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Abstract: This paper is one in a series generalizing our results in
[GC, Gu4, 5, 8] on the existence of extremal metrics to the general almost-
homogeneous manifolds of cohomogeneity one. In this paper, we deal with
the affine cases with hypersurface ends. In particular, we study the exis-
tence of Kéahler-Einstein metrics on these manifolds and obtain new Kéahler-
Einstein manifolds as well as Fano manifolds without Kéhler-Einstein met-
rics. As a consequence of our study, we also give a solution of the problem
posted by Ahiezer on the nonhomogeneity of compact almost-homogeneous
manifolds of cohomogeneity one; this clarifies the classification of these man-
ifolds as complex manifolds. We also deal with Fano properties of the affine
compact manifolds.

1 Introduction

The theory of simply connected compact Kéahler homogeneous manifolds has
applications in many branches of mathematics and physics. These complex
manifolds possess significant properties: they are projective, Fano, Kahler-
Finstein, rational, etc..

One class of more general Kahler manifolds which would be useful is the
class of almost compact Kahler manifolds with two orbits. Especially those
manifolds of cohomogeneity one.

If we assume that they are simply connected, then they are automatically
projective. One of many interesting questions of them is when they are Fano,
that is, with a positive first Chern class, and therefore more interestingly
when they are Kéahler-Einstein. Other questions might be: What is the
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biholomorphic classification of them? What are the automorphism groups
of them? When are they actually homogeneous?

This paper is one of a series of papers in which we answer above ques-
tions and we finished the project of the existence of Calabi extremal metrics
in any Kéahler class on any compact almost-homogeneous manifolds of co-
homogeneity one.

There are three types of these kind of manifolds. We refer the readers
to the next section for the details. The type III compact complex almost
homogeneous manifolds of real cohomogeneity one were dealt in [Gu2] more
than fifteen years ago. There is no much stability involved there.

We shall deal with the type I case in [Gu9] and the type II case in this
paper and [Gul2]. This is the first class of manifolds for which the existence
is completely understood and it is equivalent to the geodesic stability.

The purpose of this paper is to prove that there is a Kéahler metric
of constant scalar curvature on the affine almost-homogeneous manifold of
cohomogeneity one if the generalized Futaki invariant is positive, i.e., (10)
holds (Theorem 9). We shall prove the converse in [Gu6]. In [GC] and
[Gu4,5,8] we dealt with some examples.

We should mention that our concept of generalized Futaki invariant
might not be the same as the one in [DT] although it might appear to
be similar for our case. A very interesting question is to find a degeneration
such that Ding-Tian’s idea might apply to our case here. It is related to the
normal line bundle of the exceptional divisor, but it is not from the projec-
tive normal line bundle. The generalized Futaki invariant in our case comes
from some kind of combination of the generalized Futaki invariants along
the maximal geodesic rays in the moduli space of Kéahler metric but does
not necessarily come directly from any one of them as we have described
and observed in [Gub,8].

In [Gu8], we only dealt with one manifold which is the example (3) in
[Ak p.68]. In this separate paper, we deal with the other two essential cases
there, which might cause some difficulties, since the manifolds there are
quite unfamiliar.

These two essential cases will be given in section 3. But for the con-
venience to the readers, I will give a short description here: Let M be
a compact complex almost homogeneous manifold, G be the group action
such that M = O U D with O an open orbit and D a closed orbit. M
is called affine if O is a G equivariant C™ bundle (not necessary a vector
bundle) over a compact complex homogeneous manifold. In our cases, M is
a G equivariant fiber bundle over a manifold C' such that C = G/P for a



parabolic subgroup P = SS1R of G with S, 51 semisimple and R the radical,
S1R acts on the fiber F trivially. Moreover, F' itself is an affine compact
complex almost homogeneous manifold of CP"™ bundles with an open orbit
S/U. We have:

For the first case in [Ak p.68] S = B, n > 2, the Lie algebra of U is
generated by a Cartan subalgebra and the complex root vectors of +(e; —
ej); es+e; 1 <i < j < n (no positive roots e;, which correspond to the
C"). Fis a CP™ bundle (see [Ak p.68, 73]). We denote F by F(B,,).

For the second case in [Ak p.68] S = C, n > 3, the Lie algebra of
U is generated by a Cartan subalgebra and the complex root vectors of
+(e; £ ej);+2e; 2 < i < j < n; and 2e; (no positive roots e; £ e, which
correspond to the C?"). F is a CP?" bundle (see [Ak p.68, 73]). We denote
F by F(C,).

Being different from the third case in [Ak p.68] we dealt in [Gu8], in
which the manifold can only be a blow up of a homogeneous space, in these
two cases F' are homogeneous (see [Ak p.69]).

In the same time, we also treated the manifolds which are fiber bundles
with typical fibers of the first and fifth cases in [Ak p.73] as one situation in
[Gul2]. Although the fiber of the last case is just CP™ x (CP™)*, it is still
in the case of affine type. Therefore, to finish the affine case we have to deal
with that case also. We originally wrote a paper for all the type II cases.
But it was too long for publication. Therefore, we finally separated it into
this paper and [Gul2]. Conceptually, this paper is much more difficult and
original than [Gul2], but technically [Gul2] is more difficult and includes
more cases.

As in [Gu8], we take our original method in [Gu4,5]. From Lie group
point of view our method can be regarded as a nilpotent path method, i. e.,
we consider a path, starting from the singular real orbit, generated by the
action of a l-parameter subgroup generated by a nilpotent element. One
could also consider the path as a path generated by a semisimple element
H,, where « is the root which generates the sl(2) Lie subalgebra A€,

In this paper, we first give a preliminary on compact almost homogeneous
manifolds of cohomogeneity one in the second section, and look back to what
we did in [GC], [Gu4, 5] from a Lie group point of view in the third section.
Then we apply the same argument in the third section of [Gu8] to the affine
case. We found that the same method works for the complex structure of
both the affine and the type II cases. We deal with two cases we mentioned
above.



In the fourth section, we found that the same argument works for the
Kahler structure. This is a section in which we deal with many different
possibilities of the pairs of groups (S,G). This also shows that the affine
classes are very big and are not extraordinary at all (see also the proof of the
Lemma 6 and [Gul2] for a huge amount of this kind of manifolds). A new
ingredient is the appearing of the 3-strings, i.e., 3 dimensionl irreducible
representations of AC. Tt is quite different from the situation in [Gus§].
Fortunately, the determinants of 3-strings are linear functions of the energy
norm function U.

The fifth section is one of our major input in this research. To calculate
the Ricci curvature we apply a modified Koszul’s trick which was motivated
by [Ks p.567-570] as we did in [Gu8]. This is a difficult part and was missing
in [Si]. It turns out that both our earlier works in holomorphic symplectic
manifolds [Gu3] and homogeneous spaces [Gu7], [DG1,2] help us go through
this research. The formula we used from [DG1 4.11] is due to Professor
Dorfmeister.

We calculate the scalar curvature in the sixth section and setting up the
equations in the seventh section. The pattern of these equations make it
possible to reduce a fourth order ODE to a second order ODE.

We finally prove our Theorem 9 in the eighth section. One consequence
of our argument is that the manifolds we considered in this paper are all
Fano (Corollary 1). This is not true for the case in which S = 4,, ([Gul2]).

We then treat the Kéhler Einstein case in the ninth section. The pattern
of the examples seems quite bizarre in the ninth section if the asymptotic
Mumford weakly stability is the same as geodesic stability or weakly K-
stability. It is also clear to us that our geodesic stability is stronger than
the weakly K-stability. The weakly K-stability should correspond to the
nonpositivity of our integral. It is more like a semistability. So far we still
can not find an example with a zero integral for the Ricci class. Otherwise,
it should become a candidate which is weakly K-stable but not geodesically
stable.

In the last section, we obtain a result on these manifolds. We solve a
problem on the nonhomogeneous property of compact almost-homogeneous
manifolds of cohomogeneity one and with a hypersurface end. This is im-
portant for our new Kahler-Einstein manifolds since we need to know that
they are not homogeneous and therefore are new. This is also a question
raised by Ahiezer. I later found that he also obtained a solution but with a
different proof (in Russian only). In our proof we actually prove that if M is
not homogeneous, then the group is actually the identity component of the



automorphism group and the manifolds are different from each other. This
gives a complete classification of compact almost homogeneous manifolds of
cohomogeneity one and with a hypersurface end. They are either homoge-
neous or nonhomogeneous completions of C* bundles, or nonhomogeneous
almost-homogeneous manifolds of cohomogeneity one with semisimple group
action and a hypersurface end. The first and the second classes in this clas-
sification are well understood for many years. Our result clarify the third
class. Then we calculate concretly that for the homogeneous cases, our
condition (10) holds. This of course should be true, but we just use it as
examples.

In this paper, as in [Gu8] we also have three natural variables: ¢ the
nipotent time, 6 the phase angle, 7 the micro time. They help us understand
the equation very much. The choice 6 = ﬁg‘ make the equation much
simpler. We avoided another natural variable s the semisimple time which
was in [Gub], but it will eventually appear in [Gu6]. As in [Gu8], the energy
norm function ¢/ and the Ricci mixed energy norm function ¢/, in the sections
4 and 6 are seemly God given, which are the reasons that we can solve this
probem.

By taking the advantage of the solution for higher codimensional ends
in [Gul0], we also checked the possibility of blowing down of our manifolds.
In all our calculations we also need to take care carefully of the change of
the invariant inner products when we restrict our calculation to a typical
subgroup S in G.

2 Preliminaries

Here, we summarize some known results about compact complex almost ho-
mogeneous manifolds of cohomogeneity one. In this paper, we only consider
manifolds with a Kahler structure. For earlier results on this subject, we
refer the readers to [Ak] and [HS].

We call a compact complex manifold an almost-homogeneous manifold
if its complex automorphism group has an open orbit. We say that a mani-
fold is of cohomogeneity one if the maximal compact subgroup has a (real)
hypersurface orbit. In [GC]| and [Gu5], we reduced compact complex almost
homogeneous manifolds of cohomogeneity one into three types of manifolds.

We denote the manifold by M and let G be a complex subgroup of its
automorphism group which has an open orbit on M.

Let us assume first that M is simply connected. Let the open orbit be



G/U, K be the maximal connected compact subgroup of G, L be the generic
isotropic subgroup of K, i.e., K/L be a generic K orbit. We have that (see
[GC Theorem 1]):

Proposition 1. If G is not semisimple, then M is a completion of a
C* bundle over a projective rational homogeneous space.

For the structure of the projective rational homogeneous spaces, we refer
the reader for the detailed discussion in [Gu7]. Here, we just recall some
results which will be used in this paper.

A projective rational homogeneous space is a quotient of a complex
semisimple Lie group G over a parabolic subgroup P. Let A be a root
system of GG. A subgroup P is a parabolic subgroup if its Lie algebra con-
tains all the roots and the positive root vectors.

If a compact almost-homogeneous Kéahler manifold is a completion of a
C* bundle over a product of a torus and a projective rational homogeneous
space, we call it a manifold of type III. We have dealt with this kind of man-
ifolds in our dissertation [Gul,2]. There always exists an extremal metric in
any Kahler class. Recently, we generalized this existence result to a family
of metrics, which connects the extremal metric [Gu2] and the generalized
quasi-einstein metric [Gul0], called the extremal-soliton metrics in [Gull].
The existence of the extremal-soliton is the same as the geodesic stability
with respect to a generalized Mabuchi functional.

