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Abstract

In this note, we prove some results on the classification of compact complex homogeneous spaces.
We first consider the case of a parallelizable spce G/I', whereG is a complex connected Lie
group andr” is a discrete cocompact subgroup®f Using a generalization of results in [M. Otte,
J. Potters, Manuscripta Math. 10 (1973) 117-127; D. Guan, Trans. Amer. Math. Soc. 354 (2002)
4493-4504, see also Electron. Res. Announc. Amer. Math. Soc. 3 (1997) 90], it will be shown that,
up to a finite coveringGG/I" is a torus bundle over the product of two such quotients, one whése
semisimple, the other where the simple factors of the Levi subgrou@seaoé all of typeA;. In the
general case of compact complex homogeneous spaces, there is a similar decomposition into three
types of building blocks.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper,M is a compact complex homogeneous manifold éhd connected
complex Lie group acting almost effectively, holomorphically, and transitively/okiVe
refer to the literature [5,6,8-12,14,21,22,31,32] quoted at the end of this paper for the
classification of complex homogeneous spaces which are pseudo-kahlerian, symplectic or
admit invariant volume forms.
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We separate our introduction into 5 subsections. The readers who are only interested in
a general picture might go directly to Sections 1.1 and 1.5. We build a general compact
complex homogeneous space, up to a finite covering, as a torus bundle over the product
of two special spaces in Section 1.1. One of them, which we c@haisimple spacevas
already exhibited in both [12,15]. We devote our Section 1.5 to the other, which we call a
reduced spagewhich is, up to a finite covering, a fiber bundle over a torus with a typical
fiber a product oprimary spacesnd aparallelizable manifold

Section 1.4 is dedicated to the case of spaces ofl-step which is the major case
we considered here. The general case (respectively the primary spaces) can be built up
from this case (respectively the primitive spaces). We consider the primitive spaces in
Section 1.3. Inthe Lie algebra level, the primitive space is decomposed into the data related
to thoseB factorsin Section 1.2, and we will classify these data there.

Section 1.2 is the core of this paper. An expert might mainly be interested in Theorem D,
in which one also finds many examples.

In this paper, we regard the Lie algelgfaf a Lie groupG as a part of that Lie group.
Therefore, if there is no confusiowge also use&; to represent the Lie algebr@.

1.1. Our starting point is the following proposition of [23].

Proposition 1. Let M = G/I", whereI is discrete and cocompact. If a Levi subgroup of
G is simple and acts non-trivially on the radic&l of G, then it is a Lie group of typd;
or Eg.

The possibility of factors of typ&'s was left open because at that time it was not known
whether groups of typ€g would satisfy the Hasse principle. Subsequently Chernousov [7]
showed that only factors of typ&; can occur.

We shall use following generalization (see also [33, Proposition £)8.2]

Theorem A. Let G, I, and R as in Propositionl and S a Levi subgroup of5. Then any
simple factor ofS which acts non-trivially orR is of typeA;.

The foundation of the proof for Theorem A comes from the theory of Galois
cohomology (see [24]). The cornerstone of our solution to the classification of compact
complex homogeneous spaces is our Theorem D which naturally leads to our theorems.
Although we use Theorem A to prove Theorem D, we could just as well have done the
proof with only the results of Galois cohomology of classical Lie groups which can be
found in [20]. One of difficulties in constructing all our proofs is that for a connected
complex Lie groupG with an abelian nilradicalV, the reductive groufs/N does not
always act reductively ov. We shall deal with this difficulty in different ways (in
particular, in the proof of Theorem A and those of Theorems D-H).

2 We were told about [33] by a referee in 1998 after we had finished this paper. We shall give a complete proof
here. Winkelmann'’s proof works for a special case in whithV is semisimple, wherd/ is the nilradical ofG.
See our Section 4 for further discussion.
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Theorem B. Let G, I', S, and R be as in Theorem AS; (respectivelyS,) be the
normal subgroup of such that each simple factor 8f (respectively of,) acts trivially
(respectively non-triviallyon R. Then, up to a finite covering;/I" is a torus fiber bundle
over a productSy/ Iy x S2R/I>C°, whereC? is the identity component of the centér
of G and I'y (respectivelyl®) is a discrete subgroup oy (respectively ofoR/CP). In
particular, S has only factors of typd;.

This structure theorem was suggested in [12]. We use a generalization of [12, Lemma 5]
for its proof.

An indirect application of Theorem B is the followinjlain Theorem Ito the
classification of compact complex homogeneous spaces.

Theorem C. Let M be a compact complex homogeneous space. Theap to a finite
covering, is a torus bundle ovefi/H1 x S2R/H> with S1, S2 semisimple andk being
the radical ofS2R such that each factors & acts non-trivially onR. If J1 = Nsl(Hlo),
Jo = Ns,r(HY), thenJ1/HY is semisimple andi? N S is unipotent,/, has only simple
factors of typed;, which are not inH,. Moreover, each simple factor 6% is a classical
Lie group and each simple factor @ acts non-trivially onR/R N H.

The first factorS1/H1 is a reductive compact complex homogeneous space and has
a description in [12, Announcement, Main Theorem C] (see also [15]), which is a fiber
bundle over a compact rational homogeneous spa¢®; with reductive parallelizable
manifold as a fiber. And{; contains the nilradical of the parabolic subgra®ypof S;.

We call §1/H1 asemisimple spacand S, R/ H, areduced space

Theorem C cannot be derived directly from Theorem B. Its proof requires a case by
case checking. This is where Theorem A is applied.

We also make use of several observations. Theorem 2 in Section 3 is one of them.
We use Morita theory in the proof of Theoremwich basically gives the existence of
the compact complex homogeneous spaces in the following the@athany cocompact
discrete subgroup QWSZR(HZO)/HZO induces a compact complex homogeneous space with
the universal coveringﬂzR/Hzo. Our major work here is to find all the possible pairs
(S2R, HY). The computation of the multiplicities of tHerepresentations for an algebraic
number fieldk is a very powerful tool in our proof and was fortunately done in [30]. At the
beginning, we cannot expect that the reductive part

F = (Jo/HY) / nil (J2/ HY)
of J2/H§ acts reductively on its nilradical quotient
nil(J2/ HY) /[nil (J2/ HY). nil (J2/ HJ)].

But we can consider the case in whighacts reductively, and prove later th&tindeed
acts reductively on the submodule of the Lie algebra qugj’IHg) consisting of all the
non-trivial representations of the simple factors/gfwhich are not simple factors .
This is one of the reasons Theorems F—H are true.
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This reduces the classification of compact complex homogeneous spaces to that of
S2R/H> in Theorem C, which is much more tractable than the original problem.

1.2. From now on, in this introduction, we shall assume that G/H is a reduced
space and; = SR is a Levy decompositiohh = Ng (H°).

This condition makes our description simpler, while the corresponding results below
still hold without this condition.

We let ST (respectivelys?) be the normal subgroup of containing the simple factors
of § which are not contained isi (respectively are contained if). We call any one of the
simple factors of/ which is not inS afactor A or an A factor, and any simple factor of
$1 (respectively of§2) afactor B (respectively dactor C) or a B factor (respectively &
factor). In Theorem C, we show that the only possiBléactors are classical Lie groups.

For ahomogeneous spaG¢ H we try to find all the possible pairs of datB, A), where
B is one of theB factor andA are thosed factors inB. We call a non-trivial representation
of a factor B, as a submodule of the Lie algebra Bf a primitive representation if the
nilradical of J is abelianand the rational quotieng of Jo = (J/H%q, which comes
from H/HP, actsirreducibly on the nilradical of/q. We call a primitive representation a
representationt and the homogeneous space with a primitive representaioimitive
space Without loss of generality, we try to find all possible pais A) with a non-trivial
primitive space. Fixing a Cartan subalgebradm 7, we notice thatA is generated by
some simple root vectors & and denote the indices of these simple rootg byl (B, A).
Hence, we shall actually try to find all the possible déBa A, I, E) (some time we use
the rankn instead ofB if we already know the type aB). If A, and hencd, is empty, we
denoteitby(B, E).

One observation in Corollary 2 which we found was tRatontains the complete given
Cartan subalgebra df in ;7. We state another observation as Lemma 4 that the Lie algebra
of HO contains no negative simple root vector. The inequalifyin our Corollary 3 is very
powerful in narrowing down the possibilities. These are some of the reasons why we can
classify all these datéB, A, I, E).

