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In this note we give a modification theorem for a compact ho-

mogeneous solvmanifold such that a certain Mostow type condi-

tion will be satisfied. An application of this result is a simpler

way to calculate the cohomology groups of compact quotients

of real solvable Lie group over a cocompact discrete subgroup.

Furthermore, We apply the second result to obtain a splitting

theorem of compact complex homogeneous manifolds with sym-

plectic structures. In particular, we are able to classify compact

complex homogeneous spaces with pseudo-kählerian structures.

1 Introduction

A compact real homogeneous manifold M = G/H is called a solvmanifold if

G is solvable and H is discrete. Here we always assume that G is connected

and simply connected. If Ad(G) has the same real algebraic closure as that

1991 Mathematics Subject Classification. 53C15, 57S25, 53C30, 22E99, 15A75.
Key words and phrases. solvmanifolds, cohomology, invariant structure, homogeneous

space, product, fiber bundles, symplectic manifolds, splittings, prealgebraic group, decom-
positions, modification, Lie group, compact manifolds, uniform discrete subgroups, locally
flat parallelizable manifolds.

1



of Ad(H), we say that M has the Mostow condition with respect to G

and H. The Mostow condition can be also defined for any given compact

homogeneous space. In general case, the compact factors in the semisimple

part has to be the identity. To make the things simpler, we only consider

the case in which G is a real solvable Lie group and H is a cocompact

discrete subgroup, i.e., M is a solvmanifold. When M is a solvmanifold

and satisfies the Mostow condition, the cohomology of M can be calculated

by the cohomology of the Lie algebra (see [Rg Corollary 7.29]). But in

general, it is very difficult to calculate the cohomology for a general compact

solvmanifold. In this paper we prove the following:

Main Theorem 1. If M = G/H is a compact real homogeneous solv-

manifold, there is a finite covering space M ′ = G/H ′, i.e., H/H ′ is a finite

group, such that there is another simply connected solvable real Lie group G ′

which contains H ′ and is diffeomorphic to G such that (1) M ′ = G′/H ′, (2)

M ′ satisfies the Mostow condition with respect to G′ and H ′.

In particular, we have:

Main Theorem 2.: If G is solvable and H is discrete, M = G/H is

compact, then we have H∗(M) = H∗(G′), where G ′ is the Lie algebra of the

Lie group G′ in the Main Theorem 1.

A smooth 2n-dimensional manifold M equiped with a smooth transitive

action of a Lie group is what we call a homogeneous space. If in additional

M is a symplectic manifold, we refer to it as a homogeneous space with a

symplectic structure and, if the structure is invariant, a homogeneous space

with an invariant symplectic structure.

Recently there has been much progress in the area of symplectic mani-

folds and group actions. I was interested in the classical problem of classify-
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ing compact homogeneous spaces with symplectic structure. The difficulty

is that we do not know anything about the transitive group and the isotropy

group (Cf. [DG], [Hk], [Gu3]). In the Kähler case we know that the isometric

group is compact. In an earlier paper [Gu3] we prove following theorem:

Proposition 1.: Every finite dimension Lie subgroup of the automor-

phism group of a compact symplectic manifold is locally a product of a com-

pact semisimple group and a 2-step solvable group R. Moreover, the adjoint

representation of R on R′ is a subgroup of a compact torus.

I am also interested in the structure of compact homogeneous manifold

with symplectic structure (which might not be invariant under the group

action)

We also posted following conjecture therein [Gu3]:

CONJECTURE. If G/H is a compact homogeneous space with a sym-

plectic structure, then G/H is diffeomorphic to a product of a rational ho-

mogeneous space and another homogeneous space N , where N up to a finite

quotent is a compact quotient of a compact locally flat parallelizable manifold

with a symplectic structure.

Our Main Theorem 1 will be a major step toward a proof of this con-

jecture. Here we call a manifold N locally flat parallelizable if N = G/H

for a simply connected Lie group G which is diffeomorphic to Rk for some

integer k and H is a uniform (i.e., cocompact) discrete subgroup.