In general, if M is a compact almost homogeneous Kéahler manifold and
O is the open orbit, then D = M — O is a proper closed submanifold. More-
over, D has at most two connected components. We call each component of
D an end. If D has two components (or one component), we say that M is
an almost homogeneous manifold with two ends (or one end). We have (see
[HS Theorem 3.2]):

Proposition 2. If M is a compact almost-homogeneous Kdhler mani-
folds with two ends, then M is a manifold of type III.

Therefore, we only need to deal with the case with one end. Again, in the
case of M being simply connected, we only need to take care of the case in
which G is semisimple. If G is semisimple and M has two G orbits, one open
and one closed, and moreover if the closed orbit is a complex hypersurface,
there are two possibilities. Let K, L be the Lie algebras of K, L. Then the
centralizer of £ in I is a direct sum of £ and a Lie subalgebra A which is
either one dimensional or the 3-dimensional Lie algebra su(2). If A is one
dimensional, we call M a manifold of type I. If A is su(2), we call M a
manifold of type II. We also denote the complexification of A by AC.



In general, if the closed orbit has a higher codimension, we can always
blow up the closed orbit to obtain a manifold M with a hypersurface end.
We call the manifold M a manifold of type I (or IT) if M is of type I (or IT).

There is a special case of the type IT manifolds. If the open orbit is a C*
bundle over a projective rational homogeneous manifold, we call M an affine
type manifold (not to be confused with the closed complex submanifolds of
C™). We note that in our case, the C* bundle is not a complex holomorphic
vector bundle.

Let Auto(M) be the identity component of the complex automorphism of
M, then any compact almost-homogeneous manifold is either homogeneous
or almost-homogeneous of cohomogeneity one with the Auto(M) action. The
homogeneous ones are well understood. Therefore, we are only interested in
those manifolds which are almost-homogenoues of cohomogeneity one with
Auto(M) action. We have (see [Gub section 12]):

Proposition 3. Any compact almost-homogeneous Kdhler manifold M
of cohomogeneity one is an Auto(M) equivariant fibration over a product of
a rational projective homogeneous manifold Q@ and a complex torus T with
a fiber F'. Therefore, M can be regarded as a fiber bundle over T with a
simply connected fiber My. One of following holds:

(i) M is a manifold of type III.

(i) My is of type II but not affine.

(iii) My is affine.

(iv) My is of type I

We say that M is a manifold of type I (or type II, affine) if M, is a
manifold of type I (or type II, affine).

We actually can also obtain a structure of the M; bundle over T from
[HS]. We only need to understand the bundle structure for the open orbit.
By [HS Corollary 4.4], we have that the bundle structure is a product unless
when we apply Proposition 3 to M we have that F = Q¥ is a k-dimensional
hyperquadric. In the latter case, there is an unbranched double covering M
of M such that the bundle structure is a product. We have that:

Proposition 4. The My bundle over T is a product except in the case
with which the open orbit is an Fy bundle over Q x T such that Fy is in
either the second, or the sizth, or the eighth case in [Ak p.67]. In the latter
cases the My bundle has an unbranched double covering which is a product
of My and T.

In [Gu8, 12] and this paper, we dealt with the simply connected affine
and the type II cases with a hypersurface end. In [Gu9], we shall deal with



the simply connected type I cases with a hypersurface end. Then, we shall
deal with the simply connected cases with a higher codimensional end in
[Gu9 section 11], and the general case in [Gu9 section 12].

3 The complex structures of the affine almost ho-
mogeneous manifolds

In this section we will deal with the complex structure J of the affine al-
most homogeneous manifolds. Let us recall some basic notations of the Lie
algebras.

To make the things simpler we look at two special cases [Ak p.68] first.
We let G and U be the corresponding complex Lie groups and O = G/U
be the open orbit. U C G is always a subgroup containing a maximal torus
and:

(1) F(Ba) G = By, roots of U are £(e1 — e2),e1 + ea.

(2) F(C3) G = C3, roots of U are +(eg £ e3), £2ey, +-2e3, 2e1.

In the case (1), the roots of the affine space are e; and es. The long root
a1 = e1 —e9 and the short root s = eo consist a fundamental root system of
this Lie algebra. Bs has other positive roots a1 +ag = e1, a1 +2a9 = e1+es.
Bs has a Cartan subalgebra

0 —aii 0 0 0
ai 0 0 0 0

H= 0 0 0 —agi O |a.aec
0 0 ayi 0 0
0O 0 0 0 0

The vector e; corresponds to (a1, az) = (1,0) and ey corresponds to (a1, as) =
(0,1). The open orbit is generated by the combined action of By on

A =10,0,0,0,1]7

which represents a 4 dimensional complex subspace m = ker AT of C® and

1i000]"
(3
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which represents a 2 dimensional complex subspace [ C 7 generated by the
column vectors of B. We let

O2x2 Oaxo BT
Eic, = | O2x2 O2x2 0O2x1
—B 0O1x2 0
. 1 .
with B = —5[+1, ],

O2x2 A 02x1

Eeptey = | —AT 02x2 021
O1x2 O1x2 O

for

11

2l d T

E_o=ETL.
Fa = Ea - E—ou Ga = i(Ea + E—a)a

then

[Faa Ga] = 2Ha
and

[Haa Fa] — i(Haa Ha)OEon

where (, )o is the standard inner product such that (e;, e;)p = 1.
We also have that

[E:l:ep E:I:(ej—ei)] = :':E:l:ej7
[Eeia E:I:ej] = :FEei:I:eja
[E—epE:l:ej] = :FE—ei:I:ej
and
[E:I:eiyE:l:(ei—i-ej)] = iEZFej .
The tangent space is generated by FE,’s with
a=t(ag + az), — (a1 + 2a2), ().
The affine space C? is generated by the root vectors with

a1+ g =e1, Qg = eg.



As in the case of [Gud], we consider the nilponent orbit generated by

Ea1+a2-
Now,
1i000]
7
pt:exp(tEa1+a2) ([0703()’071]TX [0 0 1 0‘| )
. T . T
— | 500 x| g o1 ol
V2 /2 001 7 0
1 ¢ 00O g
o . T 7
poo_[177’707070] X[O 0 1 4 0] :
Let

F=FEqta, = EF-0—a::G = Z.(Em-l—az + E—al—az)v H = Ha, ta,,

then as before o F

Let T be the tangent vector of the curve p, then

JH = —{T.

2Ga,

Similarly, JF,, = —Gqo,s JFa, 1200 = —Gay42a9, JFay = —Gay + 7

In particular, at Py, we have JF, = —G,,.
Similarly, we consider F'(B,,), then the roots of U are

:|:(€Z' — 6]'),82' + e

with 1 <17 < j < n. The open orbit is a combination of the B,, action on

14500 ---0007"

001 i --000

[07"' 0, 1]{><(2n+1) X
0000 -1 i 0

For the complex Lie group B,, we have a; = ¢; — ;41 for 1 < i < n

and «, = e,. Therefore, e; = ;-‘:Z- aj, € — e = Zf;ll j, € + e =
Z?;Zl aj + 237 paj. In particular e; = 377 «j. Therefore, similarly we
have that:

10



The vector space C” is generated by root vectors with e;.
Proposition 5. For F(B,),

2H
JF,, = -G, + 5
JFei-i-ek - _Gei—i-eka
2Ge; —e;

JFe = —Ge, + =

and
JFey—e; = =Gey—e;-

We also have
Feieep =Geymep, =0

for i > 1. In particular, at peo, JFy = —Go for a # e; — e with 1 < i < k.

In F(C3) of the case (2), the roots of the affine space are e; + e; and
e1 + e3. The two short roots a; = e; — e2, 90 = e9 — e3 and the long root
a3 = 2e3 consist a fundamental root system of the Lie algebra. C3g has other
positive roots a1 +ag = e1 —e3, a1 +as+a3 = e;+es, a1 +2a0+a3 = e;+eo,
o 4+ ag = ey + ez, 2a9 + ag = 2e5 and 2aq + 20 + ag = 2e;.

The complex Lie group C5 has a Cartan subalgebra

[az O 0 O 0 0
0 a2 O 0 0 0
_ 0 0 a3 O 0 0
H = 0 0 0 —a; 0 0 |ar,a2,a3€C
0 0 O 0 —ax O
L0 0 0 0 0 —as |

The vector ey corresponds to (ay,as,a3) = (1,0,0), ez to (0,1,0), es to
(0,0,1). The open orbit is generated by the combined C5 action on A =
[1,0,0,0, O,O]T which represents a complex 1 dimensional subspace [ of C%

generated by A and
10o000o0]

B=100010 0

which represents the complex 2 dimensional column space 7 of B. We have

[l Cm.

11



We let

with

and

—
o
o

We let

with

o O O
[an)}

and

oyl

]

<

+

D

N
O = O
S O =
S O O

We also let E_g = Eg
We have that [Fy, Go| = 2H, and [H,, E,] = i(Hy, Hy)oEq, where (1, )o
is the standard inner product such that (e; — ez, e1 — €2)g = 2,

[E:I:2ei7 E$(ei+ej)] = i\/§E:I:(ei—ej)7 [E:I:(ei—ej)y E:I:2ej] = :t\/iE:I:(eH-ej)v

[E:I:(ei—ej)v E:I:(ei-l-ej)] = :IZ\/EE:I:%m [Eei—6j7 Eej—ek] = FEe;—ey

[E:I:(ei—ej)yE:l:(ej—l—ek)] = :IZE:I:(ei—l—ek)-
The tangent space is generated by FE,’s with

a=*x(e; ej), —2eq.
The affine space C* is generated by

e1 tej.

12



As above, we consider the nilponent orbit generated by E,, .

Now,
100000]"
pt:eXp(tEal)([1707070’0>0]TX[0 0010 O] )
_ [100000]TX[1 000 O or
0001 —t 0"
100000]
pw:[l,O,O,O,O,O]TX[O 00 0 1 0] -
Let

F=E, —F_,,G=1(Es, + E_4,),
then as above we have that

JF=-G+%.

Let T be the tangent vector of the curve p;, then

JH = =2tT.

Similarly,
JFy, = Goyy Foy = Goy =0,

JFOcz-i-aa = Gaz-i-aav JF?az-l-aa = G2a2+a3=

JF2041+2042+013 = _G2a1+2a2+a37

\/§G20¢2 +as
t )
2Ga2 +as3
t

JFa1+2az+a3 = _Ga1+2a2+a3 -

JFo, +as+as = —Gaj+az+as —

and

2G,
.

At Pooy Foey = Goey = 0, JFoey, = Goey, JFeyte; = Geytes. For other roots
o we have that JF, = —G,.
Similarly, we consider F/(C},), then the roots of U are

JFoi+as = —Gaytas —

+(e; = ej)

13



with 1 <7 < j <n and
:|:2€Z‘,2€1.

The open orbit is a combination of the C,, action on

T
10

« 0 0
00 --- 0

00 ---
.. . DY T
[1707 ’0)0707 ’0] 1 0 .. O

For C,, we have a; = e; — e¢;41 for 1 < i < n and a,, = 2¢e,, Therefore,

k—1
€ — e = Z Oéj,
j=t

k—1 n—1
e;+e, = Zozj+22aj+an,
j=i j=k
n—1
2e; :2Zaj+an.
j=i

Therefore, similarly we have that:
The vector space is generated by the root vectors with e; & e;.

