF, Fα, JFα)
·

[ ω5([2tT, T ] − J [−2H − 2Hα2 , T ], JT, F, JF, Fα, JFα)

+ ω5(T, [2tT, JT ] − J [−2H − 2Hα2 , JT ], F, JF, Fα, JFα)

+ ω5(T, JT, [2tT, F ] − J [−2H − 2Hα2 , F ], JF, Fα, JFα)

+ ω5(T, JT, F, [2tT, JF ] − J [−2H − 2Hα2 , JF ], Fα, JFα)

+ ω5(T, JT, F, JF, [2tT, Fα] − J [−2H − 2Hα2 , Fα], JFα)

+ ω5(T, JT, F, JF, Fα, [2tT, JFα] − J [−2H − 2Hα2 , JFα])]

= −th′ + 6,
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here we use the notation

ωn(· · · , [A,Fα] − J [B,Fα], JFα),

to represent

ωn(· · · , [A,Fα2 ] − J [B,Fα2 ], JFα2 , · · · , Fαl
, JFαl

) + · · ·
+ ωn(· · · , Fα2 , JFα2 , · · · , [A,Fαl

] − J [B,Fαl
], JFαl

)

which is the sum of

ωn(· · · , Fα2 , JFα2 , · · · , [A,Fα] − J [B,Fα], JFα, · · · , Fαl
, JFαl

)

for all the positive roots α other than α1, and we use the notation

ωn(· · · , Fα, [A, JFα] − J [B, JFα])

to represent a similar sum.
Another way to understand the calculation is regarding the volume ten-

sor formally as a product of the two determinant tensors τ , τ1 of the sub-
spaces W , W1 (see section 4 Proposition 8). We have the formula

ρ(X, JY ) =
1

2
J [Xr, JYr](h) +

AX,Y (τ)

2τ
+

AX,Y (τ1)

2τ1
,

where

AX,Y (τ) =
∑

i

τ(· · · , [J [X, JY ], Xi] − J [[X, JY ], Xi], · · ·).

Applying this formula, we have the components which come from the
determinants τ and τ1:

AFα1+2α2 ,Fα1+2α2
(τ)

2τ
= 0

and
AFα1+2α2 ,Fα1+2α2

(τ1)

2τ1
= 6.

Similarly, we can get that

ρ(Fα2 , JFα1+2α2) = −h′ +
2

t
.
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The components from the determinants τ and τ1 are 0, 2
t .

Since the Ricci curvature is determined by the Ricci form and the Ricci
form is a (1, 1) form, as in section 4 (e.g., Theorem 1) we only need to
determine the corresponding cρ (= fρ(t)) and Bρ, etc., for the Ricci form.

We have that cρ = 1
2

(

h′ − 2
t

)

, Bρ = −1.

For F (Bn), S = G = Bn, we only need to calculate the extra determinant
components for the e1 strings.

For the pair Fe1+e2 , Fe1+e2 , we have that the determinant components for
the other 3-strings are 4 and 2 for the 1-strings e2 + ej, 0 for other 1-strings.
Therefore

ρ(Fe1+e2 , JFe1+e2) = −th′ + 6 + 4(n − 2) + 2(n − 2) = −th′ + 6(n − 1).

For the pair Fe2 , Fe1+e2 , we have that the determinant components for
3-strings are 2

t and 0 for the 1-strings. Therefore,

ρ(Fe2 , JFe1+e2) = −h′ +
2(n − 1)

t
.

We have that cρ = 1
2 (h′ − 2(n−1)

t ), Bρ = −(n − 1).

For the case of G = Bm+n and S = Bn, the determinant components
for all the extra 3-strings and 1-strings are zeros. Therefore, we have that
cρ = 1

2(h′ − 2(n−1)
t ) and Bρ = −(n − 1).

However, in this case we also need to calculate the Bρ,l. We can calculate
ρ(Fel

, JFel
). We have that

[Fel
, JFel

] = [Fel
,−Gel

] = −2Hel
,

J [Fel
, JFel

] = 0.

Therefore, one can see easily that el, el ± ek induce a number 2 and ek − el

induce a number −2. If l1 ≤ l ≤ l2 induce a factor Al2−l1 in S1, then

ρ(Fel
, JFel

) = 2(l2 − l1 + 1) + 4(m + n − l2).

Therefore, Bρ,l = l2 + l1 − 1 − 2(m + n). Actually, one can easily see that
these Bρ,l come from those in the Ricci curvature of the G/P . There is an
explicit formula of the Ricci curvature of G/P in [DG1 (4.11.7)] (see also
[DG2 3]) and [Ks p.569 (4.6)](we notice that the factors of 2 are canceled
out):

ρG/P (X,Y ) = −qG/P ([X,Y ]),
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where qG/P =
∑

α∈∆+−∆P
α with ∆P the root system for the semisimple

part of P , and qG/P is corresponding to an element in the abelian part of
the reductive part of P by an invariant metric. In [DG1], one has that
JFα = Gα instead of JFα = −Gα here. In particular, qG/P (S) = 0 always.

In general, if F = F (Bn), all other contributions of [2T −F, ] and J [G, ]

are zeros and cρ = 1
2(h′ − 2(n−1)

t ).
Similarly, all other contributions of [2tT, ] are zeros. The contributions of

J [H +Hγ , ], where γ corresponds to e2 in Bn, are also zeros by the property
of qG/P above. We therefore have Bρ = −(n − 1). Other coefficients come
from the Ricci curvature of G/P as above.

Now, we take care of the case F = F (Cn), i.e., S = Cn. In the case
n = 2 and G = S, we have that the metric is a product of its restrictions to
W and W1, where W is generated by T, JT, F, JF and W1 is generated by
the 3-string 2e2, e1 + e2, 2e1. As above, to calculate the Ricci curvature, we
only need to deal with X,Y for

Fe1+e2 , F2e1 .

We have that
[F2e1 , JF2e1 ] = −2H − 2He1+e2 ,

J [F2e1 ,r, JF2e1 ,r] = −4tT,

[Fe1+e2 , JF2e1 ] = −
√

2G,

J [Fe1+e2 , JF2e1 ] =
√

2(2T − F ).

As above, for F2e1 , F2e1 the W contributions are zero, the contributions from
W1 are 12 and

ρ(F2e1 , JF2e1) = −2(th′ − 6).

For Fe1+e2 , F2e1 the contributions of W are 0 and the contributions from W1

are 2
√

2
t .

ρ(Fe1+e2 , JF2e1) =
√

2(−h′ +
2

t
).

Therefore, cρ = h′− 2
t and Bρ = −2. This is similar to the case of B2 above

as we see before that 2BB
ρ = BC

ρ = −2. We also have that

cC
ρ (t) = 2

3
2 cB

ρ (
√

2t)
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=
√

2((hB)′(
√

2t) − 2√
2t

)

=
√

2
dhB

d(
√

2t)
(
√

2t) − 2

t

=
dhB

dt
(
√

2t) − 2

t

=
dhC

dt
(t) − 2

t

= h′ − 2

t
.