When we describe th4 factors in a facto?, we should use the notatidrg to describe
the simple factors of the realizatiair, in the factorB, of the arithmetic groug. But
by abuse of notation, we ugeinstead ofGg in this paper We also note here thatl the
division algebra of degre® are quaternionsWe let H; be the fundamental weights of the
factor B, we have the following theorem.

Theorem D. For each type of classical Lie algebra, we have a classification of the data in
the lists below

e Inthe caseB = A,,, we have
(@) if E= Eqg= Hy+ Hy, then(n, A, I) is one of
(1) (2141, SUi(D, f) x SUL(D, g), (1,....,H U +2,...,20 + 1)) with] > 1,
(2) (4l +3,SUx(D, f) x SW(D, g),{(1,...,20+ 1)U (2A+3,...,4 + 3)),
(3) (3.SL(D)®?, (1) U (3)),
(4) BI+2,SW(D, f) x SUL(D, g), (1,....,21+ 1)U (21 +3,...,3+2)),
(5) (2,SL(D), (1)),
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(6) B +1,SL(D)** (U@ U---UEBI+1)),
(7) (n);
(b) if E # Eo, then(n, A, I, E) is one of
(1) (3,SL (D), (1,2), Hp) with D a division field of degre8,
(2) (3,SL(D), (2), H2 ® H>),
(3) (4,SW(D, 1),(1,2,3), H1 & H1® H3),
(4) (n, H1® Hy),
whereD’s are division fields and are of degré@dj.e., quaternionsexcept the ones
in (al), (a2), (a4), which are of degreé and the one irfb1), which is of degre8.
e Inthe caseB = B,,, we have one of the following situations far, A, I, E):
(1) (n, Hy),
(2) (2,SL(D), (2),2H>),
(3) (2,SL(D), (1), H1),
where theD’s are quaternions.
e Inthe caseB = C,, we haves =4 and (A, I, E) = (SU2(D, f), (1, 2, 3), 2H1) with
D a quaternion.
e Inthe caseB = D,,, we have one of the following
(1) (6,SUx(D, ). (2.3.4), H),
(2) 4,SU(D, 1),(1,2,3), Ho),
(3) (5,SUx(D, £). (1,2,3), H1 & Hy),
(4) (4.SLu(D), (2), Hy),
whereD’s are quaternions.

Altogether we have 7 series and 12 exceptional ones for the possibleRjatal, E)
for a primitive representation including.

To have some examples of reduced space, one might take anyone in above lists
and letG = BE. H° consists of the group generated those one parameter subgroups
corresponding to the negative root vectors which are no# iand the A irreducible
representations i which do not contain any highest weight vectbiis the product of the
given Cartan subgroup & andA. H/H® comes from the integer part of the arithematic
group of A and the integer part of thé irreducible representations isi = nil(Ng (H°))
the nilradical ofNg (H°) as well as the integer panf the center ofF = Ng(H®)/N (the
rational extension of this center is juBg/Ag). The A irreducible representations N
are copies of thel irreducible representations i containing the highest weight vectors.

One of the simplest examples comes from (a7) of the &aseA,, with n = 1. In this
caseE = sl(2, C) and B acts onE as the adjoint representation. Lebe the simple root
of B,thenE_,, o, E, generateB. Let F_,, ag, F, be the corresponding triple basisin
ThenH®=Cap +CF_y, F=Ca, J=Ca+CE_4+ E, N=CE_, + CF,. We can
assume that the integer part®fis (Z + Zi)e1 + (Z + Zi)ez where

e1=2E_—2F,,  e3=(vV5+3)E_4+ (V5+1)F,.

3 For the detail of this part, see our proofs.
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and the integer part of can be generated by the matik = [i i] We have defined;
ande; such thatf_, andF, are the eigenvectors af. Fz = {M*|icz)}.

Another example comes from (a3) of the caBe= A, with n = 3. In this case
E =sl(4,C). B acts onE as the adjoint representation. Leet be the simple roots oB
withi =1, 2, 3, thenE_,,, E,, generateB. E_,,, Ey;, o, E_gj—aj 1 Eajta;0J =1,2,
Eoitaptass E—aj—ay—ag 1S @ basis 0. Let F, for all rootsa andaiE be a corresponding
basis inE. ThenH®=Y", Caf + Y w¢a, CFo WhereAr = faz, o +aj41, ) i} Aj,

j =1,2 is generated b)Eazjfl, E gy . F=A1+A2+Ca2, N=NNB+NNE,
NNB=Yycp,CE ., NNE=Y .5 CF,.J=F+ N+ H°. Let D be a quaternion
field overk = Q(i) = Q +iQ, e.g.,D can have a basis le, ez, e3 With €2 = 3, 2 =
1+, e3 =e1e2 = —eze1. ThenSly (D) are the quaternions with norm 1. In our example
above, they are those+ bey + cep + dez with a® — 362 — (14 i)c? + 3(1 +i)d? = 1.
Then we can conside¥ N B, N N E as theC extensions of two copies adb with A;
acting on the left andd, on the right. To get & torus action which corresponds to
C(a1 + 202 + a3), we apply the matrixV in the last example. Letl = 2E_, — 2F,,

eg = (V5+43)E_o+ (+/5+1) F, with « € A1, thenM* can be regarded as transformations
on Cel + Ce2 for eacha. We can choose the integer part &fto be theZ (i) module
generated byfg, eg with o € Aj. The integer part 08L1 (D) can be chosen as the set of
Z(i) integers inD with norm 1.

In these two examples every primary space is primitive.

Since a primitive space might have several different data with simdil&actors and
similar A irreducible representations which have the same highest weights, not all of the
primitive spaces can be obtained in this way. In addition there is also a possible torus factor
T which is neither inB nor in E, andG = ([[ B; ® T) [ | E;. We shall discuss this in the
next subsection.

1.3. For convenience we denote the data in the above lists by

a,l a,2 a,3 a4 a,5 a,6 a,’. b,1 b,2 b,3 b4,
AGL A02 pg@3 qadh paS g8 gaT. o AbLo g2 Ab3 40,

B, B2 B3 c, D', D? D3 D*

We also use the small letter and the lower case of these notations to denote the
corresponding types of/H, i.e., we have

a a a _a a _a a . b b — .
al!l, az!l, as, a4’l, dg, a6’l, a7’n, ai, dy, b—bz, C, dl, dz.

We observe that onlpi’, A2, andBl; A%5, AJ-®, andB3; AP2 and D*; A*3, D!, and
D? have similar type off /H, which are denoted by4, a2, a5, andds, respectively. Now
we consider primitive compact complex homogeneous spaces with non-Bifadtors.
Without loss of generality we assume that the adjoint action of the reductive quotient of
J/HO on its nilradical is locally faithful. We call this kind of spacereduced primitive
space(we notice here that this condition is stronger than a space being reduced and
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primitive). Otherwise, we just consider the quotient by the kernel of the adjoint action
of J/HO.

Before we state our further results we need some terminology. We say that two complex
homogeneous manifolds algenousf they are isomorphic up to a finite covering, i.e.,
they have a common finite covering which is comparable with the group actions. We say
that a spac&1/H! is, up to an action of a torus, isogenous®¥/H? if G1 is isogenous
to a normal subgroup a2 of G2 such thatG1/H? is isogenous t&3/(H? N G3) with
a finite H2/(H? N G®) andG? = G3T with a torusT which is semisimple irG2. In this
situation we denot&!/H! < G2/H?. We say that a space!/H?' is, up to an action
of a torus, isogenous in the Lie algebra level@3/H? if the Lie algebrag® of G1 is
isomorphic to a normal Lie subalgeha of the Lie algebras? of G2 such that the image
of the Lie algebrai! of H! is the Lie algebra? of H? and if G2 is the normal Lie
subgroup oiG? with Lie algebrag?, thenG? = G3T with a torusT which is semisimple
in G2. We say that two spaces'/H! andG?/H? are,up to actions of torus, isogenous
(respectivelyisogenous in the Lie algebra leyef they are both, up to actions of torus,
isogenous (respectively isogenous in the Lie algebra level) to a same space. \Alauakso
the notatior[ |* to express #@wist concept of produdt[*(B;, E; = @ H; ;) = ([] Bi, E*)
with E* = P Q) H;,; for some combination off; ; such that eacl#; ; appears once and
only once, antd; ;,, H; j,, j1 # j2 cannot appear in a same summand (examples can be
found in the last part of the fifth section). We have the following theorem.