Proposition 6. For F(C),),

H
JFOq = _Gal + 77
JFye; = =Gy,
JF262 = G262'
We also have that
F,=G,=0
for
a=e; — e, 2e;,e; + e
with © > 2.
And

\/§G262

t )

JFe e = —Geiter —
JFeg-‘,—ek = Geg-{—eka

2Gey+
JFeite, = —Geyte, — %

14



for k> 2.
Moreover,
JFez—ek — Gez—eka
2062—%
t
At poo we have that F, = Go = 0 if o = 2e;,e; £ e, @ > 2; JFy, =
Gaeys JFeyte, = Geyte,, - For other roots o we have that JF, = —G,,.

JFel—ek = _Gel—ek -

In general, as in [Ak] G is semisimple, Ug is the 1-subgroup. There
is a parabolic subgroup P = SS1R with S, 5] semisimple and R solvable
such that Ug = US1R where U is a 1-subgroup of S. The manifold is
a fibration over G/P with the completion of P/Us = S/U as the affine
almost homogeneous fiber. In this case, the root system of S is a subsystem
of the root system of G. In the Lie algebra of G, we also have F,, G, for
those roots of G which are not in S. The tangent space of G/U¢g along
p; is decomposed into irreducible A€ representations, which we call strings.
F,, G, are in the complement representation of S. But JF, = —G,, (mod S)
as it is in the tangent space of G/P. Therefore, we have JF, = —G, for
any « which is not in the root system of S. This discussion is corresponding
to the discussion in the last paragraph of the second section of [Gu8].

Proposition 7. For affine almost homogeneous manifolds of cohomo-
geneity one with S,U in the cases (1), (2) of [Ak p.68] we have:

if a is not in the Lie algebra of S, and JF, follows the same formula in
Propositions 5 and 6 if « is in the Lie algebra of S.

If S is Bs, the bigger complex Lie group G can be B, C,, Fy. If S is
B3, G can be B, Fy. If S is C3, G can be C,, Fy. If S is B, with n > 3,
G can only be B4y If S is C), with n > 3, then G can be Cy4y,.

4 The Kahler structures

In this section, we shall deal with the Kéahler structures. The method is
basically the same as that in the section 5 of [Gu8]. In [Gu8], we dealt with
a 4-string for the case S = G, i.e., a 4 dimensional ireducible representation
of the Lie subalgebra AC. It happens that for the cases S = B,, or C,, and
the case S = A, later on in [Gul2] we have to deal with 3 dimensional

15



irreducible representations of A€. We call them 3-strings. It is a miracle
that our method still works for the 3-strings.

In general, we call an irreducible A€ representation V an n-string if
dimcV =n.

For F(B3), G = S = By, by regarding the open By orbit as a homo-
geneous space, the vector fields which corresponding to the Lie algebra are
the pushdown of the right invariant vector fields on the Lie group Bs. As
we did in [Gu8], we study the corresponding left invariant vector fields on
the Lie group. To make the things simpler, we still use our original notation
for the left invariant vector fields. Since the Kéhler form is (left)invariant
under the action of the maximal compact Lie subalgebra I of the complex
Lie algebra Bs, the pullback of this Kéhler form is left K invariant form on
Bsy. Therefore, T(w(X,Y)) = —w(T,[X,Y]) for any X,Y € K.

Now,

T(w(G,H)) =—-w(T,F)

= —w(JT,JF)

H 2H
= —w(?,—G—i— T)
= —t'w(G, H),

that is, w(G, H) = Ct~! for a constant C. Then C = 0, otherwise w(G, H)
is infinity at pg. Therefore,

w(G,H) =w(T,F)=0.

Similarly,
2H
tT(w(H, F)) —T(w(F,G)) =w(tT, -G + T)
= w(tJT,J*F)
= —w(H,F),

ie, T(tw(H, F)) =T(w(F,G)). Therefore,
w(F,G) =tw(H,F)+ A

for some constant A.
Let (, )p be an invariant metric on I such that (H, H)p = 1. If there
is no confusion we write (, ) =(, )p. Then H, %, % is an unitary basis
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of the Lie algebra 4. Therefore
(X Y] = (X, Y], H)H + 27 (X, Y], F)F + 27 (X, Y], G)G
+ XY+ [X, Y] ag)e
Therefore,
w(T,[X,Y]) = (X, Y], H)w(T, H) + 271([X, Y], Q)w(T, G)
+ O.J(T, [X, Y](A—FE)L)'

But
W(Ta [Xa Y](A—i—ﬁ)J-) = w(tH’ J([X7 Y](A—FE)J-)) =0,

since JX € (A+ L) if X € (A+ L)+, We also have
w(X,Y)=(aH+bF +cG+1,[X,Y])
with I in the center of [.
w(G,H) = (aH +bF + G+ 1,[G,H]) = (bDF,F) =2b =0,
i.e., b = 0. Therefore,
Tw(X,Y))=(H+/G+T,X,Y])

= —w(T,[X,Y))
= —(X,Y],w(T, H)H + 27 'w(T,G)G),

ie, I'=0and o = —w(T,H), ¢ = —2"'(T,G). The last two equalities
are actually already known to us. We actually obtained

2H 2a’
w(T,—G+ T) = 20/ — _CL

t
= w(JT,J*F)
H
- —w(ZF
o )
= —t YaH + cG,G)
= —QCt_l,
that is, t¢’ + ¢ = a/. Therefore, a = tc + C. That is,

w(F, Q) =2a =2tc+2C =tw(H, F) + 2C.
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Therefore, we already have this equality with A = 2C. We also see that
¢(0) = 0 since H(0) = 0. The first equality means that I does not depend
ont, ie.,

I = Biag

for some constant B. Therefore, the Kéhler form is

W(X,Y) = (tf(t) + O)VH + f()G + Bias, [X, Y))
= (H(t)v [X7 Y])v

where f(t) =c and H(t) = aH + cG + I.
As an observation, we see that if

Vi= Span(Ta Fa)7

Vo = span(H, G,),

then
JVi =V,

and
Vit="V,

with respect to w. Moreover,
[‘/17 V1]7 [VVQ, VQ] C Vb
V1, Va] C Va.

Proposition 8. For F(B3), the Kdhler metric is a direct sum of its
restriction on the subspaces

W =span(T,H, F,G),

Wy =span(Ey|a = ag, a9, a1 + 2a3).
On W, let ¢ = f then the metric is

w(F,JT) w(F,JF)

l _tf+f _2f

_ t t

- 2 2(2+t2) f ] :
_Tf Tt 2C

lw(T,JT) w(T, JF) ] B [W(T,g) w(JT,—F) ]
= I

18



The determinant is equal to

1 et [ w(T,H) w(T,-G) ]

w(F,H) w(F,—G)
—a —20’]

|
= t~ " det 9 94

= 2t Y(ad + 2¢)
ul
?7
where U = a? + 2¢2.

We notice that U is the square norm (H(t), H(t)) up to a constant, i.e.,
the energy of H(t) up to a constant.

We also see that U is increasing. We also see that f(0) = 0,—(tf)’ > 0
when t > 0, therefore, —f > 0 when ¢t > 0 and —tf is increasing. We also

—t

notice that %t) = @, that is, f(¢) is an odd function.

On Wi we have that:

w(F(Xl?JFOCl) w(F(Xl?JFOQ) w(FauJFOq-l-?az)
w(FOéQ’ ']Foq) W(FOQ’ JFOQ) W(Faz’ ']Fa1+20fz)
w(Foy+200s JFay)  W(Far+4200: JFay)  wW(Fai 1200 J Fog+205)
a—B —c 0
= -2 —c B+% c
0 c a+ B

The determinant is equal to
det(w(Fo,, —Ga,)) = —8B(U — B?).

Since F,,(0) = 0, we have that a(0) = C = B and U(0) = B?. By U
increasing, we have that & — B? > 0 and therefore —8B > 0, i. e., —B > 0.

For F(B,,), G = S = By, we can do the same. And almost everything are
the same except we have I,, = Bi) 5 e; instead of Iy = Biay = Biey. In that
case, we have n—1 of ey 3-strings e; —ey, eg, e1 +e;, instead of aq, o, a1 +2as.
That is, we have triples of positive roots such that the corresponding root
vectors generates 3 dimensional irreducible representations of the si(2) Lie
subalgebra A€ which is generated by e.

In general, we say that n positive roots an n-string of a root « if they
generate n dimensional irreducible representations of the sl(2) Lie subalge-
bra generated by «.
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The restricted metrics for these 3-strings are exactly the same as that
of a1, as, a1 + 2aiy for the By case. However, there are also W e1

L-strings e; + ey, for 1 <i <k <n. We have
w(Fei—i_ek’ JFeH'ek) - _w(Fei-i'@kv Gei-l-ek) = —-2B.

Therefore, the volume is

V= u?,(—sB(u — BY))""Y(—2B)

(n—1)(n—2)
2 .

When G # S, we have
w(X,Y)=(aH +cG+Is+ Ip.[X,Y])

with Ig € LN S and Ig is in the center of £, Ip is in the center of £ but is
perpendicular to S. We denote Ig 4+ Ip by Ig, and if there is no confusion
we write [ = Ig.

In the case F' = F(B,), i.e., S = By, G = By,+, and the C" is generated
by eém+1, -y €min, We have other e,, 11 3-strings e; — eyn11, €1, € + €ma1 for
I <'m and other e,, 1 1-strings.

w(X,Y) = (aH +cG+1+i)Y_ Bie;,[X,Y]).
=1

The determinants of the 1-strings are constants. The restricted metrics to
the subspaces generated by 3-strings e; — em+1, €1, €1 + €1 are

B,—a —c 0
—2 —c B c
0 c Bj+a

Therefore, the determinant for the 3-strings is

—8By(B - U).
We have B; < B,U < Bl2.
The volume is
! m
V=M=—U-B)"T[(B? -
ACEERI V)
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with a constant M > 0.

Now, let us consider the case of G = Fy. According to [Hu p.64], Fy has
a root system with roots +e; for any 0 < ¢ < 4 and

1
+(e; £ ej) i ;éj,:ti(el +egtegtey)

with a basis

1
(62 — €3,€3 — €4,€4,04 = 5(61 — €y — €3 — 64)).

A Bs type complex Lie subgroup is generated by es — e4,e4. A Bg type
complex Lie subgroup is generated by es —e3, e3 —eyq, e4. A C3 type complex
Lie subgroup is generated by e3 — eq4, €4, 4.

If FF = F(B3), there are two other e3 3-strings e; — es,e1,e1 + e3 and
€9 — €3,€e9,e2 + e3. There are also four other eg 2-strings %(el + ey —e3 £
e4), %(el + eg + e3 +e4). There are also some more other es 1-strings, but
their determinants are constants.

w(X,Y) = (aH + ¢G + Biey + iBie; + iBses, [X,Y]).
All the e3 3-strings and eg are in B3 and the restriction of the w is
(aH + ¢G +iBje1 + iBses, [X,Y]).
As above we have that the determinants for these 3-strings are
—8B;(B? —U)

with i = 1,2. We also have that B; < B and U < B2. Any e3 2-string and
e3 generates an Ao Lie algebra and the restriction of w is

(aH + G + 3(B1 + B+ By)(er eateq), [X,Y]).
We have that the determinants for these 2-strings are
(Bi £ By £ B)? - U
and By < By +2B,U < (B — By — B)%. The volume is
U 2
V= M—U- B (B —u) [[((B1 £ B2+ B)> - ).
i=1
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If FF = F(Bj3), there is another es 3-strings e; — es, e1,e1 + ez and four
other ey 2-strings %(61 —eg ezt ey), %(61 + ea £ e3 £ eq). There are also
some e 1-strings, but their determinants are constants.

w(X,Y) = (aH + cG +iB(e3 + e4) + iBie1, [X,Y]).