In this paper, we should finish the complex case. We should prove:

Main Theorem 3.: If M = G/H is a compact complex homoge-

neous space with a symplectic structure and G is complex (we can always

assume this), then M is a product of a rational projective homogeneous

space and a complex solvmanifold N = NG(H0)/H. Moreover, if we let
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G1 = NG(H0)/H0 and Γ = H/H0, then there is a subgroup Γ′ of Γ such

that Γ/Γ′ is finite and N up to a finite quotent is a solvmanifold G2/Γ
′ with

a right invariant symplectic structure of a real Lie group G2 which contains

the nilradical of G1 and is possible different from G1. In particular, if M

has a pseudo-kählerian structure, so is N and if N has a right invariant

pseudo-kählerian structure N must be a complex torus. And, if M has a

holomorphic symplectic structure, then M = N .

We notice that for the splitting theorem of [Gu1,2[ to hold we only need

a real symplectic structure which is invariant under the maximal compact

subgroup and this is provided by the existence of G′ in our Main Theorem

1 and 2. Also, the complex structure is right invariant under the action of

G2, see Corollary 1 in the next section.

The case when M = N with a right invariant pseudo-kählerian metric

was proven in [Gu1,2] (see [Gu2 proof of Lemma 1] or [DG 3.3] in 1989). The

theorem in [DG] follows also from our main theorem 3. Applying the same

method in [DG] to G2 one can easily prove that if N is pseudo-kählerian,

then the nilradical NG1
of G1 has at most two steps. An application of the

Leray spectral sequence to the fiber bundle G2/Γ
′ → G2/NG2

Γ′ shows that

the derivator [NG2
, NG2

] = 0, see Corollary 2 in the next section.

Moreover, the Lie algebra of G2 is a direct orthogonal sum of two vec-

tor spaces A and NG2
(regarded as its Lie algebra) respect to a pseudo-

kählerian structure which ω is right invariant on the universal covering.

Moveover, both ω1 = ω|A and ω2 = ω|NG2
are closed, and nonzero coho-

mology classes. A is an abelian Lie algebra and acts on NG2
semisimply

with real eigenvalues. ω2 has zero index. This is done with a new algebra

called complex-parallelizabe-right-invariant-pseudo-kählerian algebra, which
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is similar to what we used in [DG, Gu3] (see our proof of the Corollary 1 in

the next section). We should deal with the pseudo-kählerian case in another

paper [Gu4]. One might also notice that when ω is Kähler, then ω2 = 0 and

we have the Borel-Remmert Thorem.

When the pseudo-kählerian structure is Kähler, the original average pro-

cess in [Gu1,2] works and gives an averaged Kähler structure. Then the split-

ting theorem holds there and an application of our argument there produces

another proof of the Borel-Remmert Theorem.

The main purpose of [Gu1] is finding nonkählerian holomorphic symplec-

tic manifolds. That mission was completed in [Gu1]. Actually, we should

also see that Theorem B there is still true1. The reason is that assuming

our main theorem 3, for the complex parallelizable manifold M = N the

holomorphic tangent bundle is trivial and therefore H 2,0(M) = ∧2G∗, which

all come from the right invariant forms. Therefore, the averaging process

goes through trivially.

2 The Proof

1. Here we collect some results we need from the splitting theory of the Lie

group (see [Gb1]). Let G = SR be a Levi decomposition of a semisimple

Lie group. In this section, we assume that G is simply connected. We call

G a splittable Lie group if R = TU with T ∩ U = {e} such that T acts

semisimplely and U acts unipotently on the Lie algebra G. We call a Lie

1I did not realized that there was a mistake in [Gu2] until I saw [Ym] in August 2006,
he (they) did not tell me. This is unfortunately an odd situation. However, this eventually
turns out to be a positive turn. Thanks to the Gorbatservich’s construction that we wrote
down our Main Theorem 1 in a few days and are able to go around Iwamoto’s result which
we misused there to prove a weaker version, i.e., our Main Theorem 3. The examples in
[Ym] gave strong and beautiful evidences for our Main Theorem 3. Finally, I received a
letter from Yamada with several of his reprints on April 24, 2007.
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group embedding α : G → M(G) from G to a splittable simply connected

Lie group M(G) = T · S · U a Mal’cev splitting or M-splitting if α(G) is a

normal subgroup of M(G) and M(G) is a semidirect product of T and α(G),

and α(G) · U = M(G).