Theorem E. The reduced primitive compact complex homogeneous spaces, up to actions
of some torus, are isogenous in the Lie algebra level to one of follo®@rogses

(1) k1At x koaf
(2) k1A]? x koas,,
(3) k1443 x koa$,
(4) k1A x koa,,
(5) k1A%5 x k2B3 x kaag x ([T; Al"®),
©) (17 An" < (T BL) x [Ti Am® = (17 a4,
(7) k1AL x koa?,
(8) k1AP2 x k2D14 x kaab,
(9) k1A%3 x koD x k3aD® x kadh,
(10) k1B? x kb,
(11) k1C x kac,
(12) k1D? x kodo,

wherek;, i =1, 2, 3, 4 are nonnegative integers, aikd meansk copies ofB.

Once we have non-triviall factors, the structure of the reduced primitive spaces can
be described by the theory of division algebras. Therefore, the classification is basically
finished. But the case (6) is more difficult, since we need more o@ts&ructure of the
torus action including the Cartan subgroup.
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1.4. For the case that the nilradical @f H is abelian, we call the manifold a compact
homogeneous space ofstep(the nilradical of//H® has one step). We observe that all
the examples in [1,23,28] fall in this cla$sVe have the following theorem.

Theorem F. Any reduced space dfstep is isogenous td x L with 7' a torus andL is,

up to an action of a torus, isogeno(is., <) to (up to a finite covering, this induces an
embeddinpa product of a parallelizable manifold and several reduced primitive compact
complex homogeneous spaces such that each projection of the image is onto.

To have another description, we need the following definition: A complex homogeneous
space is called aomplete reduced primitive spadeit is a primitive space and is in a
minimal isogeny class respect to the partial ordeiThen we have:

Theorem G. Any reduced spac#f of 1-step is in an isogeny class a productMy of
a parallelizable manifold and some complete reduced primitive homogeneous spaces. In
particular, M is a homogeneou¥( bundle over a torus.

One can also see the last part of Section 6 for a more detail construction.

1.5. We will consider the general spaces in detail in [13]. To complete the picture
here, we call a compact complex homogeneous spapdnaary spaceif the 1-step
space obtained by modulo the right action of the commutator of the nilpotent radical of
N (H%/HO on its universal covering (see Section 4, for example) is a complete reduced
primitive space and prove the followiriain Theorem Ii

Theorem H. Any reduced space is in an isogeny class> a product Mgy of a
parallelizable manifold and some primary spaces. In particuldris a homogeneout/o
bundle over a torus.

These theorems give a classification of compact complex homogeneous spaces up to
building blocks.

In Section 2 of this paper, we give some basic background for compact complex
homogeneous spaces and general representation theory of a semisimple Lie algebra. In
Section 3, we give some results on the representation theory-tihaar algebraic group
over an algebraic number field In Section 4 we give a complete proof of Theorem A,
which is the Lie algebra foundation for Theorem B and part of Theorem C. In Section 5 we
shall deal with the representational part of the Lie algebra aspect of Theorem C and prove
Theorem D, which is the core of this paper. Finally, in the last section, we finish the global
picture of Theorem B and that of Theorem C and those of the others.

4 It turns out that their results are similar to the last three paragraphs in our Section 5.
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2. Preliminaries

2.1. A rational homogeneous manifold is a compact complex manifold which can be
realized as a closed orbit of a linear algebraic group in some projective space. Equivalently,
Q = S/P whereS is a complex semisimple Lie group arla parabolic subgroup, i.e.,

a subgroup of which contains a maximal connected solvable subgroup (Borel subgroup).
Every homogeneous rational manifold is simply-connected and is therefore an orbit of
a compact group. In general, a quotidnf L with K compact and semisimple carries

a K-invariant complex structure which is projective algebraic if and only. ifs the
centralizerC(T) of atorusT C K.

A parallelizable complex manifolid the quotient of a complex Lie group by a discrete
subgroup [31]. It is asolv-manifoldor nil-manifold according as the complex Lie group
is solvable or nilpotent. In the same way, we can def@aiictive parallelizable manifolds
andsemisimple parallelizable manifolds

2.2. We recall Tits’ result [29] on the fibration of compact homogeneous spaces.

Proposition 2. Let G be a connected complex Lie group amfl a closed complex
subgroup such tha6/H is compact. TherG/ Normg (HP) is a rational homogeneous
space andNormg (H®)/H is connected and parallelizable. Moreover,Gf/f H — G/R
is a holomorphic fibration with parallelizable fibeR/H, then R ¢ Normg (HO); if in
addition the base& /R is rational homogeneous, thet= Normg (H9).

2.3. Here we collect some results we need from the representation theory of the
semisimple Lie algebras (cf. [17, pp. 67-69, 113]). L&k a semisimple Lie algebraa
Cartan subalgebraj an ordered root system,™ the positive roots. We lét= % Yowent®
and {1, ..., o} be the set of simple roots. We also gy, ..., H;} C ¢t be a set of
elements dual to the simple roots such th@d2« ;) /(«;, o ;) = 8;;. We have the following
proposition.

Proposition 3. Lets be a semisimple Lie algebra. Then

(&) An element inr is a highest weight for an irreducible representation if and only if it
can be expressed 3s «; H; with a¢; nonnegative integers.

(b) §=>_H;.

(c) H; = Zj ajjo; with positiveaij.

(d) Let ; be the representation corresponding f. Then the unique irreducible
representation with highest weight as (&) is a submodule ofQ)(r;)* generated
by the highest weight vector which is the tensor product of the highest weight vectors
of 7;.

The statements (a), (b), and (d) come from the standard representation theory, while (c)
will be explicitly described in Appendix A, which is very useful in this paper.

2.4. Here we give some algebraic concepts which we used throughout this paper.
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Let k be an algebraic number field. Therefo@c k. Then, there are only finite many
embeddings ok to C, which are identity maps ove). If there is no embedding of k
such thatr (k) C R, we callk atotal imaginaryalgebraic number field.

For any ringA with identity, leta, b be two elements o, 0 = A + Ae1 + Aex + Aes
be aA algebra with the condition that? = a, ¢2 = b, e3 = e1ep = —eze1. We call Q
a quaternion algebrala, b) over A. If Q is a division algebra, we call a quaternion
(a, b). For the details of the quaternions, we refer the readers to [27, 2.11, 6.4].

For any algebraic number field let v be a valuation (or aabsolute valug Then the
valuationv gives a metric ork. One denoté, to be the completion. For more details of
the fieldk,, we refer the readers to [24, Chapter 1] and [27, 5.6, 6.4].

3. Representation of k-linear algebraic groupsover an algebraic number field

Here we collect some results on the representation theory df-Higebraic reductive
groups withk an algebraic number field. First we have (see [4, p. 87, Theorem 2]):

Theorem 1. Every finite-dimensional representation of adinear algebraic reductive
group(i.e., k points of anC-algebraic reductive groups completely reducible.

Proof. Let M be a module oiGy, thenM ®; C is a Gc module. If N is a submodule
of M, N ®; C is a submodule oM ®; C. SinceM ®; C is completely reducible, there is a
projectione from M ®; C to N ®; C. Leth be ak-linear map fronC to k such that:|; is
the identity. Then we get a projectianfrom M to N bym - m® 1 - (L h)e(m ® 1)
andM = N & ker(sr). This implies thatM is completely reducible. O

Theorem 2. If an absolutely simplé-algebraic groupG of typeA,2 over a total imaginary
number field is anisotropic, the@ is SU, (D, f), m = 1, 2 with a central division field>
of dimension((/ + 1)/m)? over a quadratic extension field bf

Proof. We see from [24, p. 88, Proposition 2.18] that= SU, (D, f), where D is
a central division field over a quadratic extension fieldko&nd f: D™ x D™ — D
is a hermitian form with an involution of second kind over. Now by [24, p. 86,
Proposition 2.15], we have that is isotropic if and only iff is isotropic.