This ey 3-string and e is in a B type complex Lie subgroup with a restricted

w of
(aH + cG + iBjeq, [X, Y])

The determinant is
—8B1(Bf - U)

and By < B, U < B?. Any ey 2-string and e generate an As Lie algebra.
The restricted w is

(aH + G + %(B1 4 B(£1 4 1))(eg £ e3 = eq), [X, Y)).
The determinants are
(B + B(£1+1))? - U
and By < 3B, U < (B — 2B)?. The volume is
V= M%/(u — B**(B} —U) [[((B1 + B(x1 £ 1))* = U).
Similarly, for F'(C3), i.e., G =S = C3 we have

w(X,Y)=(aH +cG+1,[X,Y])
= (H(t),[X,Y])

with a = tc+ C = tf(t) + B, I = Bz‘(el + e3) = Bi(ag + 209 + a3) where
(,)=1(, )c (weomit C if there is no confusion) is the invariant form with

(H7H)C = (F7F)C = (GaG)C =1

a1 has only one 3-strings 2e, €1 + €2, 2¢1. The determinant of the metric on
this 3-strings is —8B(U — B?) where U = a? + ¢? is the norm (H(t), H(t))
up to a constant. The determinant of the metric on the space generated by
T H F,Gis Zéit/ «aq has two 2-strings eo — e3,e; — eg and ey + e3,e1 + e3.
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The matrices of the restriction of the metric on them are identical and the
determinants are i — B2. Therefore, the volume is

V= %/(—SB(Z/{ — B?)%).

For the case of F(C,,), G =S = C,, we also have
w(X,Y)=(aH +cG+I,[X,Y])

with I = Bi(e; + e2). aq has only one 3-string 2eq, e1 + e2,2e; and 2(n — 2)
2-strings (ea — e, e1 — eg), (ea + ex,e1 + ex) with k& > 2. Therefore, the
volume is ,

V= %(—SB(Z/I — B?)>73),

Here, we compare the case of S = By and S = (5. For S = By,
[He,, Fe,] = Ge, and for S = C9, [Hej—egy Feyj—ey] = 2Ge;—e,. We can
assume that H., = ki1H, —¢, and F,, = koF, _., with positive ki, ko,
then ky = 1 and ky = 272, Let (, )p = ks( , )o then (H,,, Ho)p =
k3(2_1H61_62, 2_1H61_62)c. Therefore, we have k3 = 4. Let B? and B¢ be
the corresponding B for the cases of S = By and S = (U5, then

([X,Y],iBBey) g = ([X,Y],iB (e1 + €3))c,

ie.,

4(1X,Y],27YiBB ey 4 €9))c = ([X,Y],iB% (e1 + €2))c.

Thus, 2BP = BC. ) )
We also have that E., =272 F,, ., and therefore t® = 23t°. From

([Xv Y]? CB(\/itc)Gel )B = ([X7 Y]v cc(tc)Gel—ez)Cv
we have that
41X, Y],27 2P (V2)Gey oo = (1X, Y], € (H)Ge, —es)c

ie., 2%(33(\/§t) = cY(t). We can also check that 2a®(v/2t) = a®(t). There-
fore, 4UP = 4(aP)? 4 8(cP)? = (a©)? + (¢“)? = UC.

For the case of G = Fy and S = (U3, (3 is generated by au,eq,e3 — e4.
The a7 in the basis of C5 is our a4 here. However, H = 2a4 and I =
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2iB(oy + 2e4 + e3 —eq) = iB(e; — ea + e3 + e4). Therefore, by (H.H) =1
we have (e1,e1) = 7.

W(X,Y) = (aH + cG + I +iBy(e1 + e2), [ X, Y)).

There are two other a4 3-strings es + egs, %(61 + eyt e3 —eq),e1 — ey
and eg + ey, %(el + e9 —e3+ e4),e1 — eg. There are two other oy 2-strings
es, %(61 + e —e3—ey) and e, %(el +eg+e3+e4). Any ay 3-string and ay
generate a Bs type complex Lie subalgebra. The restricted w is

B
(aH + G + 271(61 Fest (63— ea)), [X,Y]).

By regarding % as the By in the usual case in which G = Bs, we have that
the determinants are

B, B
=O(E
and By < 2B, 44 < B?. Any a4 2-string and a4 generate an As type of
complex Lie subalgebra. For the first 2-string, the restricted w is

—8( )2 —U)

(aH + cG + %(Bl ~ B)(er +3es — 5 — e4), [X, Y]).
The determinant is
(B —B)?-U
and By < 2B, U < (B — B)?. For the second 2-string, the restricted w is

(aH + cG + %(B1 + B)(3e1 + es + e3 + e4), [X, Y)).

The determinant is

(B + B)? —U.
Therefore, the volume is
/
B
V=M@ B w2 TT(B + B~ ).

For the case F = F(C),), i.e,, S = C,, and G = C,,, 1y, we have no other
Qmtl = €mt1 — €mt2 3-string but 2m other ;41 2-strings (e; + em42,€; +
em+1) and (e; — emy2,€; — emy1) with ¢ < m.

w(X,Y) = (aH +cG+1+i)Y_ Bie;,[X,Y]).

=1
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The other oy, 2-strings have determinants (B; B)2 — U. Therefore, the
volume is )
V= MU U — B>~ 3H (B; £ B)? —U)*
=1

and —B; > 0,U < (Bz :]:B)2

For the case S = By and G = C,,, the Bs is generated by the simple roots
én_1 — e and 2e,. o =e,_1 + e, is the root generated the Lie subalgebra
A. In this case, H = +H,, ., and

n—2
w(X,Y) = (aH+CG+i§(en_1 - en) +iz Byeyp, [X, Y])
k=1
= (H(t)v[X7Y])

a has 2(n — 2) other 2-strings ey — e,—1,€ex + €, and e + e,_1,e, — €,
As above, their determinants are (2B + B)? — U with U being the norm
(H(t), H(t)) up to a constant and U(0) = B2. B, < 0,U < (2B + B)%.
Therefore,

, -
V= M“ (U — B?) H (2By, £ B)* —U)*.

We notice that all the I and therefore the coefficients B, B; depend on
the inner product ( . ) we choose. And, we can write the volume formula as

MU't U — B [ (a? = U).

For each string, by changing the sign of the eigenvalues we can exchange the
eigenvectors. This induces a mirror symmetry of the eigenvectors. Formally,
we can let ¢ = 0 (and assume a # 0), then we have for each eigenvector 3;

(aH + I1,3;) = kg,(a; £ a). Therefore, we can choose a; = ((1{1%1)) if

(H,B;) # 0. And if 3;, are (3;, are mirror symmetry to each other, then we
have the same a;. We say that a mirror symmetry class is the set [i] of two
different roots which are mirror symmetry to each other and denote af; = a;
for i € [i]. We also let Z be the all mirror symmetry classes.

We also have in [Gu8] that in the case of the third example in [Ak p.6§]
the volume is

MZ/{’

V= U — BH(9B% - U),

and a similar result for the case of S = A, in [Gul2].
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Now, we summarize what we have in this section: Let H be the vector
field as in Propositions 5 and 6. We take (H, %, %) to be the orthonomal
basis of A if S = B, and (H,G,F) to be the orthonormal basis of A if
S =C,, Ig = 1+ Ip € L be the constant center elements of £ in the
representation of the Kahler metrics. Let H(t) = (¢tf(t) + B)H + f(t) and
U= (H(t),H(t)), then

Theorem 1. For the cases in which F = F(By,) or F(C,), if we repre-
sent the Kdahler metrics as

w(X,)Y)=(tf(t) +B)H + f(t)G + I, [X,Y])

then the volume is

MU
ot

14 U—-B> ] (@ —u) (1)

li]leT
for some positive numbers M and a? with

@ = — ‘ (IGvﬁz)
' (H7 BZ)
where k is the dimension of the affine space. k = n if F = F(B,) and

k=2n-2if F = F(C,). Moreover, U(0) = B? and B> <U < a?. In
particular, if G = S, we have that V = Mt='U'(U — B*)k—1.

Y

5 Calculating the Ricci curvature

Now, we calculate the Ricci curvature. Let a; be the root which generates
A€ and h = log V. Following Koszul [Ks p.567], we have that

Ly, v (W)W, JT, F, JF, Fy, JFy)
2w"(T,JT,F,JF,Fa,JFa) ’

p(X,JY) =

where X, Y, are the corresponding right invariant vector fields and here we
use F, JF, to represent

FagaJFazv'“aFaleFal

the array of F,, with its conjugate for positive roots « other than «; which
have nonzero Fy, and G.
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To calculate the Ricci curvature for the case F/(Bz), we only need to
consider X,Y for

Fam Fa1+2a2-
We have that

[Fa1+2a27 JFa1+2a2] = [Fa1+2a27 _Ga1+2a2]

- _2Ha1+2a2
= —2H —2H,,,

J[Fa1+2a2,7’7 JFOc1+2042,7’] = 2JHa1+2042,T’ = 2J(H + Haz) = —2tT.

[Fazu JF011+20¢2] = [Focza _GOC1+2042] = _G

J[Fazﬂ“v JFa1+2a2,r] =JG
2H 2H
=7 (G Tt —>

t
= F-2T.

Again as what happened in [Ks p.567-570], usually it is not clear how to
find JX for a right invariant vector field X along p; and to deal with the left
invariant form with right invariant vector fields. Therefore, the argument
in [Si] does not work as we can see for our situation. We need something
similar to the Koszul’s trick in [Ks p.567-570]. It turns out that all the
arguments there still go through for our situation. Therefore, as above we
let h =log V' and have that:

1

F JF, = —th' .
P(Foy +900 J Fay +205) BT, JT. F,JF, Fy, JFy)

WP ([2tT,T) — J[-2H — 2H,,,T),JT, F, JF, F,, JF,)

W (T, [2tT, JT] — J[-2H — 2H,,, JT),F, JF, F,, JF,)
W>(T, JT,[2tT, F) — J[-2H — 2H,,, F], JF, F,, JFy)
W(T, JT, F,[2tT, JF] — J[-2H — 2H,,, JF), F, JF,)
W(T,JT,F,JF,[2tT, F,] — J[~2H — 2H,,, F,), JF,,)
W (T, JT,F,JF, F,,[2tT, JF,] — J|-2H — 2H,,, JF,])]
= —th' +6,

+ o+ o+t —
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here we use the notation
(oL [A Fy] — J[B, F,l, JF),
to represent

W [A, Foy| = J[B, Foyl, JFay, -+ s Foy, JFo,) + -+
+ wn('”7FOlzaJFaza"'7[AaFOcl] _J[BvFal]ajFal)

which is the sum of
W', Fag, JFog, -+ [A, Fo] = J[B, Fy), JFy, - -+, Fo,, JFy,)
for all the positive roots a other than «1, and we use the notation
W', Fy, [A, JF,] — J[B, JF,)])

to represent a similar sum.

Another way to understand the calculation is regarding the volume ten-
sor formally as a product of the two determinant tensors 7, 71 of the sub-
spaces W, W (see section 4 Proposition 8). We have the formula

Axy(r)  Axy(m)
+ )
27 27

p(X, JY) = %J[Xry JYT’](h) +

where

Axy (1) =Y (-, [J[X,JY], X;] = J[[X, Y], Xi],---).

i

Applying this formula, we have the components which come from the
determinants 7 and 74:

AFa1+2a2 7Fa1+2a2 (T)
2T

=0

and
AFa1+2a2 7Fa1+2a2 (Tl)
27’1

= 6.

