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EXISTENCE OF EXTREMAL METRICS ON ALMOST
HOMOGENEOUS MANIFOLDS OF COHOMOGENEITY ONE∗

DANIEL GUAN† AND XIUXIONG CHEN‡

Dedicated to Professor L. K. Hua, who was the teacher of Professor J. Q. Zhong.
Zhong was the teacher of Guan in China and led him into this topic. Guan still have
copies of papers of Calabi and Futaki which Zhong showed him in 1986.

1. Introduction. It is well-known that every Kähler class of a compact Kähler
homogeneous manifold admits a Kähler metric with constant scalar curvature. We
may ask following question:

Can we find any special metric on a compact almost homogeneous manifold of
cohomogeneity One?

We have found this kind of metrics for a compact almost homogeneous manifold
with two ends in [Gu1,2,3], i.e., there are both extremal metrics and quasi-Einstein
metrics in each Kähler class1. Then we may ask if the same is true for all the compact
almost homogeneous manifolds of cohomogeneity one, which are described in both
[Ah] and [HS].

If the algebraic part of the automorphism group is not semisimple, the manifold
has a structure of a completion of a C∗ bundle over a compact homogeneous Kähler
manifold (see Theorem 1). According to the results in [Gu1,2,3], there always exists
an extremal metric (resp. a quasi-Einstein metric) in each Kähler class. Hence, the
problem of finding extremal metrics (resp. quasi-Einstein metrics) is reduced to the
situation in which the algebraic part of the automorphism group is semisimple. By
abusing the language, we call this case the semisimple case.

The semisimple case is also very interesting since any invariant Kähler metric is
not a very good metric in the real Riemannian geometry. It is not a metric invariant
under a maximal compact Lie group. For example, if a general hypersurface orbit
K/L has a right circle action S1 (there is one always in our case), then the whole
manifold has a circle action introduced by this action. By averaging method, we
obtain a Riemannian metric which is invariant under K × S1. However, the new
metric can not be Kähler since otherwise the automorphism group of M is bigger
than KC × C∗—a contradiction to our assumption. So some methods in the real
Riemannian manifold of cohomogeneity one, e.g., the method of circle action, do not
work for any one here.
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1In our preparing of [Gu6], we find that the proof of the existence for Kähler metrics of constant

scalar curvature on almost homogeneous manifolds with two ends and reductive automorphism group
in [Hw1] is not complete. For example, the Theorem 3 there follows from his Theorem 2, but in the
case of Theorem 2 the base manifold is a product of manifolds with b2 = 1. Therefore, the proof
of his Theorem 4 can come from neither his Theorem 3 nor his Theorem 2. Neither the proof of
existence of extremal metrics on almost homogeneous manifolds of cohomogeneity one is true—as
we see in this paper. Also, there should be nonnegative conditions of the Ricci curvatures in the
Theorem 2 and Corollary 2 in [Gu3], the “B” in the (3) of [Gu3 p.374] should be “B and r”. Although
the proof there actually works for the case in which the traces rj of r on the eigenspaces of B are
constants with at most one negative rj which corresponds to an eigenvalue bj of B such that there
is no other eigenvalue of B between bj and zero, e.g., B = kgt, gt have constant scalar curvatures.
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In the semisimple case we notice that all the extremal metrics (resp. the quasi-
Einstein metrics) are metrics with constant scalar curvatures. This is our initial
interest since all the manifolds with constant scalar curvatures have reductive auto-
morphism groups. In the semisimple case, the Futaki invariants are automatically
zero (see Theorem 2). Also, if there is an extremal metric on the algebraic part of the
manifold, by producting with the standard metric on the Albanese torus we obtain
an extremal metric on a covering of the whole manifold.

In general, the metrics of these manifolds are not easy to deal with. Therefore, we
have to look at some examples first. We did not obtain any simple nontrivial example
until we finished [Gu4].

Motivated with the Hilbert scheme construction in [Gu4], we consider the man-
ifold (see [Ch] for the notations) Mn = Z1,2(CPn)’s constructed by blowing up the
diagonal of the product of the two copies of a complex projective space and the man-
ifold Nn = Hilb2(CPn)’s constructed from Mn’s by modulo the symmetry group.

The manifold Mn’s are Fano, while Nn’s are not Fano but almost Fano in the
sense that the anti-canonical line bundles are nef.

The calculation is much more complicate than that in [Gu2,3]. In this paper we
focus on Fano and the Ricci class case of Mn’s, i.e., the Kähler-Einstein cases. We
will prove the existence of the Kähler-Einstein metrics on Mn’s.