From [27, p. 373, Theorem 6.2] we have thats isotropic if and only if it is locally
isotropic. And f is locally isotropic for an imaginary valuation by the discussion of the
decomposable case in [27, p. 374]p(= C). Therefore, we only need to consider the
p-adic case. For thp-adic case we have by [27, p. 353, Theorem 2.2(ii)] thadctually
splits and isM (n, K) with involutiont (a) =" a where™ is the automorphism & induced
by a nonzero element of the Galois group.

In the p-adic case we apply the Morita theory as in [27, p. 362, Lemma 3.5]. Let
e¢; = E;; =diagO0,...,0,1,0,...,0) andf: f(e1, e1) which is a hermitian form of e
over K /k. It is not difficult to see that = ) xe; = > xE1;e1E1;. The argument there
implies thatf is isotropic if and only if/ has Witt index n.
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Now if m > 2, then f is a hermitian form of dimensiomn > 3n over K and
hence of dimensio: 6n > 4 overk. We observe that it is isotropic ovérand hence
over K. Let x1 be an isotropic vector irVe; and y1 € Vej such thatf(xl, y1) # 0,
Vi = Ve1/(Kx1+ Ky1) = {x1, y1}*. Thenf induced a hermitian form ow; and Vy
has dimension: 6n — 4 overk. In this way, we can get;, y;, V; fori <n andV,_1 has
dimension> 6n — 4(n — 1) = 2n + 4 > 5 overk. Therefore, the Witt inde% n, andG is
isotropic. O

Remark.

(1) Another argument for the last part of this proof is: fopeadic local fieldD, =
M(n, Kp), every hermitian form is isometric td = (ay, ..., an) with a; diagonal
matrics with coefficiences ik, . It represents 0 if each componentofepresents 0 as
a hermitian form ovek ,. But all these: equations are independent, that is, there is a
solution form > 2 which is nonzero for each component @nis isotropic.

(2) But the original argument also shows that far= 2, f can be anisotropic. We
might choose a quadratic extensigh such thatk = k(v/d) with (d,n) is the
uniquek, nonsplit quaternion and hen¢é, —d, —n, d) is anisotropic. We just let
f=@@, -m1-1,...,1, -1).

Corollary 1. In the case thaD is a quaternion is A%.

We also need the following theorem for the representation of the reductimear
algebraic groups.

Theorem 3. Any k-irreducible representation of a reductivelinear algebraic groupG
which is non-trivial to its semisimple part is a sum of several copies of sinfilar,
the highest weight are same up to the Galois gjotsirreducible representations of its
semisimple part.

Proof. By Tits’ result on the representation theory bfsemisimple groups (see [30,
Theorem 7.2]), we observe that the irreducible representation of a semisimple group is
determined by the highest weight up to the action of the Galois group. Now any irreducible
representation oG which is non-trivial to its semisimple part is a sum of irreducible
representations ove€ which is non-trivial to its semisimple part. Thé irreducible
representation contains just the representations@wenich have the same highest weight

up to the Galois group action and tlieaction (the action oz may not be the same as
that on the semisimple part 6f). O

For further results on the representation theory bfraductive linear algebraic groups,
we refer the readers to [30].
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4. Determination of the simple factor s of a compact parallelizable manifold

In this section, we consided to be a compact complex parallelizable manifold
as in Theorem A. Here we need the following theorem of Wang (see [25, p. 150,
Corollaries 8.27, 8.28]).

Proposition 4. Let N be the maximal closed connected normal nilpotent subgroup of
and R be the radical, thelR/I" "R and N/I" N N are compact parallelizable manifolds.

This theorem give us a tower of two fibratiots’ " — G/NI" — G/RI". By [25,
p. 31, Corollary 1] we have thatv, N]/I" N [N, N] is a compact complex parallelizable
manifold. This gives us another tower of two fibraticdigl" — G/[N,N]I" — G/NT .
Since each factor of1 (respectivelys,) acts onN trivially (respectively non-trivially) we
have that each factor df; (respectivelySy) acts trivially (respectively non-trivially) on
N/[N, N]. To prove Theorem A we can assume thats abelian.

Since[G, R] C N, S1S2R/N s reductive. By Lemma 14 in Section 6 the keridgl
of the action of this group oV has a discrete cocompact subgra, and there is a
fibration (G/N)/(I'N/N) — ((G/N)/G1)/I't, wherer't = (I'N/N)G1)/G1. Since
N is abelian, by usingG/N)/G1 instead ofG/N andI"'(I" N N) instead ofl", we can
assume tha6 /N acts almost faithfully on N.

Now we observe that the lattic€2 = I' N N is isomorphic toz2d9mN By 1
acting off I'2, we observe thaf, is isogenous to the real form of @-anisotropic
algebraic group as the semisimple part of a redudvinear algebraic group (see [24,
p. 58, Theorems 2.3, 2.4]. By taking the algebraic closur& o¥ if it is necessary, we
shall have an algebrai@-group). By the classification dD-algebraic groups, we have
S2 = ([ ]; Rk, /oGi)r With G; a (absolutely) simplé;-algebraic group, i.e(G;)c simple.
But (Ry;/0Gi)r = (G,»)SR(G,')’C if k; hass real embeddings and Zomplex embeddings
into C. Since S is a complex group, we have that= 0 andk; is a totally imaginary
algebraic number field. By the following theorem (see [24, p. 352, Theorem 6.25]), we
have our Theorem A.

Proposition 5. Let G be a simple anisotropic group over a totally imaginary number field.
ThenG is of typeA;.

5. Determination of thetriple B, A, and I

In this section, we shall deal with the Lie algebra aspects of our theorems. We notice
that arguing as above we can reduce Theorem D to the situation where the nilpotent radical

5 This paragraph is unnecessary if we pass toQkgroup structure as in the following paragraph. However,
the construction here will be used later.

6 After we finished this paper, we were told about [33] and Propositions 2.8.1 and 2.8.2 there by a referee in
1998. Proposition 2.8.2 is similar to our Theorem A. In the proof of Proposition 2.8.2, the construction of the
semiproduct ofS, and N, which corresponds to our paragraph, does not work here since the discrete subgroup
of S alone might not keepV N I" invariant.
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N1 of G1 = J/HY is abelian. We can also reduce our Theorem D to the situation where
the nilradical is aQ-irreducible representation af1/N1, which is either a non-trivial
representation or a trivial representation for the semisimple part and with non-Bivial
factors. To achieve these reductions, we have to do two things.

First, we want to reduce our situation to the case in wiilgh\N1 acts reductively omwv;.
The torus part of51/N; as the center ofF1/N1 is aQ-torus and may not act reductively
on N1. But for each elemente I'N1/N1 we have(adr)|y, = s + n with s semisimple
andn unipotent rational actions (see [3, Chapter 7, Section 5, no. 9, Theorem 1]). Let
f,...,tx € I'N1/N1 generatel" N1/ N1, then by noticing that the;, the nilpotent part
of t;, commute with each other, we observe that the subgiGupf I" N N1 which is
invariant under alk; is not the identity. The action aff1/N1 keeps all the information
of the action of the semisimple part 6f;/Ny (I" N N1 can be regarded as a direct sum
of subgroups of the copies of the subgroupdnwhich can be regarded as irreducible
representations of'N1/N1 appeared infp) and all the information of B, A) is in Ip.
Therefore, we can usky r instead ofN1 without losing the information we need. Since
all n; act trivially on I'p r, we have thatG1/ N1 acts reductively o r.

Second, we want to reduce our situation to the case in whicty {i&/; representation
is irreducible. If we supposgg = I'v, ® Q = C1 & C> as aQ representation angl, p»
are the projections, thepy (I'v,) ® p2(I'y,) is a lattice of dimension dig /g, i.e., the
dimension ofl'y,. I' = H/HP° acts on both = p1(I'n;) and Iz = pa(I'y,). SO we can
use either™ or I'; instead ofl v, by Borel's density theorem.

Lemma 1. Let M be a compact complex homogeneous spaceGLéie a connected
complex Lie group of holomorphic automorphisms acting transitively and effectively on
M, H be the isotropy subgroup, antl = Ng(H® be the normalizer o#° in G. Let
G = SR be a Levi decomposition 6f. Then with respect to a Cartan subalgebra3m 7,
‘H decomposes into eigenvector spaces.