If F = F (C3) and G = S = C3, we have two other 2-strings e2−e3, e1−e3

and e2 + e3, e1 + e3. For the pair F2e1 and F2e1 , the contributions of each
2-string are both 4. For the pair Fe1+e2 and F2e1 , the contributions are both
2
√

2
t . Therefore, cρ = h′ − 6

t and Bρ = −2.

Similarly, if F = F (Cn) and G = S = Cn, then cρ = h′ − 2(2n−3)
t and

Bρ = −2.
As above, the other contributions of [4tT, ], J [2H + 2Hγ , ] with γ cor-

responding e1 + e2 in Cn, [
√

2(2T − F ), ], J [
√

2G, ] are also zeros.

Similarly, we dealt in [Gu12] on the An action.
We have that:

Theorem 2. If F = F (Bn) or F (Cn), then cρ = Mρ(h
′ − 2(k−1)

t ) with a
positive number Mρ, where k is the dimension of the affine space. Moreover,
the pair (Mρ, Bρ) are (1

2 ,−(n − 1)), (1,−2) for the case S = Bn, Cn. Other
coefficients, i.e., other part of Iρ,G, come from the Ricci curvature of G/P
which is −(qG/P , [X,Y ])0 with qG/P =

∑

α∈∆+−∆P
Hα with the standard

inner product.

6 Calculating the scalar curvature

To calculate the scalar curvature we separate our subspaces into five kind of
spaces. The first W is generated by T, JT, F, JF . The second , third, fourth
and fifth are the subspaces of 1, 2, 3 and 4-strings. The Ricci curvature is
a sum of its restriction to each subspaces ρ =

∑

i ρi. Similarly ω =
∑

i ωi.
Then, by Theorem 1 we have that

V =
MU ′Q(U)

t
=

MU ′

t
(U − B2)k−1Q1(U),
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ρ ∧ ωn−1 =
∑

i Ωi where Ωi = ρi ∧ ωn−1.
Let Uρ = (aH + cG, aρH + cρG), then Uρ(0) = BBρ.

ΩW = (n − 1)!KU ′
ρQ(U)/t

if the determinant of W is KU ′/t. For 1-strings,

Ωi = KiU ′Q(U)/t.

For 2-strings,

Ωi = −2(n − 1)!(Uρ − aiaρ,i)
V

qi

where qi = a2
i −U is the linear factor of Q introduced from the given 2-string.

Similarly, we can see, by a direct calculation, that for a 3-string

Ωi = −(2Uρ − 2aiaρ,i +
aρ,i

ai
(U − a2

i ))
(n − 1)!V

qi
.

For the case of 4-strings, it only occurs when G = G2 and H correspond
to the short root. In this case, we have that

Ω1 = ρ1 ∧ ωn−1

= −4(Uρ(5B
2
1 − U) + B1Bρ,1(5U − 9B2

1))
(n − 1)!V

(B2
1 − U)(9B2

1 − U)

= −2[Uρ[B
2
1 − U) + (9B2

1 − U)]

− B1Bρ,1[9(B
2
1 − U) + (9B2

1 − U)]]
(n − 1)!V

(B2
1 − U)(9B2

1 − U)

= −2(Uρ − 9B1Bρ,1)
(n − 1)!V

9B2
1 − U − 2(Uρ − B1Bρ,1)

(n − 1)!V

B2
1 − U .

Therefore,

ρ ∧ ωn−1 = (n − 1)!M
(UρQ(U))′ + p0(U)U ′

t
.

Theorem 3. The scalar curvature is
2(UρQ)′+pU ′

U ′Q with a polynomial p of
U . Moreover, let k be the same as in Theorem 1 and 2,

p(U) = (U − B2)k−2(−2(k − 1)BBρQ1(U) + (U − B2)P1(U)),

where P1(U) is a polynomial of U and is a positive linear sum of (1) Q1

and (2) the products of deg Q1 − 1 linear factors of Q1. Only 1-strings and
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3-strings have contributions to (1); the contribution of each 1-string and 3-
string is

cρ,l

cl
for the Q1 term, where ci = ω(Fαi

, JFαi
) for 1-strings and ci =

ai for 3-strings. Only 2-strings, 3-strings and 4-strings have contributions
to (2); the contribution of each 2-string and 4-string related to the products

of deg Q1 − 1 linear factors of Q1 is 2
aρ,iaiQ1

qi
. In particular, if G = S, we

have that
p(U) = −2(k − 1)BBρ(U − B2)k−2.

7 Setting up the equations

Now, we shall set up the equations for the metrics with constant scalar
curvature. Before we do that, we shall understand more about the metrics.
We have that:

Theorem 4. With the B, f,U , ai as in Theorem 1, we have that ω is
a metric on the open orbit if and only if B < 0, f is an odd function with
f ′(0) < 0, U ′ > 0 and U < a2

i .

To understand the metrics near the hypersurface orbit, we can let θ =
t2

d+t2 with d = 2 for S = Bn and d = 1 otherwise, and we see that θ′ =
2t

d+t2 −
2t3

(d+t2)2 = 2dt
(d+t2)2 . We can also see that Uθ(1) = limt→+∞

(d+t2)2U ′

2dt > 0

exists. In particular, U is bounded, so is tf . Let l = limt→+∞ tf . We first
notice that the closure D of the orbit of the complex Lie group SL(2,C)
generated by α1 is a fiber bundle with a CP 1 as the base and another CP 1

as the fiber. D is CP 1 × CP 1 by an argument as in [SP]. A calculation
of the section 2 of [Gu8] gives the desired property. The restriction of the
metric on D also shows that B, l are topological invariants.

Theorem 5. ω in Theorem 1 extends to a Kähler metric over the
exceptional divisor if and only if limt→+∞ tf = l > ai − B and Uθ(1) > 0.

Now, for any given pair B, l with 0 > l > ai − B we can check that
f(t) = lt

d+t2 satisfies Theorems 4 and 5. We shall see later on that this
actually gives us the solutions of our equations for the homogeneous cases,
i. e., when G = S. So we have that:

Theorem 6. The Kähler classes are in one to one correspondence with
the elements in the set Γ = {(B, l)|0>l>ai−B}.
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To calculate the total volume, we notice that

T ∧ JT ∧ F ∧ JF
αl
∧

α=α2

(Fα ∧ JFα) = M
T ∧ H ∧ F ∧ G

∧αl
α=α2

(Fα ∧ Gα)

t

with a possitive number M .

U(0) = B2, U(+∞) = (l + B)2.

Therefore, the total volume is

VT =

∫ (l+B)2

B2
Q(U)dU .

We also see that

fρ = h′ − 2(k − 1)

t
=

U ′′

U ′ +
Q′(U)U ′

Q(U)
− 2k − 1

t
.

One can easily check that

(U ′′

U ′ −
1

t

)

(0) = 0,

( U ′

U − B2
− 2

t

)

(0) = U ′(0) = 0

by f being an odd function and therefore fρ(0) = 0.
Now, from

U = (tf + B)2 + df2

= (t2 + d)f2 + 2Btf + B2

= (t2 + d)

(

f +
Bt

t2 + d

)2

+
dB2

d + t2

we have that

(

f +
Bt

t2 + d

)2

=
1

(d + t2)2
((d + t2)U − dB2).