It seems to us that the difficulties in [Gu2,3] are concentrated at the positivity
of solutions of certain first order equations. But in this paper the difficulty is more
concentrated at the existence of the solutions of some second order equations. Once
we have solutions, we can obtain the positivity. It also seems to us that the existing
theories of Sakane & Koiso, Siu, Tian, Nadel (see [SK1, Siu, Ti, Nd1,2]) do not
apply to our situation. In particular, the equivariant Tian’s invariants are 1

2 for our
manifolds (see [Gu6]).

In [Gu2], we considered the scalar curvature equation instead of the Ricci curva-
ture equation in [KS1], and we found that the calculation is simpler. However, the
calculation of the scalar curvature is more difficult in the present situation. Therefore,
we will deal with the general Kähler classes on Mn’s in [Gu6] and those on Nn’s in
[Gu7] later.

In the third section, we show some special properties of those Kähler metrics on
our manifolds, which are some of reasons that our work can be done. We will also try
to generalize this calculation to more general Kähler manifolds in [Gu6].

One might also generalize our results to some smooth Hilbert schemes and hence
some moduli spaces of holomorphic vector bundles over Kähler-Einstein manifolds.

After we finish our work, we were told about the results of Dancer and Wang
[DW] and those of Podestà and Spiro [PS]. Their manifolds are in the class of [KS]2

(see [DW Condition 1.12, Proposition 1.15] and [PS Remark 1.4, Lemma 3.2]) and
hence none of them is in the semisimple case we considered.

2Actually the [KS] class is the projectable class in [PS] including the projectable extra-ordinary
cases. Therefore, the [PS] class is strictly smaller than that in [KS]. While the [DW] class is even
strictly smaller than that of [PS] which includes also some higher multiplicity ones, e.g., one can
produce a projectable example from the real structure of the principal orbit in the Example 3.3 in
[PS]. They are generic in the sense of the real structure of the principal orbit. However, we notice
that for each real structure of the principal orbit there is at least one manifold in the [KS] class
associated to it (see the paragraphs after the proof of the Proposition 1.15 in [DW]). Therefore, it
seems that their manifolds might not be generic in complex geometry, e.g., in the sense of [Ah] and
[HS]. Our examples here is in the extra-ordinary situation and is not projectable, although they are
projectable outside p0 (see [PS]), hence they are not dealed with in both [DW] and [PS].
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In the way of producing Kähler-Einstein metrics on compact manifolds, we also
obtain some Kähler-Einstein metrics on open manifolds and manifolds with bound-
aries. We also discuss this topic in the last section. It seems to us, however, in our
situation these cases are easier than the compact case.

2. Some General Results. For any Kähler almost homogeneous manifold M ,
the Albanese map M → A(M) is an equivariant holomorphic fiber bundle over A(M)
such that each fiber is a simply connected projective almost homogeneous manifold.
Let F be the fiber, then the subgroup AutF (M) of Aut(M) which fixes F is a linear
algebraic group. We call AutF (M) the algebraic part of the automorphism group.

Lemma 1. If M is a Kähler almost homogeneous manifold of cohomogeneity one
with one end and a nonsemisimple algebraic part of the automorphism group, then the
Albanese fibration is a product.

Proof. After blowing up, we might assume that the closed orbit is a hyper-
surface. Only in the case 2) in the Proposition 5.1 of [HS], the statement might
not be true, which basically comes from the situation in Corollary 4.7 with A =
NAutF (M)(H0)/H = Z2. But in the case that AutF (M) is not semisimple, the Theo-
rem 1 in [Ah p.54] then implies that A = 1, which is a contradiction.

Theorem 1. If M is a Kähler almost homogeneous manifold of cohomogeneity
one with nonsemisimple algebraic part of the automorphism group, then M is a com-
pletion of a C∗ bundle over a compact Kähler homogeneous manifold. In particular,
every Kähler class has an extremal metric (resp. quasi-Einstein metric).

Proof. If M is an almost homogeneous space with two ends, we apply Theorem
3.2 in [HS p.771]. If M has one end, we apply Lemma 1 and the Theorem 1 in [Ah
p.54].