Proposition 2. For any simply connected Lie group G there is a unique

Mal’cev splitting.

The Mal’cev splitting can be constructed as following:

Let G = S ·R be the Levi decomposition of a connected simply connected

Lie group G. Consider the adjoint representation AdG : G → GL(G); put

G∗ = AdG(G), and let < G > be the algebraic closure of G∗ in GL(G).

Since < G > is algebraic, it has a Chevalley decomposition

< G >= T ∗S∗U∗,

where U ∗ is the unipotent radical, S∗ is semisimple, and T ∗ is abelian and

consists of semisimple (i.e., completely reducible) elements. Put W ∗ =

S∗U∗; then < G >= T ∗W ∗, with T ∗ ∩ W ∗ finite. Let t∗ : T ∗W ∗ →

T ∗/T ∗ ∩ W ∗ be the natural epimorphism, with kernel W ∗. Writing T̂ =

T ∗/T ∗ ∩ W ∗, we have clearly t∗(AdG) ⊂ (T̂ )0, since G is connected. If for

the connected abelian Lie group (T ∗)0 we consider the universal covering

for πT : T̃ → (T ∗)0, it is obvious that t∗ · πT : T̃ → (T̂ )0 is the universal

covering for (T̂ )0. Since G is connected and simply connected, there exists

a unique homomorphism t̃ : G → T̃ such that t∗ · πT · t̃ = t∗ · AdG. Put

T = t̃(G), T ∗

G = πT · t̃(G); then T is a connected simply connected abelian

Lie group covering of T ∗, while T ∗

G ⊂< G >. We see that T ∗

G can be regarded

as a subgroup of AutG. The imbedding T ∗

G → AutG and the homomorphism

πT induce a homomorphism φ : T → AutG, with ker φ = ker πT ∩T discrete.
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Then we can get the Mal’cev splitting

M(G) = T ×φ G

and

M(G) = TSU

for a unipotent group U such that

dimU = dimR, dimU/NR = dimT,

where NR is the nilpotent radical of G.

Now we let

WG = SU, WG,l = S/l(S) · U,

where l(S) is the minimal discrete subgroup of the center of S such that

Sl = S/l(S) is linear. Then, both AutWG,l and the semidirect product

AutWG,l ∝ WG,l are prealgebraic groups. As WG is a normal subgroup

containning the commutator of M(G), we can regard T ∗

G as a subgroup of

AutWG,l. Let a(T ∗

G) be the prealgebraic hull of T ∗

G in AutWG,l, and

Al(G) = a(T ∗

G) ∝ WG,l.

We see that Al(G) is prealgebraic. Let Ml(G) = T ∗

GSlU as a quotient of

M(G), then:

Proposition 3. The group Al(G) is prealgebraic, and there exists an

imbedding β : Ml(G) → Al(G) such that the following properties hold:

1) Al(G) is splittable, and if Al(G) = T ′S′U ′, where U ′ is unipotent, S ′

semisimple and T ′ a prealgebraic torus, then β(Ml(G)) ⊃ S′U ′ and

S′ = Sl, where S is the semisimple part of G and U ′ = U .
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2) The prealgebraic closure of each of the subgroup β(Gl) and β(Ml(G)) in

Al(G) is Al(G) itself.

Here we like to give a very simple example: Let G = G1×G2, G1 = TN

with T , N, G2 abelian and T acts on N almost faithfully and as a compact

torus without any eigenvector. Then < G >= AdG(T )N, W ∗ = N ,

t∗ : AdG(T )N → AdG(T ) = T̂

πT : T → AdG(T )

t̃ : TN × G2 → T

T ∗

G = AdG(T ), φ : T → AdG(T )

M(G) = T ×φ G = TU, U = {(t, t−1, n, g)|t∈T n∈N g∈G2
}

WG = WG,l = U, Al(G) = Ml(G) = AdG(T )U.