We have that

−f − Bt

d + t2
=

√

(d + t2)U − dB2

d + t2
.
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That is,

f = −
√

(d + t2)U − dB2 + Bt

d + t2
.

To make the things clearer, we replace t by θ = t2

d+t2 . We have that

tfρ = M [[log[UθQ(U)(1 − θ)2]]θ2θ(1 − θ) − 2(k − 1)]

= M [2θ(1 − θ)

[Uθθ

Uθ
+

Q′(U)Uθ

Q(U)

]

− 4θ − 2(k − 1)],

which has a limit −2M(k + 1) at θ = 1.
Therefore, we obtain:

Proposition 9. For the Ricci class, we have

lρ = −2M(k + 1),

where M = 1
2 for S = Bn and M = 1 for S = Cn. Therefore, the Ricci class

is a class of a type (Bρ,−2M(k + 1)) using the notation of Theorem 6.

We also have that

Uρ(1) = (Bρ + lρ)(B + l) = (Bρ − 2M(k + 1))(B + l).

Now, we have the Kähler Einstein equation

M [2θ(1 − θ)

[Uθθ

Uθ
+

Q′(U)Uθ

Q(U)

]

− 4θ − 2(k − 1)] = tf

= −
t
√

(d + t2)U − dB2
ρ + Bρt

2

d + t2

= −
√

θ[U − B2
ρ(1 − θ)] − Bρθ.

Let
u = U − B2

ρ

we have that:

M [θ(1 − θ)

(

u′′

u′ +
Q′(u)u′

Q(u)

)

− 2θ − k + 1]

= −1

2
(Bρθ +

√

θ(u + B2
ρθ)) (2)

= − θ
1
2 u

2(−Bρθ
1
2 +

√

u + B2
ρθ)

,
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where the derivatives are the derivatives with respect to θ.
The total scalar curvature is

RT =

∫ 1

0
[p(U)U ′ + 2(UρQ(U))′]dθ.

And from this, we have the average scalar curvature

R0 =
RT

VT

=

∫ (B+l)2

B2 p(U)dU + 2(UρQ(U))|(B+l)2

B2

∫ (B+l)2

B2 Q(U)dU

=

∫ (B+l)2

B2 p(U)dU + 2(Bρ + lρ)(B + l)Q((B + l)2)
∫ (B+l)2

B2 Q(U)dU
.

If G = S and S 6= G2 (we shall see later on that this is the same as the
assumption that the manifold being homogeneous), then Q = (U − B2)k−1

and p = −2BBρ(k − 1)(U − B2)k−2. Therefore,

R0 =
−2BBρ + 2(Bρ + lρ)(B + l)

k−1((B + l)2 − B2)
= 2k

Bρl + Blρ + llρ
2Bl + l2

.

The equation of constant scalar curvature is R
V = R0. Therefore, we have

that

2UρQ(U) +

∫ U

B2
p(U)dU

= R0

∫ U

B2
Q(U)dU + A0 (3)

with A0 a constant.
Let θ = 0, we have that

2BBρQ(B2) = A0.

Therefore,
A0 = 0

since k > 1. If we put θ = 1 in, we get the same A0.
We have that

Uρ =
R0

∫ U
B2 QdU − ∫ U

B2 pdU
2Q(U)
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where Q(U) = (U − B2)k−1Q1(U).
Applying Theorem 3 and integration by parts, we have that

Uρ =
R0

∫ U
B2 QdU + 2(k − 1)BBρ

∫ U
B2(U − B2)k−2Q1dU −

∫ U
B2(U − B2)k−1P1dU

2Q

=

∫ U
B2(R0Q − (U − B2)k−1(P1 + 2BBρQ

′
1))dU + 2BBρ(U − B2)k−1Q1

2Q

=
R(U)

2Q1(U)
,

where R(U) is a polynomial of U . Therefore,

fρ((t
2 + d)f + Bt) = −Bρtf +

um(u)

Q1(u)

where we let R(u) = 2um(u) + 2BBρQ1(U).
If G = S and S 6= G2, we have that

Uρ =
R0

2k
(U − B2) + BBρ.

And R(U) = R0
k (U − B2) + 2BBρ, m(u) = R0

2k .
Now, by

tf = −Bθ −
√

θ(u + B2θ)

we have that

(d + t2)tf + Bt2 = −d
√

θ(u + B2θ)

1 − θ
,

and therefore

M [θ(1 − θ)

[

u′′

u′ +
Q′(u)u′

Q(u)

]

− 2θ − k + 1]

= 2−1

√

θ

u + B2θ
u

[

Bρθ

Bθ −
√

θ(u + B2θ)
− m(u)

Q1(u)

]

. (4)

Comparing with (2), we see that

m(u) = Q1(u)

if the Kähler metric is in the Ricci class.
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If G = S and S 6= G2, then we have that m(u)
Q1

is a constant. There is

a solution with u = cθ. Actually, if we use f = lt
d+t2 in the proof of the

Theorem 6 we obtain that u = (2B + l)lθ which solves our equation.
From (4), we have that

[log[u′Q(u)]]′ =
P

θ(1 − θ)
.

We also have that

2θ + k − 1 − AB,lθ
1
2 ≤ P ≤ 2θ + k − 1 + CB,lθ

1
2 .

for some positive constant AB,l, CB,l which only depend on B and l. Since
P (1) = k + 1 + 2−1lρ = 0, we have that AB,l ≥ k + 1.

By integration, we have that

ak−1(1 − a
1
2 )AB,l−k−1(1 + θ

1
2 )AB,l+k+1

θk−1(1 − θ
1
2 )AB,l−k−1(1 + a

1
2 )AB,l+k+1

≤ u′(a)uk−1(a)Q1(u(a))

u′(θ)uk−1(θ)Q1(u(θ))
(5)

≤ ak−1(1 − θ
1
2 )k+1+CB,l(1 + θ

1
2 )k+1−CB,l

θk−1(1 − a
1
2 )k+1+CB,l(1 + a

1
2 )k+1−CB,l

for 0 < θ ≤ a < 1. We let V = uk and x = θk, and obtain the following
Harnack inequality:

(1 − a
1
2 )AB,l−k−1(1 + θ

1
2 )AB,l+k+1

(1 − θ
1
2 )AB,l−k−1(1 + a

1
2 )AB,l+k+1

≤ Vx(a)Q1(u(a))

Vx(θ)Q1(u(θ))
(6)

≤ (1 − θ
1
2 )k+1+CB,l(1 + θ

1
2 )k+1−CB,l

(1 − a
1
2 )k+1+CB,l(1 + a

1
2 )k+1−CB,l

.

Arguing as in [Gu4], we have that

Theorem 7. If there is a solution 0 ≤ u ≤ l(l + 2B) of above equation
with u(0) = 0 and u(1) = l(l + 2B). Then there is a Kähler metric with
constant scalar curvature in the considered Kähler class.