Remark. For the metrics which are invariant under a maximal connected com-
pact subgroup K of the automorphism group, one can define a modified Mabuchi
functional

M(ω1, ω2) = −
∫ b

a

∫

X

ϕ̇t(R−HR− φ)ωn
t dt,

where φ is the function corresponding to the extremal vector field E in [FM] (actually
we found this functional after reviewing [FM] in 1995). A local minimal of this
functional is achieved by an extremal metric and

M(ω1, g∗ω2) = M(ω1, ω2)

for any g ∈ CKC(K), where CKC(K) is the centralizer of K in KC (see [Gu5] for
details and an application to the uniqueness of extremal metrics on smooth toric
varieties). One can prove that this functional is well defined as in [Mb p.579-580]
as following: Let ψ(s, t) = sϕt, then this problem is reduced to the proof of the
closeness of Φ(s, t) =

∫
X

∂ψ
∂s φs,tω

n
s,tds +

∫
X

∂ψ
∂t φs,tω

n
s,tdt. Arguing as in [FM] we see

that φs,t = φ + 1
2s(dφ, dϕt) (here we notice that φ is a real function). Then

dΦ =
1
2
s

∫

X

(ϕt((dφs,t, dϕ̇t)s,t + φs,t∆d
s,tϕ̇t)

−ϕ̇t((dφs,t, dϕt)s,t + φs,t∆d
s,tϕt))ωn

s,tdt ∧ ds = 0.

One might expect that the existence of an extremal metric is equivalent almost to the
existence of a lower bound of this functional. The gradient flow of this functional is
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exactly the Calabi flow. And the derivative of this functional along this flow is the
negative of the modified Calabi functional

∫

X

R2ωn − (HR)2
∫

X

ωn − F (E),

which is always nonnegative if ω is invariant under the action of a maximal connected
compact subgroup of the automorphism group, and only be zero when ω is an extremal
metric (this can be proved easily with L2 decomposition of the real functions as in
[Hw2], but in general it seems that the proof there is not correct since one confronts a
complex decomposition). Applying Calabi’s calculation in [Cl1] to our flow we obtain
that the second derivative of the functional is

2
∫

X

R(ϕ̇t,αβ )αβωn
t = 2(R,αβ , (ϕ̇t),αβ ) = 2‖ϕ̇t,αβ ‖2 > 0.

In other words, the Calabi functional is also decreasing under this flow.
Lemma 2. Let V be a holomorphic vector field such that the corresponding (0, 1)

form is harmonic, then the Futaki Invariant F (V ) is zero.
Proof. F (V ) =

∫
X

V (f)ωn =
∫

X
df(V )ωn = (df, iV ω) = 0.

Theorem 2. If M is an almost homogeneous manifold of cohomogeneity one of
semsimple type, then the Futaki Invariants are zero.

Proof. We notice that the vanishness of Futaki Invariant is the same up to a fi-
nite covering. Therefore, we only consider the first case in the Proposition 5.1 of [HS],
where M is a product of a torus and a projective almost homogeneous manifold. The
holomorphic vector fields that come from the torus actions have harmonic correspond-
ing (0,1) forms. Hence, by Lemma 2 the corresponding Futaki Invariants are zero.
Moreover, the algebraic part of the automorphism group is semisimple. Therefore,
the corresponding Futaki Invariants are zero. We get the Theorem.

3. Calculation of the metrics. To calculate the Kähler metrics ω on Mn, we
consider the pushdown of the metrics by the map p : Mn → Pn = CPn×CPn. Then

p∗ω = aω1 + bω2 + ∂∂̄F,(1)

where ωi (i = 1, 2) are the standard metrics on the first and the second copy of the
CPn’s and F is a function with some singularities on the diagonal.

Now the automorphism group of Mn is PSL(n+1,C), and the maximal connected
compact subgroup K = PSU(n+1) has real hypersurface orbits. All the K invariant
functions are functions of θ = |(z,w)|2

|zw|2 where z and w are the homogeneous coordinates
of the CPn’s. If the metrics are K invariant, then F is a function of θ.

Recall that ω1 = ∂∂̄ log |z|2 and ω2 = ∂∂̄ log |w|2. We also have that ∂∂̄F =
∂(F ′∂̄θ) = ∂(θF ′∂̄ log θ). If we let f = θF ′, then f(0) = 0 and

p∗ω = aω1 + bω2 + θf ′∂ log θ ∧ ∂̄ log θ + f∂∂̄ log θ.(2)

By the symmetric group we only need to calculate the metrics at points with
z0 = 1, w0 = 1 and zi = wj = 0 if i 6= 0, 1, j 6= 0. By calculation we obtain:

p∗ω = (a− f(θ))∂∂̄ log |z|2 + (b− f(θ))∂∂̄ log |w|2
+ f(θ)(∂z∂w̄ + ∂w∂z̄) log θ + θf ′(θ)∂ log θ ∧ ∂̄ log θ
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= (a− f(θ))(
dz ∧ dz̄

|z|2 − |z1|2dz1 ∧ dz̄1

|z|4 ) + (b− f(θ))
dw ∧ dw̄

|w|2

+ f(θ)(∂z(
zdw̄

(z, w)
) + ∂w(

wdz̄

(w, z)
))

+ θf ′(θ)(− z̄1dz1

|z|2 +
z̄1dw1

(w, z)
) ∧ (−z1dz̄1

|z|2 +
z1dw̄1

(z, w)
)

= (a− f(θ))(
dz1 ∧ dz̄1

|z|4 +
∑

i>1

dzi ∧ dz̄i

|z|2 ) + (b− f(θ))dw ∧ dw̄

+ f(θ)(dz ∧ dw̄ + dw ∧ dz̄)

+ θf ′(θ)|z1|2( dz1

|z|2 − dw1) ∧ (
dz̄1

|z|2 − dw̄1).