Similarly, we can get that

2
P(Foy, JFoy12a,) = —h'+ t
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The components from the determinants 7 and 71 are 0, %

Since the Ricci curvature is determined by the Ricci form and the Ricci
form is a (1,1) form, as in section 4 (e.g., Theorem 1) we only need to
determine the corresponding ¢, (= f,(t)) and B,, etc., for the Ricci form.

We have that ¢, = % (h’ — %), B, =—1.

For F(B,), S = G = By, we only need to calculate the extra determinant
components for the e; strings.

For the pair F, +¢,, Fe, +e,, Wwe have that the determinant components for
the other 3-strings are 4 and 2 for the 1-strings ez +¢;, 0 for other 1-strings.
Therefore

P(Feyteys JFeivey) = —th' +6 +4(n —2) +2(n —2) = —th' + 6(n — 1).

For the pair F,,, F¢,+¢,, we have that the determinant components for
3-strings are % and 0 for the 1-strings. Therefore,

2(n—1)

p(Fezv‘]F61+62) = —h'+ t

We have that ¢, = %(h’ — 2(";1)), B,=—-(n—-1).

For the case of G = By, and S = B,,, the determinant components
for all the extra 3-strings and 1-strings are zeros. Therefore, we have that
cp = (I — @) and B, = —(n —1).

However, in this case we also need to calculate the B, ;. We can calculate

p(Fe,, JF,,). We have that
[Fela JFel] = [Fela _Gel] = _2Hely

J[F.,, JF,] =0.

Therefore, one can see easily that e, e; + e induce a number 2 and e — ¢
induce a number —2. If I; <[ <3 induce a factor A;,_;, in Sp, then

p(FelaJFel) = 2(12 — Iy +1)+4(m+n—l2)

Therefore, B,; = lo +1; —1 —2(m + n). Actually, one can easily see that
these B,; come from those in the Ricci curvature of the G/P. There is an
explicit formula of the Ricci curvature of G/P in [DG1 (4.11.7)] (see also
[DG2 3]) and [Ks p.569 (4.6)](we notice that the factors of 2 are canceled
out):

pc/p(X,Y) = —qgp([X,Y]),
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where qq/p = Y qeat+_n, @ with Ap the root system for the semisimple
part of P, and qg/p is corresponding to an element in the abelian part of
the reductive part of P by an invariant metric. In [DG1], one has that
JFy = G, instead of JF, = —G, here. In particular, gq,/p(S) = 0 always.

In general, if F' = F(B,,), all other contributions of [2T'— F, ] and J[G, |
are zeros and ¢, = 1 (k' — @)

Similarly, all other contributions of [2tT, | are zeros. The contributions of
J[H+ H,, |, where v corresponds to es in B,,, are also zeros by the property
of gg/p above. We therefore have B, = —(n — 1). Other coefficients come

from the Ricci curvature of G/P as above.

Now, we take care of the case F' = F(C,), i.e., S = C),. In the case
n =2 and G = 5, we have that the metric is a product of its restrictions to
W and Wy, where W is generated by T, JT, F, JF and W is generated by
the 3-string 2es, e1 + €9, 2e1. As above, to calculate the Ricci curvature, we
only need to deal with X, Y for

Fel-l—ez: F2el-

We have that
[F2617 JFQel] =—2H — 2H61+627

J[F261,7”7 JFQel,T’] - _4tT,
[F€1+627 JF261] = _\/§G7
J[Ferteqs JFoe,) = V2(2T — F).

As above, for Fy.,, Fhe, the W contributions are zero, the contributions from
Wy are 12 and
p(Fgel, JFgel) == —Q(th, — 6)

For F¢, 1e,, Fe, the contributions of W are 0 and the contributions from Wy
2v2
.

are
2
p(F€1+627 JFoe,) = \/5(_}7’/ + Z)
Therefore, ¢, = b/ — % and B, = —2. This is similar to the case of By above

as we see before that QB[])3 = BE = —2. We also have that

(1) = 228 (V2t)
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2
\/it)
dhP 2
= VYT
dhB
—

— V(WP (VE) -

ﬁt)—%

If F = F(C3) and G = S = (35, we have two other 2-strings es —es, e1 —e3
and eg + e3,e; + ez. For the pair Fy., and Fy.,, the contributions of each
2-string are both 4. For the pair F¢, 1., and Fj,, the contributions are both
2#. Therefore, ¢, = h' — % and B, = —2.

Similarly, if F' = F(C,) and G = S = Cy, then ¢, = b/ — w and
B, =-2.

As above, the other contributions of [4tT', |, J[2H + 2H,,, | with ~ cor-
responding e; + ez in C,, [V2(2T — F), ], J[V2G, ] are also zeros.

Similarly, we dealt in [Gul2] on the A,, action.
We have that:

Theorem 2. If F = F(B,) or F(C,), then ¢, = M,(h' — 2521 with o
positive number M,, where k is the dimension of the affine space. Moreover,
the pair (M, B,) are (3,—(n —1)),(1,—2) for the case S = By,,C,. Other
coefficients, i.e., other part of I, g, come from the Ricci curvature of G/P
which is —(qq/p, [X,Y])o with qa/p = Yapea+—n, Ha with the standard

inner product.

6 Calculating the scalar curvature

To calculate the scalar curvature we separate our subspaces into five kind of
spaces. The first W is generated by T, JT', F, JF. The second , third, fourth
and fifth are the subspaces of 1, 2, 3 and 4-strings. The Ricci curvature is
a sum of its restriction to each subspaces p = ), p;. Similarly w = ", w;.
Then, by Theorem 1 we have that

MU'QU) MU'
t ot

V= U — B> 1Q. (),

31



p AWt =30 where ; = p; Aw" L
Let U, = (aH + c¢G,a,H + ¢,G), then U,(0) = BB,.
Qw = (n — DIKU,QU)/t
if the determinant of W is KU'/t. For 1-strings,
Q= KUQU)/t.
For 2-strings,

\%

Qi = —2(71 — 1)'(2/{,, — aiapﬂ-)—

qi

where ¢; = a? —U is the linear factor of @ introduced from the given 2-string.
Similarly, we can see, by a direct calculation, that for a 3-string

i 14
0, = (2, ~ 200y + 2 - ) DY

For the case of 4-strings, it only occurs when G = G5 and H correspond
to the short root. In this case, we have that

Q1 =pr A"
(n—1IV

= —4(1/{,,(53% - Z/{) + Bpr,1(5u - QB%)) (B% _ Z/{)(QB% _ u)

= 2, [B} —U) + (9B} — U)]

1w
— BB, [9(B2 —U) + (9B — U (n
1 P,l[ ( 1 )+( 1 )H(B%—Z/{)(QB%—U)

Therefore,
UpQ)) + polth)d’

pAWT = (n—1)IM ;

Theorem 3. The scalar curvature is W with a polynomial p of
U. Moreover, let k be the same as in Theorem 1 and 2,

pU) = U — B*)**(=2(k — 1)BB,Q1(U) + (U — B*) P (1)),

where Py(U) is a polynomial of U and is a positive linear sum of (1) Q1
and (2) the products of deg Q1 — 1 linear factors of Q1. Only 1-strings and
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3-strings have contributions to (1); the contribution of each 1-string and 3-
string is %l for the Q1 term, where ¢; = w(Fy,, JFy,) for 1-strings and ¢; =
a; for 8-strings. Only 2-strings, 3-strings and 4-strings have contributions
to (2); the contribution of each 2-string and 4-string related to the products
of deg Q1 — 1 linear factors of Q1 is %ZQI In particular, if G = S, we
have that

p(U) = —2(k — 1)BB,(U — B*)*2.

7 Setting up the equations

Now, we shall set up the equations for the metrics with constant scalar
curvature. Before we do that, we shall understand more about the metrics.
We have that:

Theorem 4. With the B, f,U,a; as in Theorem 1, we have that w is
a metric on the open orbit if and only if B < 0, f is an odd function with
f1(0)<0,U" >0 andU < a?.

To understand the metrics near the hypersurface orbit, we can let 6 =

mg with d = 2 for S = B, and d = 1 otherwise, and we see that 6’ =
d-ﬁ? — (dit;) (d+t2)2 We can also see that Up(1) = limy_, 4 o (d%;)t?u’ >0
exists. In particular, U is bounded, so is tf. Let | = lim;— o tf. We first
notice that the closure D of the orbit of the complex Lie group SL(2,C)
generated by «; is a fiber bundle with a CP! as the base and another CP*
as the fiber. D is CP! x CP! by an argument as in [SP]. A calculation
of the section 2 of [Gu8| gives the desired property. The restriction of the

metric on D also shows that B, are topological invariants.

Theorem 5. w in Theorem 1 extends to a Ké&hler metric over the
exceptional divisor if and only if lim;_, o tf =1 > a; — B and Uy(1) > 0

Now, for any given pair B,l with 0 > [ > a; — B we can check that
f(t) = 3 +t2 satisfies Theorems 4 and 5. We shall see later on that this
actually gives us the solutions of our equations for the homogeneous cases,
i. e., when G = §. So we have that:

Theorem 6. The Kéahler classes are in one to one correspondence with
the elements in the set I' = {(B,)|o>1>0,—B}-
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To calculate the total volume, we notice that

[&7]

‘A TAHANFAGASL,, (FaAGy
TAJTAFANJF N (FoAJF,) =M Nala, ( )

a=a2 t

with a possitive number M.
U(0) = B?, U(+o0) = (I + B)?.
Therefore, the total volume is

(I+B)?
Vp = / QU)dU.
B2

We also see that

t U QWU t

(& -3 =0

(ui{ilm _ %) (0) =U'(0) = 0

by f being an odd function and therefore f,(0) = 0.
Now, from

foog ) U QU 2k
Ay _

One can easily check that

U= (tf + B)* + df?
(t* +d)f? + 2Bt f + B?
Bt \? dB?
_ 2
= @ +d)(f+t2+d) Tare

we have that

Bt \? 1
<f+t2+d> = (d+t2)2((d+t2)U—de).

We have that

Bt _ V{d+ U — dB?
d+t2 d + t2
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That is,

~V(d+1*)U —dB* + Bt

F= d+ 2

To make the things clearer, we replace t by 6 = ﬁg. We have that

tf, = M{[loglUp Q) (1 — 0)*]}520(1 — 6) — 2(k — 1)
_ [ | QU
= MPR6(L-6) |72+ 000
which has a limit —2M(k + 1) at § = 1.
Therefore, we obtain:

49— 2(k — 1)),

Proposition 9. For the Ricci class, we have
l,=—2M(k+1),

where M = % for S =B, and M =1 for S = C,,. Therefore, the Ricci class
is a class of a type (B,, —2M (k + 1)) using the notation of Theorem 6.
We also have that

Uy(1) = (B, +1,)(B+1) = (B, — 2M(k + 1))(B +1).

Now, we have the Kéahler Einstein equation

U, U,
M[26(1 — 6) {U—H: + Qé(zj) ’
t\/(d +12)U — dB2 + B,t*

d+t?

= —\/0lu - B3(1—-0)] - B,b.