Theorem 8. For any small positive number f , we have a solution u(0) =
0, u(1 − f) = l(l + 2B). This corresponds to a Kähler metric with constant
scalar curvature on the manifold with boundary θ ≤ 1 − f .
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8 Global solutions

In this section, we shall extend our solutions to the hypersurface orbit. We
shall let f → 0. As we did in [Gu4], we let τ = − log(1 − θ) and have that

[log[uτQ(u)]]τ =
P − θ

θ
.

Therefore, we have that
[

log

[

kuk−1uτ

θk−1
Q1(u)

]]

τ

=
P − θ

θ
− (k − 1)θτ

θ

=
P − θ

θ
− (k − 1)

(

1

θ
− 1

)

=
P − k + 1 + (k − 2)θ

θ
(7)

= k +
2−1u

M
√

θ(u + B2θ)

[

Bρθ

Bθ −
√

θ(u + B2θ)
− m(u)

Q1(u)

]

= T (u, θ)

→ k − 2−1 Bρ

M

[

1 +
B√

u + B2

]

− um(u)

2MQ1(u)
√

u + B2

= k − α,

when θ tends to 1 and it converges unformly for u ≥ u0 with any u0 > 0.
If ω is in the Ricci class, then m(u) = Q1(u) and

α = (2M)−1[Bρ +
√

u + B2
ρ ].

Let ui be a series of solutions corresponding to fi → 0. By P (1) = 0, for
any e0 ∈ (k, k + 1) there are two numbers A(e0) < l(l + 2B) and B(e0) > 0
such that if u > A(e0) and τ > B(e0) then α > e0 > k and T (u, θ(τ)) <
k − e0. Let τi be a point of τ such that ui(τi) = A(e0), and if we also have
τi > B(e0) then

[

log

[

kuk−1
i ui,τ

θk−1
Q1(ui)

]]

τ

=
P − k + 1 + (k − 2)θ

θ
= T (u, θ) < k − e0

for τ ≥ τi.
Let w = kuk−1u′

θk−1 Q1(u), then

wi ≤ e(k−e0)(τ−τi)wi(τi).
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If there is no subsequence of τi which tends to +∞, then there is a
subsequence of τi which tends to a finite number τ0. By the left side of
the Harnack inequality (6), we see that Vi,x(θ(τ0)) must be bounded from
above, otherwise Vi,x will be bounded from below by a very large number
such that Vi will be bigger than l(l+2B) before x reaching the point 1. That
is, there is a subsequence of ui converging to a solution u of our equation
with u(1) > A(e0).

We shall observe that there is no subsequence of τi which tends to +∞
under certain condition below.

If there is a subsequence of τi which tends to +∞, we might assume that

lim
i→+∞

τi = +∞,

and τi > B(e0). To make the things simpler, we should avoid the cases
in which G = S . In those cases, the second Betti numbers are 2 and the
manifolds are homogeneous. By Calabi’s result, all the extremal metrics are
homogeneous and therefore they are unique since there is only one invariant
metric in the given Kähler class. As we see before in the last section in the
paragraph after (4), u = cθ will solve the equations.

Thus, we can assume that G 6= S, and therefore there is at least one ai.
From the equation (4), we observe that if

ui,τ (τi)u
k−1
i (τi) > 2(l(2B + l))k−1(a2

1 − B2)AB,l > 2uk−1(a2
1 − u − B2)AB,l,

then
ui,τ (τi)

a2
1 − u(τi) − B2

> 2AB,l

and we have that vτ = uk−1
i ui,τ is increasing for τ ≥ τi. This can not

happen. Therefore, ui,τ (τi) is bounded from above.
We shall see that in this circumstance there is a subsequence of

ũi(τ) = ui(τ + τi)

which converges in C1 norm to a nonconstant function ũ. We see that for
each τ ≥ 0, wi is decreasing and ũi,τ are uniformly bounded. For each
τ < 0, −AB,l < [log wi]τ < k + CB,l when i big enough, that is, Ṽi,τ are also
bounded uniformly on i over any closed intervals. Therefore, a subsequence
of Ṽi converges in the C1 norm to a function ũ. Thus, the same thing
happens for a subsequence of ũi.
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To observe that ũ is not a constant, we notice that

kuk−1
i ui,τ

θk−1
≤ Ci

kuk−1
i (τi)ui,τ (τi)

θk−1(τi)
e(k−e0)(τ−τi)

for τ ≥ τi, where Ci does not depend on ui. That is,

kuk−1
i ui,τ ≤ Cui,τ (τi)e

(k−e0)(τ−τi).

By integrating both side we have that

(l(l + 2B))k − A(e0)
k ≤ − C

k − e0
ui,τ (τi),

i.e., ui,τ (τi) is bounded from below. Therefore, ũi,τ (0) are bounded from
below. We have that ũτ (0) > 0. This implies that ũ is not a constant.

Then, ũ satisfies the equation

[log[xk−1x′Q1(x)]]′ = −α + k

on (−∞,+∞). Therefore,

[xk−1x′Q1(x)]′ = (−α + k)xk−1Q1(x)x′.

Integrating as in [Gu4], we have that

∫ x(+∞)

x(−∞)
fldx = 0,

where
fl = (−α + k)xk−1Q1(x).

As in [Gu4], we see that x(+∞) = l(l + 2B).
As in [Gu4], we shall prove:

Lemma 5. k − α has only one zero.

Proof: As in [Gu4], we may expect that x is related to a Kähler metric
of constant scalar curvature on the normal line bundle over the hypersurface
orbit. Hence, we may apply the method of counting zeros in [Gu2,4] to this
circumstance. xk−1x′Q1(x) is proportional to “ϕQ” in [Gu2]. Therefore,
the counting of zeros of k − α should be the same as counting the zeros of
the derivative of “ϕQ” to “U” there.

Let v =
√

u + B2, then u = v2 − B2 and a2
i − u = (−ai + v)(−ai − v).

We observe that gl = 2vfl is actually a polynomial of v and should be
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proportional to the derivative of “ϕQ” in [Gu2]. Therefore, we may expect
that

y =
2

l
(−B − v) − 1

corresponds to the “U” in [Gu2]. We let

q = 2vQ(v),

and observe that q is proportional to the “Q” in [Gu2].
We see that

gl =
1

2
(2k − Bρ

M
)q − BBρQ

M
− um(u)

M
uk−1 (8)

=
1

2
(2k − Bρ

M
)q − R(U)

2M
uk−1

=
1

2
(2k − Bρ

M
)q − R0

2M

∫

QdU +
1

2M

∫

pdU .

Let g′l be the derivative of gl to v, we have that

g′l =
1

2
(2k − Bρ

M
)q′ − v

R0

M
Q +

vp

M
(9)

=
1

2
(2k − Bρ

M
)q′ + vP2 − v

R0

M
Q + vP3

= ∆ − mq,

where P3 = 2m1Q is the Q term in p
M and P2 = p

M − P3 is the positive

linear combination of Q
qi

,

∆ =
1

2
(2k − Bρ

M
)q′ + vP2,

m = R0
2 − m1. Therefore,

gl =

∫ v

0
(∆ − mq)dv.

Lemma 6. The coefficients of ∆ are always positive.