We observe that the complex 2-dimensional subspaces Vi generated by ∂
∂zi

, ∂
∂wi

are orthogonal to each other for different i with 1 ≤ i ≤ n. If we regard the tangent
space as the complex vector space generated by the vector fields corresponding to
the elements of the Lie algebra of K, then the semisimple part of the centralizer of
the isotropy group has these Vi’s as invariant subspaces of the tangent space. To
calculate the volume form, we only need to calculate the determinant τi for each Vi

and compare them with the corresponding items on the standard Kähler-Einstein
metric on CPn ×CPn.

We notice that τi, i ≥ 2 are the same with value:
∣∣∣∣∣

a−f(θ)
|z|2 f(θ)
f(θ) b− f(θ)

∣∣∣∣∣ =
1
|z|2 (a− f(θ))(b− f(θ))− f2(θ).

If ω comes from the pullback of the standard metric, then a = b = n + 1 and τ0
i =

(n+1)2

|zw|2 for i > 1. So τi

τ0
i

= |zw|2
(n+1)2 ( 1

|z|2 (a− f(θ))(b− f(θ))− f2(θ)) must be a function
of θ, we have

τi =
1

|zw|2 ((a− f(θ))(b− f(θ))− θ−1f2(θ)) =
1

|zw|2 A

with i > 1.
For i = 1 we have:

τ1 =

∣∣∣∣∣
a−f(θ)+|z1|2θf ′(θ)

|z|4
f(θ)|z|2−|z1|2θf ′(θ)

|z|2
f(θ)|z|2−|z1|2θf ′(θ)

|z|2 b− f(θ) + θf ′(θ)|z1|2

∣∣∣∣∣

=
1
|z|4 ((a− f(θ) + (1− θ)f ′(θ))(b− f(θ) + (1− θ)f ′(θ))

−(θ−1f(θ)− (1− θ)f ′(θ))2).

In the same way, we observe that τ0
1 = (n+1)2

|zw|4 and hence

τ1 =
1

|zw|4 ((a− f(θ) + (1− θ)f ′(θ))(b− f(θ) + (1− θ)f ′(θ))

− (θ−1f(θ)− (1− θ)f ′(θ))2)

=
1

|zw|4 B.
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We have the following theorem:
Theorem 3. The volume form is

1
|zw|2n+2

An−1Bdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n ∧ dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n.

Now we try to describe the conditions for f(θ) such that the 2-form defined by
f(θ) is a Kähler form at any point outside the diagonal. We have the following:

Lemma 3. (A(1− θ))′ = −B.
Proof. A′ = θ−2f2(θ)− f ′(θ)(a + b− 2f(θ) + 2θ−1f(θ)). Therefore, we have

(A(1− θ))′ = A′(1− θ)−A

= θ−2f2(θ)− (a− f(θ))(b− f(θ))
− (1− θ)f ′(θ)(a + b− 2f(θ) + 2θ−1f(θ))
= −B.

We let C = A(1− θ) and

dV = dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n ∧ dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n,

then the volume form is Cn−1BdV
|zw|2n+2(1−θ)n−1 . We will see more geometrical meaning of

this formula in the next section.
If ω is positive, then τ1 > 0. That is, B > 0. Lemma 3 says that A(1 − θ) is

decreasing. We observe that A is positive if and only if limθ→1 A(1 − θ) ≥ 0. Let
θ = 0, we observe that a, b > 0 since ω is positive on Vi with i > 1. On the other
hand, if a, b > 0 and A > 0, then ω is positive on Vi with i > 1 at θ = 0; and ω
is always positive on Vi (i > 1) by the continuity (otherwise ω has zero direction on
some Vi (i > 1), but this contradicts to A > 0). In the same way, we observe that ω
is positive on V1 if and only if a + f ′(0), b + f ′(0) > 0 and B > 0. We have:

Theorem 4. ω is a Kähler metric outside the diagonal if and only if (1) B > 0,
(2) limθ→1 C ≥ 0 and min(a, b, a + f ′(0), b + f ′(0)) ≥ 0.