2. Here we prove the modification for a compact homogeneous solvman-

ifolds. This method was first used in [Gb2]. Similar construction can be

found in the study of homogeneous Kähler manifolds, e.g., [Dm], [DN].

In this subsection we only deal with the case when G is solvable, i.e., S

is the identity and H is discrete, in particular H 0 is also the identity.

Let M = G/H be a compact homogeneous solvmanifold of a simply

connected solvable real Lie group G. We go through the proof with the

similar notations as in [Gu3] 3.1.7., that might help us understand the both

constructions here and therein. In our case, we set G∗ = Gl = G/l(S) = G

be the image of G(H∗ = H/H ∩ l(S) = H be the image of H) in Al(G) =

A(G). We also set P∗ be the algebraic closure of β(H) in A(G). Then the
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nilradical NR ⊂ P∗ by a theorem from Mostow [Rg Theorem 3.3] , see also

[Rg Corollary 8.27, 8.28] (in [Gu3] 3.1.7. this condition was true by the fact

that the nilradical is in the normalizer of H0, which of course is trivial in our

case here since H0 is the identity and we see that our modification is quite

different from the one we mentioned in [Gu3]). Since the subgroup P∗ is an

algebraic group, the group π0(P∗) is finite. Passing from H to the subgroup

H1 = H ∩ π−1(P 0
∗
∩ H∗) of finite index, where π : M(G) → Ml(G) = M(G)

is the natural epimorphism, we might assume that H∗ ⊂ P 0
∗

by considering

a finite covering M ′ of M . This inclusion will be assumed to hold in what

follows.

We consider the natural epimorphism γ : Al(G) → Al(G)/Wl. We have

Al(G)/Wl = T∗ × π(WG)/Wl with WG = SU = U, Wl = SlNR = NR (our

Wl is the same as in [Gb2] but different from the one in [Gb1], in [Gb1]

Wl = S/l(S) · U = U) and T∗ is a prealgebraic torus; π(WG)/Wl = U/NR.

So Imγ = T∗×U/NR, we denote it by A. A is connected and Abelian. There

is a natural embedding of the group G∗/Wl = R/NR in Ml(G)/Wl which is

contained in A.

We denote the image of R/NR by B. We have U/NR is the projection

of B to the second factor U/NR. By our construction we have dimU/NR =

dimR/NR. The composition of γ and the projection restricted on R/NR is

an onto linear map between two Eucliden spaces with same dimensions, and

therefore is an isomorphism. That implies B ∩ T∗ = {e}. We see that the

projection µ : T∗ × U/NR → U/NR to the second factor is an isomorphism

on B, i.e., B is closed in A. Now we consider the subgroup H∗/H∗∩Wl of A

and its closure H∗/H∗ ∩ Wl (in the Euclidean topology) which we denote by

A1. Since H∗/H∗ ∩ Wl ⊂ B we have A1 ⊂ B. Since the group B is simply
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connected and Abelian, A1 is a closed subgroup of it, A1 is torsion free and

isomorphic to Rp × Zq for some p, q ≥ 0.

Finally we consider the subgroup γ(P∗) ⊂ A. The subgroup Kerγ =

Wl = NR is closed in the “Zariski topology” on Al(G), so does the Lie

group P∗, therefore γ(P∗) is a closed subgroup of A. But H∗ ⊂ P∗, so

H∗/H∗ ∩ Wl ⊂ γ(P∗) and hence A1 ⊂ γ(P∗), i.e., A1 ⊂ γ(P 0
∗
) by our

convention. The group γ(P 0
∗
) is connected and Abelian and hence γ(P 0

∗
) =

K × V , where K is a maximal compact subgroup of γ(P 0
∗
) (which is a

torus), and V is simply connected. Since A1 is closed in A and torsion free,

A1 ∩ K = {e}. Hence the projection K × V → V onto the second direct

factor on A1 is a monomorphism. Now it follows from this that there exists

a closed simply connected subgroup C ⊂ γ(P 0
∗
), such that A1 ⊂ C and A1

is uniform in C (we notice that C is not always in B). We set Φl = γ−1(C).