Proof of Lemma 6: From Theorem 3, we see that the 1-strings do not
have any contribution to ∆.

The contibution to P2 of each 2-strings and 3-strings, 4-strings of the
U − B2 factor is in the first term of the p(U) in the Theorem 3.
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The contribution to P2 of each 2-string and 3-string, 4-string related to
the Q1 factors is

aρ,iai

Mqi
q.

For the first term of ∆, we have (2k − Bρ

M )Q (one might call it the term

of v factor since Q = q
2v ) with 2k − Bρ

M > 0.
Then, we have the U − B2 term (or the term of q

U−B2 )

2(k − 1)v[v(2k − Bρ

M
) − BBρ

M
](U − B2)k−2Q1

= (k − 1)v[2k(v − B) + 2(k − Bρ

M
)(v + B)](U − B2)k−2Q1

with both k and k − Bρ

M positive.
Similarly, we have qs factor of Q1 term (or the term of q

qs
)

2v[−v(2k − Bρ

M
) +

asaρ,s

M
]
Q

qs

= v[(2k − Bρ + aρ,s

M
)(as − v) − (2k − Bρ − aρ,s

M
)(as + v)]

Q

qs

with coefficients 2k − Bρ+aρ,s

M > 0 and −2k +
Bρ−aρ,s

M .
So we need to check that the last coefficient is also positive. There are

two ways to prove this. First we notice that this actually is the same to
check that the coefficients

2Mk − Bρ, 2Mk = 2Mk − Bρ + Bρ, 2(Mk − Bρ) = 2Mk − Bρ − Bρ

and
2Mk − Bρ − aρ,s,−2Mk + Bρ − aρ,s

are all positive. We claim that these are the components of the Ricci curva-
ture of the exceptional divisor, then the positivity comes from the positivity
of the Ricci curvature of the projective rational homogeneous spaces. The
point is that v is corresponding to an H in the calculation of the metric and
the volume form, and we should prove that the contribution of H to the
Ricci curvature is exactly 2Mk − Bρ, i.e.,

(qG/P∞
,H)0 = (qS/(S∩P∞),H)0 = 2Mk − Bρ,

where P∞ is the isotropic group of the exceptional divisor at p∞. Notice
that P∞ is parabolic.
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If S = Bn, then the semisimple part of P∞,1 = S ∩ P∞ is generated by
α2, · · · , αn with the same orientation. Therefore,

(qS/P∞,1
,H)0 = 1 + 2(n − 1) = 2n − 1.

But, we also have that

2Mk − Bρ = k + (n − 1) = n + n − 1 = 2n − 1.

If S = Cn, then the semisimple part of P∞,1 is generated by α3, · · · , αn

with an orientation in which e′i = ei i 6= 2, e′2 = −e2. Therefore,

(qS/P∞,1
,H)0 = 2 + 2(n − 1) + 2 + 2(n − 2) = 2(2n − 1).

But, we also have that

2Mk − Bρ = 2k + 2 = 2(k + 1) = 2(2(n − 1) + 1) = 2(2n − 1).

Secondly, we could check the positivity of the last coefficient with a case
by case checking. That will also give all the aρ,s in concrete calculations.
This is extremally useful when we check the Fano property of the manifolds
and classify the manifolds with higher codimensional end (see [Gu9]). For
example, from Theorem 6 and Proposition 9 we can check that:

Proposition 10. If S = Bn or Cn the manifold is Fano if and only if

−2M(k + 1) + Bρ − aρ,s > 0.

If S = Bn, M = 1
2 and we shall check that the last coefficient is 2[−(2n−

1) − aρ,i] > 0. If G = Bm+n, then

−aρ,i = −Bρ,i = 2(m + n) + 1 − l1 − l2 ≥ 2n + 1 = k − Bρ + 2.

The corresponding affine manifolds are Fano.
If G = Cn n > 2 and S = B2, then

−aρ,i = ∓Bρ−2Bρ,i = ∓1+2n+2− l1− l2 ≥ 4+1 = −Bρ+4 = −Bρ+k+2.

The corresponding affine manifolds are Fano.
If G = F4 and S = B2, we take our notations as in the third section,

then α = e3 and

a1 = B1, a2 = B2, a3 = B1 + B2 + B,
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a4 = B1 − B2 + B, a5 = B1 + B2 − B, a6 = B1 − B2 − B.

We have that Bρ,1 = −11 and Bρ,2 = −5, therefore,

−aρ,3 = 11 + 5 + 1 = 17,−aρ,4 = 7,−aρ,5 = 15,−aρ,6 = 5.

We have all of −aρ,s ≥ 5 = 2n + 1 = −Bρ + k + 2. The corresponding affine
manifold is Fano.

If G = F4 and S = B3, α = e2 and

a1 = B1, a2 = B1 + 2B, a3 = B1 = a4, a5 = B1 − 2B.

We have that Bρ,1 = −11 and

−aρ,2 = 15,−aρ,5 = 7.

We have all of −aρ,s ≥ 9 − 2n + 1 = −Bρ + k + 2. The corresponding affine
manifold is Fano.

Altogether, we see that the last coefficient is positive for the case S = Bn

and the corresponding affine manifolds are Fano.

Otherwise, S 6= Bn and M = 1, we shall prove that the last coefficient
is −2k + Bρ − aρ,s > 0 also. If S = Cn, G = Cm+n, we have that

k = 2(n − 1), Bρ = −2, ai = Bi ± B,α = em+1 − em+2.

We have that

Bρ,i = −2(2(m+n+1)−l1−l2) ≤ −4(n+1) = −4(n−1)−6 = −2(k+2)+Bρ.

The corresponding affine manifolds are Fano.
If S = C3, G = F4, we have that

k = 4, Bρ = −2, a1 =
B1

2
, a2 = B1 + B, a3 = B1 − B.

We have that Bρ,1 = −28, and therefore

aρ,1 = −14, aρ,2 = −30, aρ,3 = −26 ≤ 14 = −2(k + 1) + Bρ.

The corresponding manifold is Fano.
Q. E. D.

Therefore, as we argued in [Gu4 p.73], if k−α has two zeros, then ∆−mq
has deg q−3+4 = deg q+1 zeros. That will be a contradiction to the degree
of this polynomial which is 2 deg Q + 1. Thus, we obtain our Lemma 5.
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Q. E. D.
A corollary of our proof of our Lemma 6 is that:

Corollary 1. The manifolds are Fano if S = Bn or Cn.

That is, all the manifolds we considered in this paper are Fano. Com-
binning with [Gu8], we have that:

Corollary 2. The type II manifolds are Fano if S 6= An.

Now, we have that fl has a unique zero. Therefore, if

∫ l(l+2B)

0
fldx < 0, (10)

we can not have that

0 =

∫ l(l+2B)

x(−∞)
fldx ≤

∫ l(l+2B)

0
fldx.

Otherwise, we have a contradiction.
By choosing A(e0) close to l(l + 2B) we have that u(1) = l(l + 2B).

Arguing as in [Gu4], we have that u′(1) exists and is finite. Similarly, u′′(0)
and u′′(1) exist and are finite.