4. Determine the singularity of the Kähler potentials. In this section,
we will consider how the Kähler metric ω in Theorem 4 extend to a metric on the
diagonal. As in the last section, we only consider the points at which z0 = w0 = 1
and zi = wj = 0 for i > 1, j > 0.

We like to see how the metric on Mn comes down to Pn near the diagonal. To
do this we change the coordinate a little bit. Let z′i = zi − wi and w′i = zi + wi.
Then the diagonal is described by z′i = 0. The blow-up effect does not affect w′i. The
blow-up effect can be described by p : (z′i, [ui], w′i) → (z′i, w

′
i) with z′iuj = z′jui. At

our considered points we have z′1 = z1−w1 = z1, w′1 = z1 + w1 = z1 and z′i = w′i = 0
for i > 1. They are on the coordinate chart with u1 = 1, that is, z′1ui = z′i and have
coordinates (z′1, u2, · · · , un, w′1, · · · , w′n).

Therefore, the metric can be written as:

ω = a11dz′1 ∧ dz̄′1 + a1idz′1 ∧ dūi + ā1idui ∧ dz̄′1
+ aijdui ∧ dūj + b1idz′1 ∧ dw̄′i + b̄1idw′i ∧ dz̄′1
+ bijdui ∧ dw̄′j + b̄ijdw′j ∧ dūi + cijdw′i ∧ dw̄′j .
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Now we have ui = z′i
z′1

, therefore,

dui =
dz′i
z′1

− z′idz′1
(z′1)2

=
dz′i
z′1

.

Applying this into the formula of ω, we find that the coefficient of the dz1 ∧ dz̄1 term
is

a11 + b11 + b̄11 + c11;

and the coefficient of the dz2 ∧ dz̄2 term is

a22|z1|−2 + b22z
−1
1 + b̄22z̄

−1
1 + c22.

By comparing with our formula for p∗ω we observe that f(θ) has a single pole at
θ = 1, i.e., f(θ)(1− θ) is a finite function on [0, 1].

In the same way, we have aij = bij = cij = 0 for i 6= j, and hence limθ→1 f(θ)(1−
θ) < 0, limθ→1 B,C > 0. By calculation we get:

Theorem 5. Let ω be a Kähler metric as in Theorem 4. Then it is a metric on
the diagonal if and only if limθ→1 f(θ)(1− θ) < 0, limθ→1 B,C > 0.

5. Determine the Equations. In this section, we will concentrate on the case
in which ω is in the Ricci class of Mn. From Theorem 3, we observe that in this case
a = b = n + 1. Also by Theorem 3, we obtain that the Ricci curvature is

Ricω = −∂∂̄ log
Cn−1B

|zw|2n+2(1− θ)n−1

= ∂∂̄((n + 1) log |z|2 + (n + 1) log |w|2
− log Cn−1B + (n− 1) log(1− θ)).

We have that the principal part of f(θ) = θF ′(θ) at θ = 1 is −n−1
1−θ . Hence, we obtain

limθ→1 f(θ)(1− θ) = −(n− 1).
Moreover, we have Kähler-Einstein equation:

F (θ) = − log Cn−1B + (n− 1) log(1− θ).

This equation is equivalent to

F ′(θ) = −(n− 1)
C ′

C
− B′

B
− n− 1

1− θ
= −(n− 1)

C ′

C
− C ′′

C ′
− n− 1

1− θ
,

here we apply C ′ = −B in Lemma 3.
To simplify the equation, we let

V = θ(n + 1 +
1− θ

θ
f(θ))2.

Then

F ′(θ) =
f(θ)

θ

=
1

1− θ

(1− θ)f(θ)
θ

=
1

1− θ
(±(

V

θ
)

1
2 − (n + 1)),
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where we must have + sign in the last formula by limθ→1(n + 1 + 1−θ
θ f(θ)) = 2 > 0

and the continuity. We also have

C = (1− θ)((n + 1)2 − 2(n + 1)f(θ)− f2(θ)
1− θ

θ
)

= (n + 1)2 − (θ(n + 1)2 + 2(n + 1)(1− θ)f(θ) + f2(θ)
(1− θ)2

θ
)

= (n + 1)2 − V.

The equation becomes

(V
θ )

1
2 − 2

1− θ
= (n− 1)

V ′

(n + 1)2 − V
− V ′′

V ′ .

Next we notice that V ′ = B. That is, V is increasing and V (0) = 0, V (1) =
1(n + 1− (n− 1))2 = 4. We let U = V

4 . Then the equation becomes

2
(U

θ )
1
2 − 1

1− θ
=

4(n− 1)U ′

(n + 1)2 − 4U
− U ′′

U ′(3)

and U is a monotone map from [0, 1] onto itself.
Theorem 6. If there is a solution U ≤ 1 of (3) with U(0) = 0 and U(1) = 1.