If h € H is an eigenvector with nonzero eigenvalue, thee- h; + h, such that
hseSNHandh, e RNH.

Proof. SinceJ N S is parabolic, its Lie algebra contains a Cartan subalgeb& Bince
‘H is an ideal of7, it must be decomposed into its eigenvector spaces.

If 4 is an eigenvector with nonzero eigenvalue such thiatnot in R, then there is an
s = sl(2, C) generated by root vectors é1such thats = h; + h, andh; € s, h, € R with
weighto.

If b, # 0, then there is ath, € R which is eigenvector with weight-o such that
[hs, [hs, h; 11 = —h,. We haveh,, b € nil(G) and

h+[h, [k, hy]] = hs + he + [hs, [hs by ]+ [hr B, By 1] + [s. [hes 27 ]
+ (e [r ]

= hy+ [he hal+ [h;  h2] =hs + hZ € H,
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whereh, ho € nil(G) :=n, henceh,2 € [n, n] := ny. In this way, we can findz’; € ny =
[nk—1, nk—1] such that; + 1* € H. By n being nilpotent, we have that € H. And hence
h, € Halso. O

Lemma 2 (cf. [1]). Let M be as in Lemma andS = s1 + s2 such thats; contains all the
simple factors acting non-trivially o' /J. ThenG = W1 + - - - + W; + Wp, whereW; are
non-trivial s1 irreducible representations fdr < i </ andWy is a vector space containing
all the 51 fixed vectors. liv1, ..., w; are the highest weight vectors, then they are linearly
independent modul®l. Moreoverdim Wo < dimJ/H.

Proof. The direct sum comes from the representation theory of semisimple Lie groups. If
w=>Y aw €Handp =7 Ns1, then[p,w] C H and[s2 + R, w] C H sinceH is an

ideal of 7. But[B, w] = 0 whereB is the Borel subalgebra which contains all the positive
root vectors, and we have thiat, w] C H. Thereforem, =[G, w] C H. And [B, m1] =

[[B, G], w] C m1. If we letm; =[G, mir_1] and assume that;, C H, [B, my] C my, then
mi+1=[B + J,mi] CI[B,Gl, mi-1]1 + [G, mk—1] + H C my + H C H. Thereforew
generates g-ideal in’H. This implies thatw = 0. We have that all the weight vectars

are linearly independent module.

All the vectors inWy correspond to the fiberwise actions of the bun@legd — G/J
being without any fixed point and invariant under the action of subgfaupf G, which
corresponds te; and acts transitively o /J. These vector fields are determined by their
values at any fixed fiber af /H — G/J. We have dinWp <dimJ/H. O

Lemma 3. Let A be a simple factor off which acts trivially on the radicaR ; of 7 /H.
Then the simple factaB of G which containsA acts trivially onR.

Proof. There is a Cartan subalgebra containe@t in. 7 such thatd is generated by thg,

for a set of the simple rooty, ..., ax). By our assumption, all the negative root vectors
e_, such that the coefficient of some, i € (1,...,k) is nonzero are in{. Hence the
actions of any fundamental weight; corresponding to these simple roots are trivial, but
the actions offf; on 7 N R/H N R have the same positive eigenvalue as for the highest
weight vector for each non-trivial irreducible representatio®dh R. Therefore B acts
triviallyon R. O

Corollary 2. If a simple factorB of G has an element iy’ which acts non-trivially orR ;,
then every element in the Cartan subalgebr&aicts non-trivially on the nilradical oR ;.

Proof. We may assume the elemeéntis in the Cartan subalgebra. Otherwise we may
assume thab = ) b; € B,a =) a; € R, such that[b,a] # 0 with b;,a; being the
eigenvectors. Then, there is arand aj such that[b;, a;] # 0. If b; is in the Cartan
subalgebra, we are done.df is not in the Cartan subalgebra, then eithee= [b;, a;]

is an eigenvector with a nonzero eigenvaluepe= a; is an eigenvector with a nonzero
eigenvalue. In both cases, we can easily obtatniia the Cartan subalgebra which acts
non-trivially onej or ez.
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Now we want to prove that every elemantn the Cartan subalgebra & acts non-
trivially on R ;. If ¢ is in the Cartan subalgebra of some factoin Lemma 3, then we are
done. Ifc is notin the Cartan subalgebra of any factoithen[c, e_,] # 0 for a simple root
a suchthae_, € R ;. If corollary does not hold for this, we have that_, € H. Applying
the argument in the proof of Lemma 3 to the fundamental wel§jldorresponding ter
we have a contradiction.O

By the result of the last section, we know that the factbis Lemma 3 must have the
type of A;. Now we want to discuss the possible representations of these fact®gs.on

Lemma 4. Every negative simple root eigenvector which is not in arfgctor is a highest
weight vector of a representation dffactors. Conversely, every highest weight vector of
a representation oft factors as a subspace in some fackof G comes from a negative
simple root.

Proof. If e_q, is HO for a simple root;,, then alle, € H? for any« such thaw;, is a

component ofr. But the action off;, on J/H° cannot be unimodular by Proposition 3(c).
The second statement follows from the first statement, otherwise the nilraditaHOf
is not abelian. O

The application of the unimodular property in the proof of this lemma is the basic
method we used in both this paper and in [12].

Now we come to the point of clarifying the possibility of the representations. The
representations ofi; are classified by the fundamental weights. If the highest weight
is Hy (respectively H1 & Hj), the representation comes from the standard one of
Sl;4+1 (respectivelySU1). And the 2H; (respectively 211 @ 2H;) comes from the
symmetric quadratic form representations. THie(respectivelyH, & H;_») comes from
the antisymmetric quadratic form representation.

Lemma 5. The only possible representationsfon R ; are:

(1) Hy;

(2) 2H1®2H3, B=C4 A=SW(D, f);
(3) 2H1, B = By A = SLi(D);

(4) Hi @ H;;

(5) H2, B=D4 A=SWU(D, f),

whereD'’s are quaternions.

Proof. Suppose thaB is of type A, then the highest weight vector B must bee_,, for
a simple rootx. It must be type ofH;.

Suppose thaB is of type B,,. If A is generated by, k < n, the highest weight vector
iSe_q,,k <n.ltis atype ofH;.

If A is generated by_,,, then the representation df is of type 2H;. This situation
occurs only ifn = 2. If n > 2, then the other simple factor must be generated by
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e—q;, 1 <n — 1. And this cannot happen, since the only possible representatiéh of
is either Hy + 2H, (if A is of type A?) or H,_» + 2H, (if A is of type A1). But the
action of H,_1 on the representation of in B has an eigenvaluéH,_1, —o,—1) =
—1, while the action offH,,_1 on both possible representations Bfhave eigenvalues
(Hy_1, HH1+2H,)=1+n—-1>1and{H,_1,H, 2+2H,)=n—2+n—-1=2n—-3>1
(for the calculation ofH; we refer to the Appendix A).

Suppose thaB is of typeC,, then the highest weights are eitley, , k < n, which are
of type Hy, or e_q, , Which is a type of 21;.

The second case occurs only whéns of typeAﬁ_l, which must besU,, (D, f). By
counting the multiplicity of the representation (see [30, 8.2]), we observéXmatist be a
guaternion, therefore =4 or 2. In the case = 2, B = By. Thereforen = 4.

Suppose thaB is of type D, the representation is eithéh or H».

The later case occurs only if the highest weightis, (respectively—a;_1), A is
generated byy;, i < n (respectivelyi < n — 1 andi = r). By the multiplicity of the
representation (see [30] again), we obtain thas of type A2 = SUx(D, f) for a qua-
ternionD. In this case: = 4.

Suppose thaB is of type Ex, k = 6, 7, 8, then the representation are of tyHg except
the case that the highest weight comes frem, which is the root at the end of the
shortest branch of the graph addis generated by other simple roots, which is a type
of Hiz. The H3 case cannot occur by calculating batHy_», H3) =9/(9—k) > 1 and
(Hk—2, Hr-3) = (3(k — 3))/(9— k) > 1.

Suppose thaB is of type Fy4, the representations are of tyfle except the case that the
highest weight comes from with A generated by;, i = 3, 4 (refer to the Appendix A),
which is a type ofH,. This cannot happen since botlly, H1 + 2H3) = 22 > 2 and
(Ho, H1 + 2Hy) = 14> 2.