Also, we already see that if G = S and S 6= G2, the manifold is ho-
mogeneous and admits unique extremal metric in any given Kähler class.
Therefore, we have that:

Theorem 9. There is a Kähler metric of constant scalar curvature in
a given Kähler class if the condition (10) is satisfied.

We shall prove the converse in [Gu6].

We could easily argue as in [Gu5 p.273–274] and [Gu4] that the right side
of (10) is the Ding-Tian generalized Futaki invariant for a (possibly singular)
completion of the normal line bundle of the exceptional divisor, although we
do not really know that there is an actually analytic degeneration with this
completion as the central fiber. Our condition here is stronger than the
Ross-Thomas version of Donaldson’s version of K-stability (Cf. [Gu9]).

9 Kähler-Einstein metrics

If the Kähler class is the Ricci class, we have that B = Bρ, l = lρ,

m(u) = Q1(u),
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α = (2M)−1[Bρ +
√

u + B2
ρ ].

Therefore,

fl = [k − (2M)−1[Bρ +
√

u + B2
ρ ]]uk−1Q1(u).

In this section, we show how we can check the Kähler-Einstein property
case by case on the pairs of groups (S,G).

First, if S = Bn n ≥ 2, we have that Bρ = −(n − 1), k = n, Q1 is a
constant, lρ = −(n + 1).

fρ = (2n − 1 −
√

u + (n − 1)2)un−1Q1(u).

Therefore, the integral is

∫ (n+1)(3n−1)

0
(2n − 1 −

√

u + (n − 1)2Q1(u)du. (11)

If G = S = Bn, then

cn =

∫ lρ(lρ+2Bρ)

0
flρdu

=

∫ (n+1)(3n−1)

0
(2n − 1 −

√

u + (n − 1)2)un−1du

=

∫ 2n

n−1
(2n − 1 − v)2v(v2 − (n − 1)2)n−1dv

=
1

n
[(2n − 1 − v)(v2 − (n − 1)2)n|2n

(n−1) +

∫ 2n

n−1
(v2 − (n − 1)2)ndv]

=
1

n
[−((2n)2 − (n − 1)2)n +

∫ 2n

n−1
(v2 − (n − 1)2)ndv]

=
1

n

∫ 2n

n−1
[(v2 − (n − 1)2)n − ((v2 − (n − 1)2)n)′]dv

=
1

n

∫ 2n

n−1
(v2 − 2nv − (n − 1)2)(v2 − (n − 1)2)n−1dv

< 0

since v2 − 2nv = v(v − 2n) ≤ 0 and = 0 only if v = 2n. Therefore, the
conditon of the Theorem 9 holds for this case, and it is known that there is
an Einstein metric since the manifolds are homogeneous.
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Now, we consider the circumstance in which G = Bn+1 and S = Bn.
Then the corresponding integral is

In =

∫ 2n

n−1
2v(2n − 1 − v)(v2 − (n − 1)2)n−1((2n + 1)2 − v2)dv

=

∫ (3n−1)(n+1)

0
(2n − 1 − v)un−1(3n(n + 2) − u)du

= −3(n + 2)un(2n) +
un+1(2n)

n + 1
+ 3(n + 2)L(n) − L(n + 1)

n + 1

=

∫ 2n

n−1
[(3(n + 2) − u

n + 1
)u − 2v((2n + 1)2 − v2)]un−1dv.

We have that

(n + 1)In =

∫ 2n

n−1
2v(2n − 1 − v)((2n + 1)2 − v2)un−1dv

+ n

∫ 2n

n−1
[(3(n + 2) − u

n + 1
)u − 2v((2n + 1)2 − v2)]un−1dv

=

∫ 2n

n−1
[(3(n + 2) − u

n + 1
)nu + 2v((2n + 1)2 − v2)(n − 1 − v)]un−1dv

= (n + 1)−1
∫ 2n

n−1
[−(3(n + 1)(n + 2) − u)n(n − 1 + v)

+ 2(n + 1)v((2n + 1)2 − v2)](n − 1 − v)un−1dv

= (n + 1)−1
∫ 2n

n−1
[−((n + 1)(2n + 1)2 − (n − 1)2 − nv2)(n − 1 + v)

+ 2(n + 1)v(2n + 1)2 − v2)](n − 1 − v)un−1dv

= (n + 1)−1
∫ 2n

n−1
[(n + 2)v2 + 2v(n − 1)

− (n + 1)(2n + 1)2 + (n − 1)2](n − 1 − v)2un−1dv

= (n + 1)−1
∫ 2n

n−1
p(v)(n − 1 − v)2un−1dv,

where p(v) = (n + 2)v2 + 2(n − 1)v − (n + 1)(2n + 1)2 + (n − 1)2.
We have that

p(n − 1) = (n + 5)(n − 1)2 − (n + 1)(2n + 1)2

< (n − 1)(n2 + 4n − 5 − 4n2 − 4n + 1)

= −(n − 1)(3n2 + 4) < 0
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and

p(2n) = 4(n + 2)n2 + 4n(n − 1) − (n + 1)(4n2 + 4n + 1) + (n − 1)2

= (5n − 1)(n − 1) − 5n − 1 = 5n2 − 11n = n(5n − 11).

Therefore, when n = 2, p(2n) = −n = −2 < 0 also. But p(v) is positive
for |v| big enough, we have that p(v) < 0 for v ∈ [n − 1, 2n] = [2 − 1, 4]. In
particular I2 < 0 and there is a Kähler-Einstein metric when S = B2, G =
B3.

For the case n > 2, we have that

p(2n) > 0

and

p(2n − 1) = (n + 2)(2n − 1)2 + (n − 1)(5n − 3) − (n + 1)(2n + 1)2

= −8(n + 1)n + 4n2 − 4n + 1 + 5n2 − 8n + 3 = n2 − 20n + 2 > 0

if and only if n ≥ 20.
We want to see that (5n − 11)cn + 2In > 0 for n big enough. If this is

true, then we have that 2In > (11 − 5n)cn > 0 since cn < 0.
Let

g(v) = (5n − 11)(2n − 1 − v)v

+
2(v − n + 1)2

(n + 1)2
[(n + 2)v2 + 2(n − 1)v(n − 1)2 − (n + 1)(2n + 1)2].

Then g(n− 1) = (5n− 11)n(n− 1) > 0 for n > 3. g(2n− 1) > 0 for n ≥ 20.
g(2n) = −2n(5n − 11) + 2n(5n − 11) = 0. It is not difficult to check that
g′′′(v) > 0 on [n − 1, 2n]. We also have that

g′(v) = (5n − 11)(2n − 1 − 2v)

+
4(v − n + 1)

(n + 1)2
[(n + 2)v2 + 2(n − 1)v + (n − 1)2 − (n + 1)(2n + 1)2]

+
2(v − n + 1)2

(n + 1)2
]2(n + 2)v + 2(n − 1)].