Then there is a Kähler-Einstein metric on Mn.
Proof. Suppose we have a solution, then by the left side of (3) we must have

U ≥ 0. Now we first want to prove that U is increasing. By letting U = v2 and
applying the Theorem 10 in [BR p.195] to v in our situation, we observe that if we
assume that U 6= 0, (n+1)2

4 ; θ 6= 0, 1 then the solution is analytic. Since U ≤ 1 we
obtain that if U > 0 at point θ 6= 0, 1 then U is increasing. This is true because if
U ′ = 0 at θ, then U ′′ has a zero at θ of no lower mutiplicity than U ′, a contradiction.
Now we want to prove that U > 0 if θ > 0. We notice that by U(1) = 1, U can not
be always zero, the argument above shows that at some a < 1 U ′(a) > 0. Then by
using 0 ≤ U ≤ 1 and (3) we have

−2
1

1− θ
≤ −(log((n + 1)2 − 4U)n−1U ′)′ ≤ 2

( 1
θ )

1
2 − 1

1− θ
.(4)

And by integration we get

(
1 + θ

1
2

1 + a
1
2
)4 ≤ U ′(a)

U ′(θ)
(
(n + 1)2 − 4U(a)
(n + 1)2 − 4U(θ)

)n−1 ≤ (
1− θ

1− a
)2,(5)

with 0 ≤ θ ≤ a < 1. We have U ′(0) > 0. That is, U increase always. Now the left
side of above inequality still holds when we let a = 1, we get U ′(1) > 0, that is, B > 0
always.

Second, we let

n + 1 +
1− θ

θ
f(θ) = (

4U

θ
)

1
2 ,

then f(θ) is well defined on [0, 1) and f(0) = 0, n + 1 + f ′(0) = (4U ′(0))
1
2 >

0, limθ→1(1− θ)f(θ) = 2− (n+1) = −(n−1). We also have C(1) = (n+1)2−4 > 0.
Comparing with the conditions in both Theorems 4 and 5 we obtain the Kähler-
Einstein metric.
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6. The Existence outside the diagonal. Now we consider the equation

U ′′ =
4(n− 1)(U ′)2

(n + 1)2 − 4U
− 2(

(U
θ )

1
2 − 1

1− θ
)U ′.

Obiviously it has solution U ≡ a on [a, 1−b] with small positive numbers a, b. Suppose
we already have a solution with U(a) = a, U(1− b) = c ≤ 1, we want to see that for
some c′ close to and larger than c we have a solution U(a) = a, U(1 − b) = c′. By
the continuity of the initial value problem (see [BR p.177 Theorem 5]), if we change
U ′(a) a little larger we shall still get a solution on [a, 1 − b]. If U(1 − b) > c, we are
done. Otherwise, U(1 − b) ≤ c, hence it must always ≥ a and ≤ 1. Thus, we have
the openness of the set I of the initial U ′(a)’s such that the equation has solutions on
[a, b]. By (5), we also obtain the closeness of I. Therefore, for any large initial U ′(a),
we have a solution on [a, b] with U ≤ 1, this will lead to a contradiction to (5). Hence,
the set of c′ with solutions is an open set. Now by (5) again, we observe that the set
of c′ is also closed under any number which is close and larger than 1. Therefore, we
can let c = 1 (This corresponds to a Kähler-Einstein metric on a ≤ θ ≤ 1− b. In fact,
we can have a 2 parameter family of Kähler-Einstein metrics on 0 ≤ U(a) ≤ U(1−b)).
We can also let a → 0, and obtain:

Theorem 7. For any small positive number b, we have a solution with U(0) =
0, U(1− b) = 1. This corresponds to a Kähler-Einstein metric on the manifold with
boundary θ ≤ 1− b.

We actually can let c be any number which is nonnegative and smaller than
(n+1

2 )2. Therefore, we actually obtain a family of Kähler-Einstein metrics on θ ≤ 1−b.

7. The Global Existence. In this section we will try to extend our method of
finding solutions to the diagonal. We want to see what will happen if we let b → 0.

Now we notice that the right side of (5) still holds, thus the upper bound of U ′

of the smaller θ is bounded by the upper bound of U ′ of the larger ones. We will try
to bound the U ′ for the θ’s which are close to 1.

If U ′ is unbounded. We try to bound U ′(1− θ). To do this we let et = 1
1−θ . Let

θt be the t derivative of θ. Then by differentiation, we have et = θt

(1−θ)2 = θte
2t. That

is, θt = e−t. Let Ut be the t derivative of U , then Ut = U ′θt = U ′e−t = U ′(1 − θ)
and U ′′ = (Ute

t)′ = Utte
2t + Ute

2t, where Utt being the second t derivative of U . The
equation becomes

2((
U

θ
)

1
2 − 1)Ut =

4(n− 1)U2
t

(n + 1)2 − 4U
− Utt − Ut.