Suppose thaB is of typeGa, then the representation are of tyfie except the case the
highest weight isro andA is generated by, which is a type of 3{;. This cannot happen
since(H»,3H1)=9>3. O

As in the proof of the last lemma, we observe:
Coroallary 3. If
(H;,a;) < (H;, Hj) 1)
for all j thena; must be in some factot.
We then have the following lemma.
Lemma 6. Any factorB must be a classical Lie group.

Proof. If B is of typeGa, the only possible situation in the last lemma is thas generated
by a2 andwy is not in A. We check that in this case the inequality (1) holds, therefore it
cannot occur.
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If B is of type Fy4, the onlyi for which the inequality (1) does not hold is= 1 with
J = 4. But this cannot happen, otherwise there must be anofileemvhich the inequality
does not hold sincd must be type of4;.

We observe that the inequality always holds .

If B is of type E7, the possiblé’s for which the inequality does not hold atre= 1 with
j=7,ori =7 with j = 1. In both cases= 5 should not be in any factot, sinceA must
be type ofA,. But the inequality holds for = 5, therefore both cases cannot occur.

If B is of type Eg, the only H; such that certain coefficients of;, are < 1 are
Hy = 3 (41 + 502+ 603+ 3ea+ das + 2u6), Ha = 5 (31 + 602 + o3+ 6ot + 6ot + 3ae),
andHe = (201 + 42 + 603 + 34 + 55 + 4ag). The only possiblé’s are 14, 6. When
i =1, j =4 (j =6 cannot occur, otherwise we need anothesuch that(Hy, 1) >
(H1, Hs + Hy). But (Hy, He + Hy) > (H1, 1) always) andA is generated by, k =
4,3, 2, this cannot occur. In the same way, we observeithab does not occur. We also
observe that if =4, A is generated by, k =1, 2, 3,5, 6, this does not occur by the last
lemma.

We also observe that for the non-classical groups, all linear sunf;&f with
nonnegative integer coefficients cannot be the sum of the simple roots since at least one
of the coefficients of some; is > 1. Therefore, the case of abelian nilradical does not
occur. O

Lemma 7. If B is a classical group of a type other that),, then one of the situations in
the lists after Theorem D holds.

Proof. In the case ofD,, we have two situations: (131 is not in anyA. (2) o1 is in
someA.

If (1) occurs, then there is an, i > 2 which is not in anyd. We observe thatmust be
n — 1 andn. In this case the highest weight of the representatiof @f R must beH>.

A can beSLy (D) or SUx(D, f) for a quaterniorD.

If A=SL(D)thenn =4. The torus commuting witBL; (D) and acting not as a mul-
tiplication of a constant on eadh component ofD? corresponding to each must be a
torus inSly (D) and has at most dimension 3.

If A=SUx(D, f) for a quaterniorD over a quadric extensioki/ k, thenn = 6. Leta
be the non-trivial element of the Galois groupfof k. Then byH; acting trivially on the
representation generateddy, k =5, 6, the torus generated l#y; is defined oveK . The
torus generated b¥1, Hs — Hg is invariant under and is ak-torus, which comes from
a maximal torus irSL; (D) multiplying from the other side. And the torus generated by
Hy — Hs — Hg is ak-torus as the multiplication of the elementsinwhosek-determinants
are 1.

If (2) occurs, them is either generated by;, i <n — 1 orbye;,i <n.Byn > 3, we
observe that in the first case we have- 5 by counting multiplicities (see [30] again) and
E = H1 & Hi. This can only occur if there is another 1-dimensioGabrus which acts
on one copy ofH; asa and on the other as™! since the two copies aoff; have the same
eigenvalues for any elementin the torus and this is not true for the other two representations
coming frome;, i =4, 5.



50 D. Guan / Journal of Algebra 273 (2004) 33-59

And in the second case, we hawve- 4 by counting multiplicities (see [30]) and = H>.
Thus the torus comes from thé multiplication of elements whose determinants are 1.

In the case o, either (1)1 is notin anyA, we haven = 2, i.e.,B = Bp; or (2) a1 is
in someA, this only happen in the situation of Lemma 5(2).

In both theD,, andC,, cases, there is no linear combinationfgfs with nonnegative
integer coefficients such that it is the sum of all simple roots. Therefore, the abelian case
cannot occur.

But for B,, Hi is the sum of all simple roots. Therefore, we have (1) in the second list
after Theorem D.

In the case oB,, eitheras is notin anyA or o1 is in someA. In the first situation, we
haven = 2, which is just the case (3) of Lemma 5. Otherwise, there is anathghich is
not in anyA, theni > 2 and this can not happen.

Inthe second situatior; isin anA. Thenn = 2 andA = SLy (D, f) which is generated
bywi. O

Now we are coming to the most difficult case 4.

Lemma 8. In the case of4,, if there is ana; which is not in any factord ande_,, is
the highest weight vector of the product of two factéis= SL;, 1 and A = SL;,41, then
E = H; + H, and we have the following cases

(1) B= A1, A1=SUi(D, f1), A2=SUi(D, f2),i =1+1,1> 1.
(2) B=Ag43, A1=SW(D, f1), A2=SW(D, f2),i =21 +2,1> 0.
(3) B= A3, A1 =SlL(D), A, =Sly(D),i =2.

(4) B = Agy2, A1 =SUi(D, f1), A2=SW(D, f2),i =2 +2.

And in all these cases, the representation generated pyas a representation of is
of typeH} ® HZ.

Proof. In this case, we must have
(H;,a;) > (H;, H;) + (H;, Hy) (2
for somek < i < j such thatH; + H; provides the highest weight for another

representation iR of the factorsAi and A with A, next to A1. But we have that the
coefficient ofe; in Hy + H; is

n+1((n+1—i)k+(n+1—j)i)

1
= (n+1+*k-D+1-D—i+®m+1-)i)>1,
n+1

andis equalto Lifandonly ¥ =1, j =n. Thatis,A; = Slj,+1 andA, = Sly, 41 are both
of typeAZ, and there is no other simple root outsidlig, m = 1, 2 which is noty;.
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We observe thati,,, areSUx, (Dy,, fm), m =1, 2. By counting the multiplicities of the
representations (apply [30] again), we also observefihds the opposite oD2. O

Lemma 9. If there is noe_,, which is a highest weight vector of a product representation
of factorsA;, and B # As, then in the casé€l) of Lemmab, A =SLy(D),!/ =1andin the
case(4) of Lemmab, A = SUx(D, f),! = 3, whereD is a quaternion. In the cas@ = As,

the only possible case i = SLy (D) with D a division field of degre8.

Proof. We only need to conside? = A,, and only need to check the situation near

If a1 is notin anyA, we have two cases: (Y is SLy(D), or (2) A is of type A2. In the
first case, the other representations of Ahfactor next tax; come from the representation
of B in R involving the representation df with highest weightH,. We want to see that
there is only one of them. The coefficientaf in H> is

2
1-29)=1-—,
n+1(n+ ) n+1

that is, the twice of this coefficient is 1 sincen > 3. By counting the multiplicity, we
observe thaD must be a quaternion.

In the second case, the same consideration show®tieaa quaternion.

If @1 is in someA, we letw; be the first simple root which is not in any. Then the
coefficient ofe; in the H;_1 will be

o - .
n+1(l’l+1—l)(l—1)—1+n—+1((n+1—l)(l—2)—l)

1 o
=1+ n—+1((l’l—l)(l —2)—2).

Twice of this coefficient is> 1 if n > 3. As before, we observe that lemma holds.

In the caseB = A3, A can be chosen to be generateddhyi = 2, 3. If A = SLyi(D)
thenD is a division field of degree 3. lA is of type A?, the coefficient ofv; in Hp + 2H3
is % > 1, therefore this cannot happen. We want to see that theAas8l; (D) can occur
only if there is a 1-dimension& torus acting on one copy of the representatio® afith
highest weight, asa : x — ax and the other ag: x — a~1x. Otherwise, any element of
the torus acts on the two copies of the representation which comesHpsof B with
the same eigenvalues which is different from that of the representation comingfrgm
that is, the representation dfcannot be irreducible. O

Lemma 10. If B = A,, and the A factors are copies of §ID) which do not have any joint
representation, then we have one of the following

(1) n =3, Ais generated bwy, the representation a8 is Ho & H.