Therefore,

g(2n) = −(5n − 11)(2n + 1) +
4n(5n − 11)

n + 1
+ 4(2n2 + 5n − 1)

< −10n2 + 17n + 11 + 4(5n − 11) + 4(2n2 + 5n − 1)

= −2n2 + 57n − 37 < 0
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if n ≥ 28. Now, we have that:

(5n − 11)cn + 2In =

∫ 2n

n−1
g(v)un−1dv.

Lemma 7. g(v) > 0 on [n − 1, 2n) if n ≥ 28.

Proof: If n ≥ 28, we have that g′(2n) < 0. Then g(v) > 0 in [n − 1, 2n).
Otherwise, there is a root of g in [n− 1, 2n). Now, by g(n− 1) > 0, g(2n) =
0, g′(2n) < 0 we observe that in [n− 1, 2n) there is a minimal point a and a
locally maximal point b ∈ (a, 2n). g′′(v) is positive near a and negative near
b. But g′′′(v) is positive in (n − 1, 2n), a contradiction.

Q. E. D.
Now, by g(v) > 0 we have that (5n − 11)cn + 2In > 0 for n ≥ 28, i.e.,

In > 0, n ≥ 28.
Now, there are only 25 integers between 2 and 28. We could actually

check these In by using Mathematica with:

Integrate[2v(2n-1-v)(v^2 -(n-1)^2 )^(n-1)

((2n+ 1)^2 -v^2 ), {v, n-1, 2n}]

we obtain that:

Lemma 8. In < 0 if n = 2, 3, 4, 5, 6 and In > 0 if 7 ≤ n ≤ 27.

Now, we consider the general circumstance in which S = Bn, G = Bn+m

and P be the smallest parabolic subgroup of G containning S as a semisimple
factor. In this case, Q1(v) =

∏m−1
k=0 (2n + 2k + 1)2 − v2). Since each ((2n +

2k + 1)2 − v2) decreases, when v increases we have that if

In,m =

∫ 2n

n−1
2v(2n − 1 − v)un−1

m−1
∏

k=0

((2n + 2k + 1)2 − v2)dv

then In,m+1 > ((2n+2m+1)2−(2n−1)2)In,m. Therefore, In,m > 0 if n ≥ 7.
Using Mathematica with:

Integrate[2v(2n-1-v)(v^2 -(n-1)^2 )^(n-1)

((2n+ 1)^2 -v^2 )((2n+ 3)^2 -v^2 ), {v, n-1, 2n}]

we obtain that:
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Lemma 9. In,2 > 0 if n = 3, 4, 5, 6.

Similarly, we can use Mathematica to calculate I2,2, I2,3 etc. and obtain
that:

Lemma 10. I2,m < 0 if m = 2, 3, 4 and I2,5 > 0.

Therefore, if we denote the corresponding Fano manifolds by Mn,m with
n ≥ 2,m ≥ 0, then we have that:

Theorem 10. Mn,0 are homogeneous with Kähler-Einstein metrics.

M2,1,M3,1,M4,1,M5,1,M6,1,M2,2,M2,3,M2,4

are nonhomogeneous Kähler-Einstein manifolds. Other Mn,m do not admit
any Kähler-Einstein metric.

We delay our proof of the nonexistence to [Gu6]. See Theorem 12 in the
next section for the nonhomogeneity of Mn,k with k > 0.

Next, we consider the case in which S = Bn, G = Bn+m and S1 in the
section 2 is maximal. In this case, we have that Q1(v) = ((2n+m)2 − v2)m.
The integral is

Jn,m =

∫ 2n

n−1
2v(2n − 1 − v)(v2 − (n − 1)2)n−1((2n + m)2 − v2)mdv

and
m−2mJn,m → e4nCn < 0.

Therefore, Jn.m < 0 when m is big enough.
Again, we can compare the change rate of the factor h(v) = ((2n+m)2−

v2)m. We let

t(m) = (log h)′

= m(
1

2n + m + v
− 1

2n + m − v
)

= − 2n + v

2n + m + v
+

2n − v

2n + m − v
.

Then,

t(m + 1) − t(m) =
−2v[4n2 − m(m + 1) − v2]

((2n + m)−v2)((2n + m + 1)2 − v2)
> 0

if m ≥ 2n. Therefore, if Jn,m ≤ 0 with m ≥ 2n, then Jn,m+1 < 0.

51



Now, we can use Mathematica to check Jn,2n with

Integrate[2v(2n-1-v)(v^2 -(n-1)^2 )^(n-1)

(16n^2 -v^2 )^(2n) , {v, n-1, 2n}]

we get that Jn,2n < 0 when n = 2, 3 but J4,8 > 0.
We then use Mathematica to check J4,12 with

Integrate[2v(8-1-v)(v^2 -9)^3 (400 -v^2 )^(12) , {v, 3, 8}]

and have that J4,12 < 0. Therefore, J4,m < 0 for m ≥ 12.
Similarly, by using Mathematica we have that J4,m > 0 if 2 ≤ m ≤ 10

and J4,11 < 0. Therefore, when m = 1 or ≥ 11, we have that J4,m < 0,
otherwise, J4,m > 0.

Similarly, we use Mathematica to check J2,m for m = 2, 3 and J3,m for
m = 2, 3, 4, 5. We find that all of them < 0.

Therefore, we obtain that if we denote the corresponding manifolds by
Nn.m, then:

Theorem 11. N2,m, N3,m admit Kähler-Einstein metric for all m. N4,m

admit Kähler-Einstein metric if and only if m = 1 or m > 10. In general,
Nn,m admit Kähler-Einstein metric when m big enough, i.e., there is an
integer N(n) such that if m > N(n) then Nn,m admit Kähler-Einstein met-
ric. Moreover, if m ≥ 2n and Nn,m admit a Kähler-Einstein metric, then
Nn,m+1 also admit a Kähler-Einstein metric.

We now leave other examples to the readers, since Theorem 11 (see
also Theorem 13 in the next section) gives us enough new Kähler-Einstein
manifolds and Theorem 10 gives us a large class of Fano manifolds which do
not admit any Kähler-Einstein metric.

However, for the readers’ benefit, we should give the integral for the Case
in which S = Cn. In that case, M = 1, lρ = −2(k + 1) = −2(2n − 1) and
Bρ = −2. We have

α =
1

2
(−2 +

√
u + 4).

fρ =
1

2
(4n − 2 +

√
u + 4)u2n−3Q1(u).

Therefore, the integral is proportional to

∫ 4(4n2−1)

0
(4n − 2 +

√
u + 4)u2n−3Q1(u)du. (12)

In the next section, we shall discuss some properties of these manifolds.
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10 Further comments

In [Gu8], we observe that the third example in [Ak p.68] is not homogeneous
and the identity component of the automorphism group is G2. However, it
was mentioned in [Ak p.69] that the first and the second examples in [Ak
p.68] are homogeneous. Moreover, in the case 1) and 5) in [Ak p.73] which
correspond to the first and the second with n = 3 in [Ak p.67], the manifolds
are also homogeneous. For the nonaffine type II case of the third with n = 3
in [Ak p.67], the manifold is also homogeneous. That is, when G = S the
manifolds in this paper and [Gu12] are homogeneous and the automorphism
groups are some simple complex Lie groups which are strictly larger. What
will happen if G is strictly larger than S? Applying the Theorem in [St], we
have that:

Theorem 12. Let M be a compact complex almost-homogeneous man-
ifold with one hypersurface end and a complex semisimple Lie group G ac-
tion. If G is strickly larger than S, then the identity component of the
automorphism group is G and M is not homogeneous. Consequently, all
these complex manifolds are biholomorphically different from each other.