That is,

Utt =
4(n− 1)U2

t

(n + 1)2 − 4U
− (2(

U

θ
)

1
2 − 1)Ut.(6)

Let Ui be a series of solutions corresponding to bi → 0 and ti be the point of t such
that 1 > Ui(ti) = a > 4

9 . Then

(log Ui,t((n + 1)2 − 4Ui)n−1)t = −(2(
Ui

θ
)

1
2 − 1) < −1

3

for t ≥ ti. For any U we define

V = Ut((n + 1)2 − 4U)n−1.(7)
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We notice that Vi = Ui,t((n + 1)2 − 4Ui)n−1 is decreasing with t ≥ ti and Vi ≤
e−

1
3 (t−ti)Vi(ti). We have Ui,t ≤ CiUi,t(ti)e−

1
3 (t−ti) with Ci being bounded both from

above and below by some positive numbers which do not depend on Ui. Then 1 −
a =

∫ t(1−bi)

ti
Ui,tdt < CiUi,t(ti)

∫ +∞
ti

e−
1
3 (t−ti)dt = 3CiUi,t(ti). Therefore, Ui,t(ti) is

bounded from blow by a positive number which does not depend on Ui.
If no subsequence of ti turns to +∞, then a subsequence of ti turn to a finite

number t0. By the left side of (5), we see that U ′
i(θ(t0)) must be bounded from above,

otherwise U ′
i(θ(t)) will be bounded from below by a very large number such that Ui

will be bigger than 1 before θ reaching the point 1. That is, there is a subsequence of
Ui converging to a solution U of our equation with U(1) ≥ a > 4

9 .
We will see that no subsequence of ti turns to +∞. Therefore, by choosing a

subsequence we can assume that ti turns to a finite number t0 and the U is exactly
what we need.

If there is a subsequence of ti turns to +∞. From the equation we observe that
if 4(n−1)Ui,t

(n+1)2−4Ui
> 2( 1

θ(ti)
)

1
2 − 1, we have that Ui,t is increasing. This can not happen.

Therefore, Ui,t(ti) is bounded from above. Thus, Ũi(t) = Ui(t + ti) converges to a
nonconstant function Ũ , since for each t ≥ 0, Vi defined by (7) is decreasing and Ũi,t

is bounded; and for each t < 0, −2 < (log Vi)t < 1 when i big enough, that is, Ũi,t is
also bounded as well as Ui,t(ti) is bounded from below by a positive number. Then
Ũ satisfy the equation

(log x′((n + 1)2 − 4x)n−1)′ = −2x
1
2 + 1

on (−∞,+∞). Therefore,

(x′((n + 1)2 − 4x)n−1)′ = (−2x
1
2 + 1)((n + 1)2 − 4x)n−1x′.

We let u = x′((n + 1)2 − 4x)n−1. By integration, we obtain

u =
∫ x

x(−∞)

(−2x
1
2 + 1)((n + 1)2 − 4x)n−1dx

since u(−∞)=0 (x′(−∞)=0). Then, by u(+∞)=0 we must have
∫ x(+∞)

x(−∞)
fn(x)dx=0

with fn(x) = (−2x
1
2 + 1)((n + 1)2 − 4x)n−1. Now if we choose3 a close enough to 1

and prove that
∫ 1

0
fn(x)dx < 0, then

∫ x(+∞)

x(−∞)

fn(x)dx <

∫ x(+∞)

0

fn(x)dx < 0

when x(+∞) is close enough to 1 and x(−∞) < 1
4 . Since

∫ x(+∞)

x(−∞)
fn(x)dx < 0 if

x(−∞) ≥ 1
4 , we will have a contradiction.

We prove here that
∫ 1

0
fn(x)dx < 0. We have

∫ 1

0

fn(x)dx

3This can be proved to be unnecessary. For example, if b = x(+∞) 6= 1, there is a sequence
t′i → ∞ such that Ũ(t′i) → b, that is, Ui(ti + t′i) → b. By our method above, we can use ti + t′i
instead of ti and obtain a function Ũ1. We observe that Ũ1(−∞) ≥ Ui(ti) = a > 4

9
> 1

4
. Again, a

contradiction.
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=
∫ 1

4

0

fn(x)dx +
∫ 1

1
4

fn(x)dx

<

∫ 1
4

0

(−2x
1
2 + 1)(n + 1)2(n−1)dx +

∫ 1

1
4

(−2x
1
2 + 1)((n + 1)2 − 4)n−1dx

=
1
12

(n + 1)2(n−1) − 5
12

((n + 1)2 − 4)n−1

=
((n + 3)(n− 1))n−1

12
((1 +

4
(n + 3)(n− 1)

)
(n−1)(n+3)

4
4

n+3 − 5)

<
((n + 3)(n− 1))n−1

12
(e

4
n+3 − 5)

< 0.