Then Φl ⊂ P 0
∗

and therefore has the same algebraic closure as Hl. Then Φl is

a closed connected subgroup of Al(G). To it corresponds a closed connected

subgroup Φ of A(G).

With this construction at hand, we have the following theorem:

Theorem. Let M = G/H be a compact homogeneous solvmanifold of

a simply connected Lie group G. Then there exists a subgroup H ′ of finite

index in H and a subgroup Φ of A(G), such that:

(a) Φ is a connected, simply connected, closed subgroup of A(G), containing

H ′ and NR,

(b) WΦ = WG = UΦ = UG (although M(Φ) and M(G) are not generally

isomorphic),

(c) for the decomposition A(G) = TWG = TU with T an Abelian subgroup
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of A(G) we have Φ ⊂ TG, G ⊂ TΦ, where Φ ∩ T = G ∩ T = {e},

(d) there exists a diffeomorphism η : Φ → G which is the identity on the

subgroup H ′ and induces a diffeomorphism Φ/H ′ → G/H ′, Actually,

it induces a diffeomorphism of the torus bundles G/H ′ → G/H ′NR

and Φ/H ′ → Φ/H ′NR.

(e) AdΦ has the same algebraic closure as that of AdH ′.

We obtained our Main Theorem 2 by applying the Mostow Theorem (see

[Rg Corollary 7.29]). One might notice that our proof here is almost word

to word identical to the corresponding parts 3.1.6 and 3.1.7 in [Gu3], but

the purposes are quite different. For the proof of the Main Theorem 3, one

could easily apply the Main Theorem 2 to N and follow the proof of our

previous work in [Gu2].

Also, we shall point out that in real practice one could use < G > instead

of A(G), but any argument for a mathematical proof using < G > is not

available at the present time. The proof of the next result also shows that

the using of A(G) is more favorable in the mathematical arguments.

Moreover, since G1 is a complex Lie group, we have at e

Ad(g) · J = J · Ad(g)

for any g ∈ G1. Therefore, we also have

α · J = J · α

for any α ∈< G1 >. Now we let

j(x + t) = Jx (mod Lie(< G1 >)),
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where Lie(< G1 >) is the Lie algebra of < G1 >. One could easily check

that

[j(x + t), j(y + s)] = −[x, y]

= −[x, y] + jt(jy) + t(y) − s(x) − js(jx) + [t, s] (mod Lie(< G1 >))

= j[j(x + t), y + s] + j[x + t, j(y + s)] + [x + t, y + s]

for any x, y ∈ G1, s, t ∈ Lie(< G1 >). That is, the complex structure on

G1 is always invariant under the action of M(G1) = T ×φ G and hence its

prealgebraic closure A(G1), see [Dm, DN, DG] for this formula.

Corollary 1.: The complex structure on N of the Main Theorem 3 is

right invariant under the action of G2.

Now any element in H1(NG1
/Γ ∩ NG1

,R) is β + β̄ with a holomorphic

left invariant form β which is closed, that is, d(ω) = 0. This means that β

is not from the derivation [NG1
, NG1

] but from NG1
/[NG1

, NG1
] (see [Gu1]).

So a right invariant pseudo-kähler form on G2/Γ
′ actually come from M1 =

G2/[NG2
, NG2

]Γ′. Therefore, combine with what we have for the part from

H2(G2/Γ
′,R) in [DG] we get all the three parts in the Leray spectral squence

come from M1 (see a similar argument in [Gu2]). By the nondegeneracy of

the pseudo-kählerian form we see that N = M1.

Corollary 2.: If M is a pseudo-kählerian manifold in the Main Theorem

3, then N is a complex torus bundle over a complex torus and up to finite

covering has a left G2 invariant pseudo-kählerian structure. G1 and G2 have

abelian niradicals.

These compact complex homogeneous parallelizable manifolds also shows

that the similar result of the Mostow Theorem for the Dolbeault cohomology

does not work in general, since the holomorphic 1-forms (as elements in
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H1,0(N)) are generally not right inariant under the modified Lie group which

satisfies the Mostow condition.

After a further labor we can prove that all the compact complex homo-

geneous spaces with pseudo-kählerian structures have the similar form as

Yamada’s example [Gu4].
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