— 40 -2k —1)] = tf

Let
u=U—- B}

we have that:

Mo(1 — ) <Z—/ + ngg;/

_ _%(Bpe +\/0(u+ B20)) (2)
‘BN

2(~B,07 + \/u+ B2)
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where the derivatives are the derivatives with respect to 6.
The total scalar curvature is

Ro = [ U +204,Q0))ds

And from this, we have the average scalar curvature

Ry = 1;_;“
R phdu + 2<upcz<u>>| (BH)”
- f(B+l U)du
L U + 2B, +1,)(B+DQ(B +1)?)
BED% Quydu '

If G =5 and S # Gy (we shall see later on that this is the same as the
assumption that the manifold being homogeneous), then Q = (U — B?)F~!
and p = —2BB,(k — 1)(U — B?)*~2. Therefore,

~2BB, + 2(B, +[,)(B+1) _ Byl + Bly +1I,

Ry = _
0 k=1((B+1)% — B?) 2Bl + 12

The equation of constant scalar curvature is % = Ry. Therefore, we have
that

U
2,QW) + [ s

= R [ Quoa+ 4, )

with Ag a constant.
Let 8 = 0, we have that

2BB,Q(B?) = Ay.
Therefore,
Ap=0

since k > 1. If we put 6 = 1 in, we get the same Aj.
We have that
Ry fgz QdLI — fgz de{
2QU)

U, =
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where Q(U) = (U — B2)F1Q1(U).
Applying Theorem 3 and integration by parts, we have that

Ry fgz QdU +2(k — 1)BB, fgg U — Bz)k_ledL{ _ fgz u— Bz)k_lPldL{

U, =

2Q
 J5(RoQ — (U — B2)* (P, + 2BB,Q}))dU + 2BB,(U — B)F'Q,
= 20
_ k@)
201 (U)’
where R(U) is a polynomial of &. Therefore,
t* +d)f + Bt) = —Bytf +
fp(( )f ) P f Ql(u)
where we let R(u) = 2um(u) + 2BB,Q1(U).
If G =S and S # G2, we have that
R() 2
- B BB,.

o

And R(U) = (U — B%) + 2BB,, m(u) = 0.
Now, by

N
B

tf =—BO— \/0(u+ B20)

we have that

B2
(d+12)tf + Bt2 = —W,
and therefore
u Q’(U)u’}
- —2
0){u,+ oW 0 —k+1]

\/ 329 l \/ u+B29 Qi @

Comparing with (2), we see that

m(u) = Q1(u)

if the K&hler metric is in the Ricci class.
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If G =5 and S # G3, then we have that % is a constant. There is

a solution with u = cf. Actually, if we use f = %2‘ in the proof of the
Theorem 6 we obtain that v = (2B + )16 which solves our equation.
From (4), we have that

log[u'Q(u)])" =

01— 0)

We also have that

=

20+ k—1— A7 <P<20+k—1+Cpg07.

for some positive constant Ap;, Cp; which only depend on B and [. Since
P(1)=k+1+271,=0, we have that Ag; >k + 1.
By integration, we have that

ak—l(l _ 6%)k+1+03 ! (1 + 9%)k+1—CB 1
Ok—1(1 — 2 )P H1+CB1 (1 4 g2 )k+1-Cny

for 0 < § <a< 1. Welet V =u"and z = 0¥, and obtain the following
Harnack inequality:

(1= ad) b1l 4 g3)Anath . V,(a)Qs (u(a))
(1 — 03)ABi—h=1(1 1 g3 )Aprthtl = Vi(0)Q1(u(6))
iy )k+1+CB,l(1+9%)k+1_CB’l

1
2
1
2

(6)

o a
- ( —a )k+1+CB,z(1 + a%)k-i-l—CB,l '

Arguing as in [Gud], we have that

Theorem 7. If there is a solution 0 < u < (I + 2B) of above equation
with w(0) = 0 and u(l) = I(l + 2B). Then there is a Kdhler metric with
constant scalar curvature in the considered Kahler class.

Theorem 8. For any small positive number f, we have a solution u(0) =
0,u(l — f) =1(l+2B). This corresponds to a Kdahler metric with constant
scalar curvature on the manifold with boundary 0 <1 — f.
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8 Global solutions

In this section, we shall extend our solutions to the hypersurface orbit. We
shall let f — 0. As we did in [Gu4], we let 7 = —log(1 — #) and have that

logfu-Q(u)] = L=,

Therefore, we have that

h=ly, P—0 (k-1)0.
o[t <252

PO ey ()

P—k+1+(k—2)0

= 7 (7)
—hs 271y [ B, ~ m(u)
M\/0(u+ B20) | B — /0(u+ B20) Qi(u)
= T(u,0)
. B B B um(u)
R v [H \/u—i—B?] 2M Q1 (u)Vu + B2

= k—a,

when 6 tends to 1 and it converges unformly for v > ug with any ug > 0.
If w is in the Ricci class, then m(u) = Q1(u) and

a=(2M)"'[B, + \/u+ B2.

Let u; be a series of solutions corresponding to f; — 0. By P(1) = 0, for
any ey € (k,k + 1) there are two numbers A(eg) < (I +2B) and B(eg) > 0
such that if u > A(eg) and 7 > B(ep) then a > eg > k and T'(u,0(7)) <
k — eg. Let 7; be a point of 7 such that u;(7;) = A(eq), and if we also have
7i > B(ep) then

kub ", - P—k+1+(k—2)0
llog [%Ql(%)“ = 0 ( ) =T(u,0) <k—eo

T

for 7 > ;.




If there is no subsequence of 7; which tends to 400, then there is a
subsequence of 7; which tends to a finite number 7. By the left side of
the Harnack inequality (6), we see that V; . (6(70)) must be bounded from
above, otherwise V;, will be bounded from below by a very large number
such that V; will be bigger than [(I+2B) before x reaching the point 1. That
is, there is a subsequence of u; converging to a solution u of our equation
with u(1) > A(ep).

We shall observe that there is no subsequence of 7; which tends to +oo
under certain condition below.

If there is a subsequence of 7; which tends to 400, we might assume that

lim 7 = o0,

1—-+00
and 7; > B(ep). To make the things simpler, we should avoid the cases
in which G = S . In those cases, the second Betti numbers are 2 and the
manifolds are homogeneous. By Calabi’s result, all the extremal metrics are
homogeneous and therefore they are unique since there is only one invariant
metric in the given Kéhler class. As we see before in the last section in the
paragraph after (4), u = c¢f will solve the equations.

Thus, we can assume that G # S, and therefore there is at least one a;.

From the equation (4), we observe that if

ui,T(Ti)uf_l(Ti) > 2(1(2B + l))k_l(a% — BQ)ABJ > 2uk_1(a% —u— B2)ABJ,
then

u; (7i)
a? —u(r;) — B2

> 2AB’1

and we have that v, = uf_luw is increasing for 7 > 7;. This can not
happen. Therefore, u; -(7;) is bounded from above.
We shall see that in this circumstance there is a subsequence of

ﬁi(T) = ui(T + Ti)

which converges in C'' norm to a nonconstant function #. We see that for
each 7 > 0, w; is decreasing and ;. are uniformly bounded. For each
7 <0, —Ap; < [logw;]; < k+ Cp,; when i big enough, that is, ‘7” are also
bounded uniformly on ¢ over any closed intervals. Therefore, a subsequence
of V; converges in the C' norm to a function @. Thus, the same thing
happens for a subsequence of ;.
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To observe that @ is not a constant, we notice that

k:uf_lui,T ‘]CU?_I(TZ')ULT(H)e(k—eo)(T—Ti)
pF-1 - Hk_l(Ti)

for 7 > 7;, where C; does not depend on u;. That is,

kuf =, < C’ui,T(Ti)e(k_eo)(T_”).

By integrating both side we have that

(10 + 2B))* — Aeo)t < ——C

> —k_—eouz’,—r(ﬂ'),

i.e., u;(m;) is bounded from below. Therefore, @;.(0) are bounded from
below. We have that @,(0) > 0. This implies that @ is not a constant.
Then, @ satisfies the equation

[log[xk_lx'Ql(x)]]' =—a+k
on (—o0,+00). Therefore,
[ 12/ Qy ()] = (—a + k)2* 7 Qy ().

Integrating as in [Gu4], we have that

x(400)
[ e =0,

(—o0)

where
fi=(—a+k)2" Qi (x),

As in [Gud], we see that x(+o00) = [(l + 2B).
As in [Gud], we shall prove:

Lemma 5. k£ — «a has only one zero.

Proof: As in [Gu4], we may expect that x is related to a Kéhler metric
of constant scalar curvature on the normal line bundle over the hypersurface
orbit. Hence, we may apply the method of counting zeros in [Gu2,4] to this
circumstance. z*~'2/Q(x) is proportional to “p@” in [Gu2]. Therefore,
the counting of zeros of k — « should be the same as counting the zeros of
the derivative of “p@Q” to “U” there.

Let v = Vu + B2, then u = v?> — B? and a? — u = (—a; + v)(—a; — v).
We observe that g; = 2vf; is actually a polynomial of v and should be
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proportional to the derivative of “p@Q” in [Gu2]. Therefore, we may expect

that
2

Z/:j(—B—U)—l

corresponds to the “U” in [Gu2]. We let

q = 20Q(v),
and observe that ¢ is proportional to the “Q” in [Gu2].
We see that
= %(% - %)q - %u’“l
= Sk 0 20 Qau s o [ o

Let g; be the derivative of g; to v, we have that

1 B Ry vp
F— 22k — 2PV — p==2 £
1 B, , Ry
= 2(2]~<:—]w)q +’UP2—’UMQ+UP3
= A_mQ7

where Py = 2m1Q is the @ term in £ and P, = £ — P3 is the positive

linear combination of %,
7

1 B, ,
A= 2(2k M)q +UP2,

m = % — my. Therefore,
g1 :/0 (A —mgq)dv.

Lemma 6. The coefficients of A are always positive.
Proof of Lemma 6: From Theorem 3, we see that the 1-strings do not

have any contribution to A.
The contibution to P, of each 2-strings and 3-strings, 4-strings of the

U — B2 factor is in the first term of the p(U) in the Theorem 3.
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The contribution to P, of each 2-string and 3-string, 4-string related to
Ap QG

the @1 factors is fig ¢
For the first term of A, we have (2k — %)Q (one might call it the term

of v factor since Q = &) with 2k — % > 0.
Then, we have the U/ — B? term (or the term of ;%)

B BB _
2k~ 1ofo(2h - 32) - =)0 - B2,

= (k—1)v[2k(v — B) +2(k — %)(v + B)|U — B*)F2Q,

with both k and k — % positive.
Similarly, we have ¢4 factor of @1 term (or the term of q%)

B, asaps, Q
2U[—U(2k — M) + T]qs
_ By +ap,s By, —aps Q
= o2k = 225 0, ) = 2k — ) a4 )
Bytap,s By—ap s

with coefficients 2k — =2772> > 0 and —2k + =272,

So we need to check that the last coefficient is also positive. There are
two ways to prove this. First we notice that this actually is the same to
check that the coefficients

2Mk — B,,2Mk = 2Mk — B, + B,,2(Mk — B,) = 2Mk — B, — B,

and
2Mk — B, — ap s, —2Mk + B, — a,

are all positive. We claim that these are the components of the Ricci curva-
ture of the exceptional divisor, then the positivity comes from the positivity
of the Ricci curvature of the projective rational homogeneous spaces. The
point is that v is corresponding to an H in the calculation of the metric and
the volume form, and we should prove that the contribution of H to the
Ricci curvature is exactly 2Mk — B, i.e.,

(9G/Ps - H)o = (4s/(snpPx): H)o = 2Mk — By,

where P, is the isotropic group of the exceptional divisor at p.,. Notice
that P, is parabolic.
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If S = B, then the semisimple part of P 1 = S N P is generated by
Qo, -+, o, with the same orientation. Therefore,

(@s/PursH)o=1+2(n—1)=2n—1.
But, we also have that
2Mk - B,=k+(n—1)=n+n—-1=2n-1

If S = C), then the semisimple part of Py, 1 is generated by as,---, o,
with an orientation in which e} = e; i # 2, e, = —ey. Therefore,

(@s/Purs H)o=2+2(n—1)+2+2(n—2) =2(2n - 1).
But, we also have that
2Mk - B,=2k+2=2k+1)=22(n—-1)+1)=2(2n—1).
Secondly, we could check the positivity of the last coefficient with a case
by case checking. That will also give all the a,, in concrete calculations.
This is extremally useful when we check the Fano property of the manifolds

and classify the manifolds with higher codimensional end (see [Gu9]). For
example, from Theorem 6 and Proposition 9 we can check that:

Proposition 10. If S = B,, or C,, the manifold is Fano if and only if

—2M(k +1) + B, — a,s > 0.