Proof: First, we consider the case in which M is affine. We know that
if G is strictly larger than S, by [Ak], M is a fiber bundle over a rational
homogeneous manifold Q with a transitive G action. Actually, Q = G/P and
dimQ > 0. The fiber F is just our manifold in the case G = S. Therefore, F
is a fiber bundle over a rational homogeneous manifold Q1 with a transitive
S action. The fiber is CP k. dimQ1 > 0. Therefore, M is a CP k bundle
over a rational homogeneous manifold Q2 with a transitive G action. By
our construction, Q2 is a Q1 bundle over Q. If there is another connected
complex Lie group G1 acting on M and containning G, then by [Ak] and
[GC] (see also [Gu6]), G1 is semisimple. G1 also acts transitively on Q2.
Comparing Q2 to the possible manifolds in the Theorem in [St], we have
that G1 = G.

If M is not affine but of type II, then S = A1. If M is homogeneous,
then according to [St p.427 Theorem] A1 should be one of the semisimple
part of the isotropic group of the smaller group actions there. There are
only 3 possibilities: Cn in 1) with n ≥ 1 there, A1 in 2), An−1 in 3) with
n ≥ 3. The only possibility are n = 1 in 1) and the case 2). In the case 1),
F = CP 2. The semisimple part of the isotropic group of the larger group
A2n+1 action is A2n in 1). When n = 1, we have A2. It happens that A2

does actually act on F . But, then M is the flag manifold parametrizing the
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planes π and the line l ⊂ π in C4. Let the Cartan subalgebra of the larger
group A3 be:





























a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4











∣

∣

∣

a1+a2+a3+a4=0



















.

The Cartan subalgebra of the smaller group C2 could be:





























a1 0 0 0
0 a2 0 0
0 0 −a1 0
0 0 0 −a2











∣

∣

∣

a1,a2∈C



















.

Let l = (a, 0, 0, 0)T , π = {(a, 0, b, 0)T |a,b∈C}. We obtain that M is a manifold
with G = S = B2 (compare also the description for the affine case of G =
S = C2 in [Ak p.69]), that is different from the case in which S = A1 since
they have quite different A1 actions—A1 actually has three orbits on F .
Therefore, 1) does not occur. In the case of 2), the isotropic group of the
larger group B3 in [St] is B2, which does not act on CP 2, a contradiction.
Therefore, M can not be homogeneous.

If M is of type I and is homogeneous. By G 6= S we have that S must be
one of the semisimple part of the isotropic groups of the smaller groups G in
[St p.427 Theorem] and the semisimple part S̃ of the isotropic group of the
larger groups G̃ must act on F transitively. We have that (S,G, S̃, G̃) = 1)
(Cn, Cn+1, A2n, A2n+1); 2) (A1, G2, B2, B3); 3) (An−1, Bn, An, Dn+1). Now,
we go through the possible list in [Ak p.67].

If S = Ak, we have the first case, and the second, the third cases with
n = 6 in which k = 3. In the first case, F = CP k × CP k and when k = 1,
none of A2, B2, A2 as the possible S̃ above can act on F nontrivially; when
k > 1, Ak+1, as the S̃ above, can not act on F nontrivially. In the second
and the third case, F = Q(6) being the 5 complex dimensional hyperquadric
or CP 5, but A4 does not act on F transitively. That is, S 6= Ak. So S = Ck

with n > 1. The only possible cases are the second and third cases in [Ak
p.67] with n = 5 in which k = 2, and the fourth case. S̃ = A2k. The
second case can not occur, since A4 does not act on Q(5) nontrivially. The
fourth case can not occur, since A2k does not act on Gr(2k, 2) nontrivially.
Therefore, M is a CP 4 bundle over CP 5 and it parametrizes the planes
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π and the lines l ⊂ π in C6, see the description of the our affine case of
G = S = C3 in [Ak p.69]. But, then we have G = S, a contradiction.

Q. E. D.
Next thing we like to point out is that it is not difficult to check that all

the homogeneous ones have the condition (10) for the Ricci class by checking
our integrals. We already checked the cases with G = S = Bn and we shall
check a similar condition for G = S = An in [Gu12]. One can also check the
case with G = S = Cn.

If G = Cm+n and S = Cn, we have that Bρ = −2,

lρ = −2(k + 1) = −2(2(n − 1) + 1) = −2(2n − 1).

aρ,i = Bρ,i + Bρ

= −2(2(m + n + 1) − l1 − l2) − 2

= −2(2m + 2n + 3 − l1 − l2)

≤ −2(2n + 3)

< −4n

= lρ + Bρ.

The manifolds are always Fano. The integrals are

∫ 4n

2
v(2(n − 1) − 2−1(−2 + v))(v2 − 4)2n−3

m
∏

i=1

(a2
ρ,i − v2)dv.

Now, if m = 0 we let v = 2x, then the integral is the same as

C

∫ 2n

1
x(2n − 1 − x)(x2 − 1)2n−3dx = C1[(2n − 1 − x)(x2 − 1)2(n−1)|2n

0

+

∫ 2n

1
(x2 − 1)2(n−1)dx]

= C1[−(x2 − 1)2(n−1)|2n
0 +

∫ 2n

0
(x2 − 1)2(n−1))dx]

= C1

∫ 2n

0
(x2 − 1 − 4(n − 1)x)(x2 − 1)2n−3dx

with C,C1 > 0. But

x2 − 1 − 4(n − 1)x = −1 − (4(n − 1) − x)x ≤ −1,
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since 4(n− 1)− 2n = 2(n− 2) ≥ 0 if n ≥ 2. Therefore, the integrals are also
negative with G = S = Cn.

One further observation: If we compare those two Ricci curvtures in the
proof of the Lemma 6 for the hypersurface divisor D and in Proposition 10
for the whole manifold, we see that the canonical line bundle of the fiber F
is related KF = lρ and the divisor itself as a line bundle is related to the
difference DF = 2M . If we let x = v − Bρ and q(x) = vQ(v), then by (11)
and (12) we have:

Theorem 13. The manifolds we considered has a Kähler-Einstein met-
ric if and only if

∫ −KF

0
(KF + DF + x)q(x)dx > 0, (13)

where (KF , DF ) = (−n − 1, 1) if S = Bn and (KF , DF ) = (−2(2n − 1), 2)
if S = Cn. Moreover, (KF , DF ) = (−(k + 1)DF , DF ) with k being the
dimension of corresponding affine spaces Ck as it is in Theorem 1.

This is related to a stronger version of the Ross-Thomas slope stability.
Therefore, our result in [Gu6] is stronger than the result of Ross-Thomas for
the necessary direction even for the Kähler-Einstein cases of our manifolds
here.
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