By choosing a close enough to 1, we have U(1) = 1 as desired.
Now we want to prove that limθ→1 U ′ exists and is finite. Let V = U ′ = Ute

t,
then Vt = Utte

t + Ute
t = 4(n−1)U2

t

(n+1)2−4U et + 2(1 − (U
θ )

1
2 )V . As in the proof of the

existence of U , for a t0 with U(t0) = a2 such that 1 > b = a2 − 1
2 > 0, we have

Ut < Me−2b(t−t0) for t ≥ t0 with a constant M . In particular, Ut

e−bt → 0. Therefore,
limt→+∞ U−θ

e−bt = limt→+∞ Ut−e−t

−be−bt = 0. Thus, Vt < AV e−bt + BV e−bt = CV e−bt with

some constants A, B, C = A + B. That is, log V (t)
V (t1)

<
∫ +∞

t1
Ce−btdt is bounded

from above with any t > t1 > t0. By choosing special sequence of t1 we can get
a Cauchy squence of log V (ti). That is, log V (ti) converges to a finite number, and
V (ti) converges. By choosing other convergent sequence we get same limit. Thus,
U ′(1) = limb→0

U(1−b)−1
(1−b)−1 = limθ→1 U ′(θ) exists and is finite. By using (3), we have

that U ′′ is finite on (0, 1). And in the same way as above, we have that U ′′(0) and
U ′′(1) exists and is finite.

We finally have:
Theorem 8. There is an unique Kähler-Einstein metric in the Ricci class of Mn

up to the automorphism of Mn.
Proof. The existence follows from Theorem 6 and the uniqueness follows from

[BM].
If in Theorem 7 we have c instead of 1, with (n+1)2

4 > U(1 − b) = c > 1
4 , then

the same method as in the proof of Theorem 8 can also apply to obtain a Kähler-
Einstein metric on θ < 1 with U(1) = c. We denote these solutions by U c’s. From
(5), we see that (U c)′(1) = (U c)′′(1) = 0 for c < 1 and (U c)′(1) = (U c)′′(1) = +∞
for c > 1. Therefore, we have that when c > 1, we can extend the metric to the
diagonal. But these metrics degenerate at the diagonal. For c < 1, we can not extend
the metrics to the diagonal, hence we have Kähler-Einstein metrics with singularities
on the diagonal. We can also apply our arguments for any boundary condition 0 ≤
U(a) = c ≤ U(1) = c′ < (n+1)2

4 and obtain Kähler-Einstein metrics on a ≤ θ < 1. We
have:

Theorem 9. There is a family of Kähler-Einstein metrics with two parameters
on a ≤ θ < 1.

One might also consider the solution for 0 ≤ U(a) = c < U(1− b) = (n+1)2

4 . By a
formula which is similar to (5), we obtain U ′(1− b) = U ′′(1− b) = +∞ in this case.
The existence can be proved by a similar argument as above with exchanging U and
θ.
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Using a similar argument as in the last section, we can also give an alternative
proof. We move U ′(a) from a very big number to the smaller ones. For any given
number b, we can obtain a similar formula (5)′ of (5) which comes from a similar
formula of (4) obtained by using 0 < U < (n+1)2

4 instead of 0 < U < 1. To save
spaces, we do not write out the formula (5)′ here, but leave it to the readers.

We can choose U ′(0) big enough such that U pass (n+1)2

4 at θ = d before θ
reaching 1 − b, i.e., d < 1 − b. Then we move U ′(0) to the smaller ones. Applying
(5)′ to the derivative of θ to U , that is, θU = (U ′)−1, we obtain the continuity of
θU over [c, (n+1)2

4 ], and hence the continuity of d′ = θ( (n+1)2

4 ). By (5)′, we have the
closeness of the set of d′’s. If d′’s do not reach 1 − b, we can move U ′(0) close to 0.
But (5) implies that if U ′(0) is small enough θ will pass 1 − b before U get to 1, a
contradiction. That is, d′ can be 1− b. We have following:

Theorem 10. There is a family of Kähler-Einstein metrics with two parameters
on 0 ≤ a ≤ θ < 1 − b. And there is at least a subfamily of them with one parameter
corresponding to U(1− b) = (n+1)2

4 , hence has singularities on θ = 1− b.
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