(2) n = 2, A is generated byxy, the representation oB is either H> & H> @ H» or
H1+ H».

(3) n =3I + 1, the A factors are generated hys; 1, 0 < i </, the B representation is
Hi ® H,.
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Proof. If «1 is not in any A, the coefficient ofa; in Ho is (n+1—2)/(n+1).
2m+1-2)/(n+21) >1ifn>2,anditis equalto 1 if and only if = 3. This proves (1).
If n = 2, the coefficient is; we have (2).

If @1 is in someA, then the coefficient ok in Hy is (n — 1)/(n + 1). Twice of this
coefficient is> 1 sincen > 3. Therefore, we can have only one representatioB @fith
highest weightH;. As we observed in the proof of Lemma 8, the other representation of
B must be the representation with highest weight Thereforew, is in someA and
n=3l+1.Thisis (3). O

Lemma 11. If B = A, and theA factors are copies of S}D, f) and do not have any
joint representation irB, then we have one of the following

(1) n =4, A is generated bw;, i =1, 2, 3, the representation o is Hy ® Hy ® Hs.
(2) n =51+ 3, Ais generated by;, i = 5k + 1, 5k + 2, 5k + 3. the representation aB
is Hy & H,, but this does not occur.

Proof. If o1 is in someA, the coefficient obvs in 2H1 + H3 IS

1

n+1
sincen > 3 and=1 if and only ifn = 4. We have (1).

If n > 4, we have a representation & with highest weightH; and the other
representation can only be the representation with highest weighas before. We
have (2). But this does not occur as we see by counting the multiplicities.

Lemma 12. If B = A,, without any factorA, then the nilradical ofR is generated by all
the simple root vectors and

(1) the highest weight vector éf; + H,,, or
(2) those ofH1 and H,,.

Proof. In this caseR; is generated by_,, for all the simple roots and some highest
weight vectors. We observe that the only possible representatioBso€h that the sum
of the highest weights is the sum of the simple roots are those in the lemma.

In considering the situation that the representation of the semisimple payt? is
trivial on the abelianV, we need to look more closely at the structure of the Lie group
F=1J/HC. F =58 x T1T>N with Ty a maximal reductive subgroup in the radical and
T> a Ty invariant complement o in the Lie groupT>N. Without loss of generality, we
consider the case in whichiis the identity. The lattice of" induces a lattice irT17> as
the quotient groupgF/N and induces & structureTg of F/N regarded as a subset of
T1T>. With the Q structureNg of N, we obtain &Q structureFg = TgNg of F. Now we
consider the subgrouf, of F which is generated b¥g. ThenNé = F1N Nq is invariant
under the action ofq, i.e., invariant under the adjoint action &§. But 71 acts trivially
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on (Né)R, this cannot happen in the situation in Lemma 12. We observé\@éﬂ trivial,
i.e., T1T> is actually an abelian group.

The second case in Lemma 12 can actually occur, e.g., if there is an extra 1-dimensional
torusC* which acts onf; the same as but onH,, asa™1. In this situation the group’ is
exactly as those iB = B,,;1 and the first case of the Lemma 12 with= A,,;1. To prove
this, we can modify the construction in [2, pp. 95-96] as follows: fifst TC"*2 as a
semidirect product with action df on C't2 defined by(r1, ..., 1,) ®a €T, xC*=T C
SL(n+1,C) x C*:

C'2=C""1xCs5(z1,..., 2n11) ® (zns2)

. . A A -1 2
- (Ol]_([)Z]_, ey (t)zn, hl(t)azn+l, hy(t)a Ziz+2) € crt

and define a homomorphism

@ Tcn+2 _ Dcn+2
o(t,2) = diag(é1(t), . .., & (1), hi(Da, ha(t)a™L, ).

It can also happen that several pairg 4f, , Hy + H,,) with different{n;} and several
pairs of(AnJ., H1 & Hy)) with different {»n;} as well as several pairs @B, , H1) with
different {n;} occur together. For example, if we have a tois acting onC"t1 we
choose a group dffn; }, {n;}, {nc} such tha®y, (n; +1) + 3, (n; + 1) + 3, (k +2) =
n + 1, and we regard the€"*! as (@, C"+1) @ (D; chitl) @ (@, C™**2) and apply
above construction individually and rega¢®; 7,,;) ® (®j Tn;) ® (& Tn,+1) as the
subgroup off;,, with eachT;,, (respectivelyr, > Tng+1) acting only non-trivially onC” 1
(respectivelyCit1, C+2),

The above construction also works on the non-trivial twist product of two of the factors
in the case (6) of Theorem E. For examples,

(Bn, H1) x* (A, H1 + Hp) = (Bn X Am, H1 ® (H1+ Hm)) and
(Bu, H1) X* (A, HL ® Hp) = (By X Ay, HL ® Hy @ H1).

6. Global structuretheorems

Now we are able to place our manifolds in a global structure. First, we prove some
lemmas.

Lemma 13 (cf. [12]). If G is a connected complex Lie groufd, is a cocompact discrete
subgroup. TherH is finitely generated.

Proof. We consider the universal coverir@ of G and the preimagd™ of H. Then
G can be regarded as a complex linear group by [16, p. 225, Theorem 4®].idfa
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fundamental domain af in G, and if there are finite number of elemefitsii<i<s} such
that{y; £2|1<i<s} are all the fundamental domains nexts®g then sinceG/I" is compact
{vilici<s) generated”, that is,I” is finitely generated. So iH. O

Lemma 14 (cf. [12,26]). Let G be a connected complex Lie group acting on another
complex Lie groupM as automorphisms an@/H be a compact complex parallelizable
manifold with H being discrete such thad{ fixes a discrete cocompact subgroNpf M.

If C =Cg(M) is the centralizer oV in G, thenC/C N H is compact.

Proof. Let B = {n;|1<i<s} be afinite set of elements iM such thatB generatesv. Then

C =C6(M)=Cs(N) ={g € Gly(g)n=n;for all i} by the main theorem in [18] (see also
[19, p. 5, Proposition 2.4], here we regaFdand M as subgroups of the semiprodazd/,
i.e., p(gn; = n; is the same am;gn; * = g(p(g)ni)n; * = g). Let £ be a compact
fundamental domain iy as in the proof of the last lemma. For any elemeatC, there is
an elemenk,. € H suchthati.c € £2. Therefore{p(h:)n;} = {p(h.c)n;} liesinacompact
region|J p(2n;) of M. This means that there is a finite $ef|1<;<«} such that for any
c € C there is aj with h_the € H N C,, for all i, whereC,, = {g € Gly(gyn=n;}. And
hencehgjlhc € H N C. From this we easily observe that there exists a compact region
A= Uh;jlsz N C of C such that for any € C, there is an element. € H N C such
thatc, = h;/.lhc, hencec.c = h;/lhcc € h;/.l.Q N C c A. We finally have thaC/C N H is
compact. O '

Theorem 4. Let G, S1, 82, R, H be as in Theorem C, andi; = S2R. Then, up to
a finite covering,M = G/H is a holomorphic principal torus bundle on a product
S1/H1 x G1/Hp, and if J1 = Ng, (HY) and J> = Ng, (HY), thenJ1/H? is semisimple
and H20 is unipotent.J> has only simple factors of typ#;. Each simple factor of> is

a classical group and each simple factor Bf acts non-trivially onR/R N H. The torus
action comes from the center 6f H.

Proof. We first prove the theorem in the case whinis parallelizable manifold. By
Lemma 14, we observe that the centralizewRois S1C, whereC is the center of5, and
S1C N H is adiscrete cocompact subgroupSe€. Similarly, C/C N H andS2R/S2RNH
(since S2R = C;(S1C)) are compact parallelizable manifolds. ByC N S2R = C we
obtain the torus bundle over the productsyf/(HC%/C® and S,R/HCP up to a finite
covering.