IfS=15B, M= % and we shall check that the last coefficient is 2[—(2n —
1) —a,;] > 0. If G = Bpyqn, then

—ap; =—B,; =2(m+n)+1-lL1 —lbb>2n+1=k—-B,+2.

The corresponding affine manifolds are Fano.
If G=C, n>2and S = By, then

—Qp; = :FBp_2Bp,i = :|:1+2n—|—2—l1—l2 >44+1= —Bp—|-4 = —Bp—l-k’—FQ.

The corresponding affine manifolds are Fano.
If G = Fy and S = By, we take our notations as in the third section,
then o = e3 and

a1 = By,a2 = By,a3 = By + By + B,
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a4y =By —Bs+ B,as = B1 4+ By — B,ag = By — Bs — B.
We have that B,1 = —11 and B, 2 = —5, therefore,

—ap3=1145+1=17,—a,4 =T, —a,5 = 15, —a,6 = 5.

We have all of —a, s >5=2n+1= —B,+k+ 2. The corresponding affine
manifold is Fano.
If G=F,and S= B3, a =ey and

a1 = By,as = B1 +2B,a3 = By = a4,a5 = B — 2B.
We have that B,; = —11 and
—Qp2 = 15, —Aap5 = 7.

We have all of —a, s >9—2n+1= —B,+ k + 2. The corresponding affine
manifold is Fano.

Altogether, we see that the last coefficient is positive for the case S = B,
and the corresponding affine manifolds are Fano.

Otherwise, S # B, and M = 1, we shall prove that the last coefficient
is =2k + B, —a,s > 0 also. If S = C,,,G = Cyj,4n, we have that

k=2(n-1), B,=-2,a;, =B £ B,a = €m41 — €my2.
We have that
B,i = =22(m4n+1)—1l1 —ly) < —4(n+1) = —4(n—1)—6 = —2(k+2)+B,.

The corresponding affine manifolds are Fano.
If S=C5,G = Fy, we have that

B
k=4,B,=—2a, = 71,@ = By + B,a3 = B, — B.
We have that B, = —28, and therefore

ap1 = —14,a,9 = —30,a,3 = —26 < 14 = —2(k + 1) + B,.

The corresponding manifold is Fano.
Q. E. D.
Therefore, as we argued in [Gud p.73], if k—« has two zeros, then A —mg
has degq—3+4 = deg g+ 1 zeros. That will be a contradiction to the degree
of this polynomial which is 2deg () + 1. Thus, we obtain our Lemma 5.
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Q. E.D.
A corollary of our proof of our Lemma 6 is that:

Corollary 1. The manifolds are Fano if S = By, or C,.

That is, all the manifolds we considered in this paper are Fano. Com-
binning with [Gu8], we have that:

Corollary 2. The type II manifolds are Fano if S # A,.

Now, we have that f; has a unique zero. Therefore, if

1(14+2B)
/ fuda < 0, (10)
0

we can not have that

1(1+2B) 1(14+2B)
0:/ ﬁmg/’ fuda.
z(—00) 0

Otherwise, we have a contradiction.

By choosing A(eg) close to (I + 2B) we have that u(1l) = I(l + 2B).
Arguing as in [Gud], we have that v/(1) exists and is finite. Similarly, u”(0)
and u” (1) exist and are finite.

Also, we already see that if G = S and S # (3, the manifold is ho-
mogeneous and admits unique extremal metric in any given Kéhler class.
Therefore, we have that:

Theorem 9. There is a Kdahler metric of constant scalar curvature in
a giwen Kdhler class if the condition (10) is satisfied.

We shall prove the converse in [Gu6].

We could easily argue as in [Gub p.273-274] and [Gu4] that the right side
of (10) is the Ding-Tian generalized Futaki invariant for a (possibly singular)
completion of the normal line bundle of the exceptional divisor, although we
do not really know that there is an actually analytic degeneration with this

completion as the central fiber. Our condition here is stronger than the
Ross-Thomas version of Donaldson’s version of K-stability (Cf. [Gu9]).

9 Kahler-Einstein metrics

If the Kéhler class is the Ricci class, we have that B = B,, [ =1,

m(u) = Q1(u),
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= (2M)7'[B, + \/u+ B2].
fi=1k—@M) ' [B, + \/u+ Bl Q1 (u).

In this section, we show how we can check the Kahler-Einstein property
case by case on the pairs of groups (5, G).

First, if S = B,, n > 2, we have that B, = —(n — 1), k = n, Q1 is a
constant, [, = —(n + 1).

Therefore,

fo=02n—1—Ju+t(n-1))u""1Q1(u).

Therefore, the integral is
(n+1)(3n—1)
/ 20— 1= \Ju+ (n—1)201 (u)du. (11)
0

If G=5=B,, then

lp(lp+2Bp)
fi,du

(n+1)(3n—1)

o
3
1
S—

(2n —1—/u+ (n—1)2)u" " du

— —
3

|
—_

(2n —1—v)20(v? — (n—1)>)" dv

2n

_ %[(271 1 U)( (n . 1)2)71‘ n_l(v2 _ (n — 1)2)nd’l)]
1 n 2n n
— ;[—((Qn) (n—1)2 +/n1 — (n—1)*)"dv]
2n
- % n—l[(vz —(n=1)*)" = ((v* = (n = 1)*)")']dv
1 2n n—
= [ @ - 1) - )
< 0

since v? — 2nv = v(v — 2n) < 0 and = 0 only if v = 2n. Therefore, the
conditon of the Theorem 9 holds for this case, and it is known that there is
an Einstein metric since the manifolds are homogeneous.

47



Now, we consider the circumstance in which G = B,y and S = B,,.
Then the corresponding integral is

I, = /2n 202n — 1 —v)(v* — (n — D)H" 1 ((2n + 1)? —v?)dv
n—1

(B3n—1)(n+1)
= / (2n — 1 —v)u" " (3n(n + 2) — u)du
0

" u™t1(2n) L(n+1)
= —3(n + 2)u (271) + ni—{—l + 3(n + 2)L(n) — ni—{—l
I u 2 2y n—1
= [ B0+ 2) = = 2020+ 1 — B .
We have that
2n
(n+1)I, = / 20(2n — 1 — v)((2n + 1) — v2)u"do
n—1

2n u .
+ n/n_l[(?)(n £2) = S yu = 2020+ 1)? = oo

2n u .

= /n—l[(g(n +2)— . 1)nu+ 2v((2n + 1)2 - 1)2)(” —1-0)u v
2n

= (n+ 1)—1/ [~(3(n+1)(n+2) —wn(n —1+0)

n—1

+ 2(n+Dov(2n+1)2 —H))(n — 1 —v)u" dv

= (+1)7? /j_"l[—((n D@12 = (n—1)% —no?)(n— 1 +0)
+ 2(n+Dv2n+1)* —v3)](n — 1 —v)u"dv
= (n+1)7? /nz_nl[(n +2)v? + 2v(n — 1)
— (+DEn+1)2+(n—1)Hn—1—v)?u"dv
= (n+1)7! :_nlp(v)(n —1—v)%u" Lo,
where p(v) = (n 4 2)v? +2(n — v — (n 4+ 1)(2n 4+ 1)% 4+ (n — 1)2.
We have that

p(n—1)=(Mn+5)(n—-12%—(n+1)(2n+1)?
< (n=1)n*+4n—5—4n* —4n +1)
= —(n—-1)(3n*+4) <0
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and

p(2n) =4(n+2)n® +4n(n — 1) — (n +1)(4n? +4n + 1) + (n — 1)?
= (Bn-1)(n—1)—5n—1=>5n%—11n = n(5n — 11).
Therefore, when n = 2, p(2n) = —n = —2 < 0 also. But p(v) is positive
for |v| big enough, we have that p(v) < 0 for v e [n—1,2n] =[2—-1,4]. In
particular Is < 0 and there is a Kéahler-Einstein metric when S = By, G =
Bs.
For the case n > 2, we have that

p(2n) >0
and

p2n—1)=n+2)2n —1)*+ (n—1)(5n —3) — (n +1)(2n + 1)?
= 8(n+)n+4n® —4dn+1+5n* —8n+3=n?>—-20n+2>0

if and only if n > 20.

We want to see that (5n — 11)¢, + 21, > 0 for n big enough. If this is
true, then we have that 2I,, > (11 — 5n)c, > 0 since ¢, < 0.

Let

g(v) =(Bn—-11)(2n — 1 —v)v
2(v —n +1)?
(n+1)?
Then g(n —1) = (bn —11)n(n —1) > 0 for n > 3. g(2n —1) > 0 for n > 20.
g(2n) = —2n(5n — 11) + 2n(5n — 11) = 0. It is not difficult to check that

g"(v) >0 on [n —1,2n]. We also have that

g ()= (5n—11)(2n — 1 — 2v)

+ [(n42)v? 4+2(n — Dov(n—1)2 = (n+1)(2n +1)2].

%[(n +2)0% +2(n — Do+ (n = 1)* = (n+1)(2n + 1)?]
v—n 2
%p(n +2)v+2(n—1)].

Therefore,

4n(5n — 11)
+1

< —10n* 4+ 17n + 11 +4(5n — 11) + 4(2n* +5n — 1)

= 2% 45T —37<0

g(2n) =—(bBn—-11)2n+1) + +4(2n? + 5n — 1)

49



if n > 28. Now, we have that:

2n
(5n — 11)¢, + 21, = / g(v)u"tdv.

n—1

Lemma 7. g(v) >0 on [n—1,2n) if n > 28.

Proof: If n > 28, we have that ¢/(2n) < 0. Then g(v) > 0 in [n — 1,2n).
Otherwise, there is a root of g in [n — 1,2n). Now, by g(n —1) > 0,¢(2n) =
0,9'(2n) < 0 we observe that in [n — 1,2n) there is a minimal point a and a
locally maximal point b € (a,2n). ¢”(v) is positive near a and negative near
b. But ¢"’(v) is positive in (n — 1,2n), a contradiction.

Q. E. D.

Now, by g(v) > 0 we have that (5n — 11)¢,, + 2I,, > 0 for n > 28, i.e.,
I, >0,n > 28,

Now, there are only 25 integers between 2 and 28. We could actually
check these I,, by using Mathematica with:

Integrate[2v(2n-1-v) (v"2 -(n-1)"2 )~ (n-1)
(2n+1)"2 -v~2 ), {v, n-1, 2n}]

we obtain that:

Lemma 8. [, <0 ifn=2,3,4,5,6 and I,, >0 if 7 < n < 27.

Now, we consider the general circumstance in which S = B,, G = Bpim
and P be the smallest parabolic subgroup of G containning S as a semisimple
factor. In this case, Q1(v) = [I}5; (2n + 2k + 1)2 — v?). Since each ((2n +
2k + 1)2 — v?) decreases, when v increases we have that if

2n m—1
Lnm = / 20(2n — 1 —v)u"" [ ((2n+ 2k +1)* — v*)dv
n—1 k=0

then I, 1 > ((2n+2m+1)2—(2n—1)2)1,, . Therefore, I, ,, > 0if n > 7.
Using Mathematica with:

Integrate[2v(2n-1-v) (v72 -(n-1)"2 )" (n-1)
(2n+1)"2 -vv2)((2n+3)"2 -v~2 ), {v, n-1, 2n}]

we obtain that:
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Lemma 9. I,,» > 0 if n = 3,4,5,6.

Similarly, we can use Mathematica to calculate /22, I3 3 etc. and obtain
that:

Lemma 10. I, <0 if m =2,3,4 and I5 > 0.

Therefore, if we denote the corresponding Fano manifolds by M, ,, with
n > 2,m > 0, then we have that:

Theorem 10. M, o are homogeneous with Kdhler-Einstein metrics.
Mj 1, Mg, My, Msa, Me1, Ma 2, Moz, Moy

are nonhomogeneous Kdahler-Einstein manifolds. Other My, ,, do not admit
any Kahler-FEinstein metric.

We delay our proof of the nonexistence to [Gu6]. See Theorem 12 in the
next section for the nonhomogeneity of M,, ; with k > 0.

Next, we consider the case in which S = B,,,G = B, 1, and 57 in the
section 2 is maximal. In this case, we have that Q1(v) = ((2n +m)? —v?)™.
The integral is

Tnm = /2n 20(2n — 1 —v)(v? — (n — D))" 1((2n +m)? —v*)"dv
n—1

and
m_2mJn,m — e, <.

Therefore, J, ., < 0 when m is big enough.
Again, we can compare the change rate of the factor h(v) = ((2n+m)?—
v2)™. We let

t(m) = (log hY

(- S

= m —

M+m+v 2n+m-—v
2n +v 2n —wv

_2n+m+v+2n+m—v'
Then,

B —20[4n? —m(m + 1) — v?]
Hm+1) =Hm) = G @n T m a2 =8

if m > 2n. Therefore, if J, ,, <0 with m > 2n, then J,, ;41 < 0.
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Now, we can use Mathematica to check J, 2, with

Integrate[2v(2n-1-v) (v"2 -(n-1)"2 )~ (n-1)
(16n"2 -v°2 )~ (2n) , {v, n-1, 2n}]

we get that J, 2, < 0 when n = 2,3 but Jyg > 0.
We then use Mathematica to check Jy4 12 with

Integrate[2v(8-1-v) (v"2 -9)~3 (400 -v~2 )~ (12) , {v, 3, 8}]

and have that Jy 12 < 0. Therefore, Jy ,, < 0 for m > 12.

Similarly, by using Mathematica we have that Jy,, > 0if 2 < m < 10
and Jyg11 < 0. Therefore, when m = 1 or > 11, we have that Jy,, < 0,
otherwise, Jy,, > 0.

Similarly, we use Mathematica to check Js,, for m = 2,3 and Js,, for
m = 2,3,4,5. We find that all of them < 0.

Therefore, we obtain that if we denote the corresponding manifolds by
Ny.m, then:

Theorem 11. N3, N3, admit Kdahler-Einstein metric for allm. Ny,
admit Kahler-Einstein metric if and only if m =1 or m > 10. In general,
Npm admit Kdhler-Einstein metric when m big enough, i.e., there is an
integer N (n) such that if m > N(n) then Ny, admit Kdhler-Einstein met-
ric. Moreover, if m > 2n and Ny, ,, admit a Kdhler-Einstein metric, then
Ny m+1 also admit a Kdhler-Einstein metric.

We now leave other examples to the readers, since Theorem 11 (see
also Theorem 13 in the next section) gives us enough new Kéhler-Einstein
manifolds and Theorem 10 gives us a large class of Fano manifolds which do
not admit any Kéhler-Einstein metric.

However, for the readers’ benefit, we should give the integral for the Case
in which S = C),. In that case, M = 1,1, = =2(k +1) = —2(2n — 1) and
B, = —2. We have

o= %(—2 +Vu+4).

f, = %(471 2 Va T D230, (),

Therefore, the integral is proportional to

/4(4n _1)(471 — 24+ Vu + 4)u*3Q1 (u)du. (12)
0

In the next section, we shall discuss some properties of these manifolds.
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10 Further comments

In [Gu8], we observe that the third example in [Ak p.68] is not homogeneous
and the identity component of the automorphism group is Go. However, it
was mentioned in [Ak p.69] that the first and the second examples in [Ak
p.68] are homogeneous. Moreover, in the case 1) and 5) in [Ak p.73] which
correspond to the first and the second with n = 3 in [Ak p.67], the manifolds
are also homogeneous. For the nonaffine type II case of the third with n = 3
in [Ak p.67], the manifold is also homogeneous. That is, when G = S the
manifolds in this paper and [Gul2] are homogeneous and the automorphism
groups are some simple complex Lie groups which are strictly larger. What
will happen if G is strictly larger than S7 Applying the Theorem in [St], we
have that:

Theorem 12. Let M be a compact complex almost-homogeneous man-
ifold with one hypersurface end and a complex semisimple Lie group G ac-
tion. If G 1is strickly larger than S, then the identity component of the
automorphism group is G and M is not homogeneous. Consequently, all
these complex manifolds are biholomorphically different from each other.

Proof: First, we consider the case in which M is affine. We know that
if G is strictly larger than S, by [Ak], M is a fiber bundle over a rational
homogeneous manifold @ with a transitive G action. Actually, @ = G/P and
dim @ > 0. The fiber F is just our manifold in the case G = S. Therefore, F’
is a fiber bundle over a rational homogeneous manifold )1 with a transitive
S action. The fiber is CP*. dimQ; > 0. Therefore, M is a CP* bundle
over a rational homogeneous manifold ()2 with a transitive G action. By
our construction, ()2 is a ()1 bundle over (. If there is another connected
complex Lie group G; acting on M and containning G, then by [Ak] and
[GC] (see also [Gu6]), Gy is semisimple. G also acts transitively on Qs.
Comparing Q2 to the possible manifolds in the Theorem in [St], we have
that G1 = G.

If M is not affine but of type II, then S = A;. If M is homogeneous,
then according to [St p.427 Theorem]| A; should be one of the semisimple
part of the isotropic group of the smaller group actions there. There are
only 3 possibilities: C), in 1) with n > 1 there, Ay in 2), A,,—1 in 3) with
n > 3. The only possibility are n =1 in 1) and the case 2). In the case 1),
F = CP?2. The semisimple part of the isotropic group of the larger group
Agpy1 action is Ay, in 1). When n = 1, we have Ay. It happens that A
does actually act on F. But, then M is the flag manifold parametrizing the
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planes 7 and the line [ C m in C*. Let the Cartan subalgebra of the larger
group As be:

ag 0 0 O
0 a2 0 O
0 0 as 0 a1+az+az+aqs=0
0 0 0 aa

The Cartan subalgebra of the smaller group Cy could be:

ap 0 0 0
0 ax O 0
0 0 —ar O
0 O 0 —a2

a1,a2€C

Let | = (a,0,0,0)T, 7 = {(a,0,b,0)" |, pcc}. We obtain that M is a manifold
with G = S = By (compare also the description for the affine case of G =
S = (4 in [Ak p.69]), that is different from the case in which S = A; since
they have quite different A; actions—A; actually has three orbits on F.
Therefore, 1) does not occur. In the case of 2), the isotropic group of the
larger group Bz in [St] is By, which does not act on CP?, a contradiction.
Therefore, M can not be homogeneous.

If M is of type I and is homogeneous. By G # S we have that S must be
one of the semisimple part of the isotropic groups of the smaller groups G in
[St p.427 Theorem] and the semisimple part S of the isotropic group of the
larger groups G must act on F' transitively. We have that (S, G, S,G) = 1)
(Cny Crg1, Ao, Aony1); 2) (A1, Ga, B, B3); 3) (An—1, By, Ap, Dyy1). Now,
we go through the possible list in [Ak p.67].

If S = Ag, we have the first case, and the second, the third cases with
n = 6 in which k = 3. In the first case, F = CP* x CP* and when k = 1,
none of Ag, By, Ay as the possible S above can act on F nontrivially; when
k> 1,A;s1, as the S above, can not act on F nontrivially. In the second
and the third case, F' = Q(6) being the 5 complex dimensional hyperquadric
or CP%, but A4 does not act on F transitively. That is, S # Aj. So S = C},
with n > 1. The only possible cases are the second and third cases in [Ak
p.67] with n = 5 in which & = 2, and the fourth case. S = Ag,. The
second case can not occur, since A4 does not act on Q(5) nontrivially. The
fourth case can not occur, since Agy, does not act on Gr(2k,2) nontrivially.
Therefore, M is a CP* bundle over CP® and it parametrizes the planes
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7 and the lines | C 7 in C5, see the description of the our affine case of
G =S = Cj5 in [Ak p.69]. But, then we have G = S, a contradiction.
Q. E. D.

Next thing we like to point out is that it is not difficult to check that all
the homogeneous ones have the condition (10) for the Ricci class by checking
our integrals. We already checked the cases with G = S = B,, and we shall
check a similar condition for G = S = A,, in [Gul2|. One can also check the
case with G =85 = C,,.

If G = Cyqn and S = C,,, we have that B, = —2,

l,==2k+1)=-22(n—1)+1) = —2(2n - 1).

api = Bpi+ By
—22m+n+1)—1 —1ly) —2

= 22m+2n+3-10 —1o)

—2(2n+3)

—4n

= l,+ B,.

The manifolds are always Fano. The integrals are
/24" 02— 1) — 27 (~2 4 o) (0? — 42" [[(a2s — o).
i=1
Now, if m = 0 we let v = 2z, then the integral is the same as
¢/ a2 -1 - a)( — 1 Ydr = G20 — 1 — a)(a? — 12D
+ " (@? 120Dy
= Gl - [ 2 )
= /02n(x2 —1—4(n—1z)(z? — 1) 3dx
with C,C7 > 0. But

22 —1—4(n—Dzx=—-1-(4n-1)—z)z < -1,
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since 4(n — 1) —2n = 2(n —2) > 0 if n > 2. Therefore, the integrals are also
negative with G = S = C,,.

One further observation: If we compare those two Ricci curvtures in the
proof of the Lemma 6 for the hypersurface divisor D and in Proposition 10
for the whole manifold, we see that the canonical line bundle of the fiber F
is related K = [, and the divisor itself as a line bundle is related to the
difference Dp = 2M. If we let * = v — B, and ¢(x) = vQ(v), then by (11)
and (12) we have:

Theorem 13. The manifolds we considered has a Kdhler-Einstein met-
ric if and only if

/O_KF (Kp+ Dp + x)q(x)dx > 0, (13)

where (Kp,Dp) = (—n —1,1) if S = B,, and (Kp,Dp) = (=2(2n — 1),2)
if S = Cy. Moreover, (Kp,Dr) = (—(k + 1)Dp, Dp) with k being the
dimension of corresponding affine spaces C* as it is in Theorem 1.

This is related to a stronger version of the Ross-Thomas slope stability.
Therefore, our result in [Gu6] is stronger than the result of Ross-Thomas for
the necessary direction even for the Kéahler-Einstein cases of our manifolds
here.
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