We apply the result in the parallelizable case/ttH in the general case and by the
result of the last section we observe tBats exactly the product aB factors whose Cartan
subalgebra iy acts trivially on the radical part of/ H andS; is exactly the product oB
factors whose Cartan subalgebra/imcts non-trivially on the radical part df/ H. O

Proof of TheoremsE, F. We observe from the list of Theorem D that the semisimple part
of J/HO in $1, i.e., the product of thet factors, consists of either copies of the same
simple arithmetic group, or copies of the same product of two simple arithmetic group
acting on joint irreducible representation with non-trivial actions, which occurs only in the
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casesal, 2, 3, 4) of the first list after Theorem D. Therefore, the situations in the list of
Theorem E are the only possible combinations (see also the paragraph after the proof of
Lemma 12). We have Theorem E.

If we have a 1-step compact complex homogeneous space, we assume that the nilradical
of F = J/H%is a product of almost irreducible representations (i.e., these representations
cannot be decomposed into a sum of non-trivial submodJlgs), V; of the adjoint
action of the reductive quotient @ with Vi, ..., V¢ in the center ofF', Viy1,..., Vin
not coming from any reduced primitive complex homogeneous spac&ang, ..., Vs
coming from primitive complex homogeneous spaces (i.e., their reductiéighe as
we described before Lemma 1 is a sum of irreducible N1 representations with some
non-trivial B factors). From the classification of primitive spaces, we observe that all
the n; in the construction before Lemma dct actually trivially on V; for i € (k +
[+ 1,...,s). Hence,V; are actually irreduciblefor the G1/N1 action withi € (k +
[4+1,...,5). Then, we letl = V;... Vi, P be the parallelizable manifold corresponding
to Fo=F/Vi...ViViqy1... Vs and Q be the parallelizable manifold corresponding to
Fo/Cry(Fo). We also letP; be the primitive complex homogeneous space corresponding
to Vi, i > k+ [, and Q; be its reduced primitive complex homogeneous space. Then,
S2R/Ho — TPJ]Pi — TQJ] Qi isisogenous to a homogeneous submanifold. We have
TheoremF. O

Notice that the isogeny in the proof of Theorem F may not be an onto homomorphism.
For example, if we have two reduced primitive spases= G1/H' and M? = G?/H?
with Tits fibrationsP! = Ji/H! ¢ M — Q' = G'/J! such thatP! is defined over the
Gauss number®(+~/—1). Let T be a complex anisotropic torus with tW@(+/—1) -
representatioir’, i =1,2. Then

Te x (Gl/Hl’0)®dimc vi % (GZ/H2’0)®dimC V2

will have a structure of a complex homogeneous space and it is a covering space of a
compact complex homogeneous space which can be isogenous to a homogeneous subspace
of a product of reduced primitive homogeneous spaces but the homomorphism is not onto.
To construct this example, we can assume that the nilradicahd$ V = Vi@ N1 @
V2 ® N2 where eachV! is the nilradical ofM!. The T action onV is the natural one.
While we do not require that th&c action be the complexification df, we assume
that the T¢ acts trivially on the product of digV’ copies of semisimple part of
and properly on the nilradical ofs’ such that ifeq, ..., e, exs1,..., ¢ iS a basis of
eigenvectors of thg action onV with eigenvaluex; and onlyes,...,e; are in the
nilradical of (J1/H0)dime V1 o (2, g2.0ydimec V2 and we leic act one; with eigenvalue
a; + (ax+1+ - -+ o)/ k foreachi < k+1. The action above can be extended to the whole
nilradical of (GHdMe V! « (G2)dmeV? sych that for each element of the same irreducible
representation of & factor 7c has a common eigenvalue (this is well defined since the
complex homogeneous spaces are 1-step).
We shall see that the above construction can be regarded as a general structure for
compact complex homogeneous spaces.



56 D. Guan / Journal of Algebra 273 (2004) 33-59

Proof of Theorem G. Following the proof of Theorem F, we define further

Ci={ge G1/Niladglg . Vj:o}, ietk+1+1,....,9).

Then, we have onto morphis§yR/H — A = (G1/N1)/C]]C; and the fiber of this
morphism is a product of a parallelizable manifold and some complete reduced primitive
homogeneous spacesn

Proof of Theorem H. For any compact complex homogeneous spdce G/H, we have
the Tits fibrationG/H — G/Ng(H®) with fiber F = G1/I" = Ng(H%/H. Then as in
Section 4, we have afibratidn— G1/I" N[N, N] with N being the nilradical 0o&1. This
fibration of F introduce a fibration oM to a 1-step spackf1. We apply this construction
to SR/H and obtain the 1-step spasfy in Theorem H. To prove Theorem H, we assume
that[N, [N, N]] =0, and the same proof works otherwise.

Apply Theorem G taV/1. Then we obtain &M1)o which is a product of a parallelizable
manifold P and some complete reduced primitive spadas..., N,,. What we need
to prove is that eacl@-irreducible representatioA of the reductive part of” comes
from only those in one off and Ny, ..., Ny, i.e., cannot be a product representation
from distinct elements among and Ni, ... N,,. Otherwise, we can construct a compact
complex homogeneous spalig with the same&\/; and(I" N[N, N])g = A. We may also
assume that there are only two Bfand Ny, ..., N,,. Then the reductive patt; of the
group of Ny acts non-trivially onA. This is a contradiction to the unimodular property
of G1. To see this, we notice thav N I")g = B1 @ B & A with By corresponding to the
nilradical of N1 and B corresponding to the nilradical of the other whilg acts trivially
on B and unimodularly orB; but non-unimodularly om. L1 acts non-unimodularly on
A because basically only comes from some other representations ofaHfactor of Np
and we have Lemma 2 of Section 50
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Appendix A. Fundamental weights of the simple Lie algebras

This appendix is devoted to the proving of the following theorem (see also a similar list
in[17, p. 69]).



D. Guan / Journal of Algebra 273 (2004) 33-59 57

Proposition 6. For all the simple Lie algebras, we hav& in Proposition5 as follows

D

2

3

4

)

(6)

1
Ap: H,»=l+—1((1—i+1)a1+.~+(l—i+1)ia,»+m+ia1),

where(oy, ax) =2, (o, apy1) =—1

B;: Hi=o1+202+---+ioi+---+iog fori<li,
1
Hz=§(a1+20t2+---+lotz),

where(o;, @i+1) = =1, (o, ;) =2fori <1, and(oy, o) = 1.

. Hi=a1+2a2+~o—|—iot,'—i—'o'—i—ial,l—i—iza[ fori <1,

l
Hl=051+2062+-'-+(l—1)otl_1+§al,

where(a;_1, ;) = —1, (o, ;) =2Fori <[, and(og, ap) =4, (j_1,0q) = —2.

i
Dy H,':Ot1+---+i0l,'+"'+iotl_2+§(0ll—1+0ll) fori <1 -2,

1 1
H; = 5(oq + 202+ + (1 —Day—2) + Z(aial_l + biay)
withi=I[l—1orl, aqj_1=b; =1, anda; =b;_1 =1 — 2, where(a;, a;) =2,
(o, apq1) =—1fork <1 —2, and(oy_», o) = —1.

Ey, k=6,7,8:

H;, = 200+ -+ 2(k — a3+ (k — a2+ (k — Dag—1+ 4(xk),

g

1
Hi_1= m(dﬂl +- 4k — ag_3+ 2(k — o2
+ 2(k — Dog—1 + (k — Dyowg),

1
Hi o= T (Bar+ -+ -+ 3(k — Bap—3 + kag—2 + 2(k — a1+ (k — Iay),

H; O+i—Kar+-+iO+i —koi +i(O+i+1— ka1

5=
9—k
+ -+ 6iag_3+ Biog—2 + diag_1+ 2iox) fori <k—3,
where(o;, ) =2, (aj,aj41) =—1for j<k—3orj=k—1, and
(ok—3, k—1) = —1.
Fa:  Hi =201+ 302+ 4oz + 204, H> = 3a1 + 6a2 + 8oz + 4o,
H3z = 201 + 4o + 603 + 324, Hjy= o1+ 202 + 33 + 204,
where(e;, o;) =4fori <2or =2fori > 2, and(«j, ajy1) = —2for j <2

or=-1fori =3.
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(1) G2 Hi=Z2u1+ap, H> = 301 + 202,

where(w;, ;) =2fori =1or=6fori =2, and (a1, az) = —3.
And hencey;; > 0 for all the cases.

Proof. By direct checking, we observe that all thggesatisfy the conditio2(H;, «;))/
(Olj, O[j) = 5,'.1'. O
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