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In this paper, we complete Nakamura’s classification of compact

complex parallelizable solvmanifolds up to the complex dimen-

sion five. We find that the holomorphic symplectic ones are ei-

ther nilpotent or pseudo-kähler-like, i.e., with a complex solvable

Lie group as that of a compact complex solvable pseudo-kähler

space in [Gu1]. We also found that, for any even complex dimen-

sion, all the compact complex pseudo-kähler solvmanifolds are

hypersymplectic. Therefore, for compact complex solvmanifolds,

hypersymplectic is as general as pseudo-kähler.

1 Introduction

Let M be a complex manifold, ω be a closed differential 2-form representing

a class in H2(M,R). If dimC M = n and ω is nondegenerate at every point,

i.e., ωn 6= 0 at every point, we call ω a symplectic structure. If ω is also in

H1,1(M), we call it a pseudo-kählerian structure of M . If, at the other end,
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ω is in H2,0(M)+H0,2(M), we call it a holomorphic symplectic structure. In

the latter case, ω is just the real part of the classical holomorphic symplectic

2-form.

A compact complex homogeneous space with a pseudo-kählerian struc-

ture (not necessary invariant) was classified in [Gu1]. It is a product of a

classical projective homogeneous space and a pseudo-kähler complex solv-

manifold.

Here, we say that a compact complex manifold is a compact complex

solvmanifold if it is a quotient of a complex solvable Lie group over a co-

compact discrete subgroup.

It turns out that all the pseudo-kähler complex compact solvmanifold

have holomorphic symplectic structures (actually a hypersymplectic struc-

ture) when it has an even complex dimension. When the complex dimension

is odd, we can always make it even by product with a complex torus. Actu-

ally we prove in [Gu1], see also Theorem 1, that if a compact complex solv-

manifold is pseudo-kähler-like, i.e., if the complex Lie group is the same as

some of the pseudo-kähler ones, then the manifold has a right-invariant holo-

morphic symplectic structure coming from the universal covering. These are

a little bit more than those manifolds which are actually pseudo-kählerian.

For example, The examples III-(3a) in [Nk] are pseudo-kähler-like but not

pseudo-kähler (notice that the concrete construction given by them does not

really work. One might choose other complex algebraic unite α of order four,

e.g., the square root of 2−1(−3 +
√

5)). In general, the pseudo-kähler-like

ones are not pseudo-kähler and therefore are not hypersymplectic. But a

finite covering of them are pseudo-kähler and hypersymplectic.

On the other hand, by the method in [Gu2], it is easy to construct com-
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pact complex nilmanifold with holomorphic symplectic structures. There-

fore, one has the following natural question:

Question 1: Are all the compact holomorphic symplectic solvmanifolds

from some kind of combination of these two classes of holomorphic symplec-

tic manifolds?

From all the information we already have, this might be true in certain

sense (see the last section). In this paper, we shall see that this is true for

the case in which the complex dimension is ≤ 5. And we shall see that this

is also true for the six dimensional case in a different paper.

By [Gu1], any pseudo-kähler compact complex solvmanifolds are Cheval-

ley. Therefore, one might have following question:

Question 2: Let M = G/Γ be a compact complex solvmanifold with a

holomorphic symplectic structure. Could the Lie algebra of G be a direct

sum of two Lie subalgebras A and N such that [A,N ] ⊂ N with A abelian,

N nilpotent? That is, could G be Chevalley in the terminology of [Nk]?

We shall see that this is true for those cases in which the complex di-

mension is ≤ 5. In a different paper, we shall see that this is true for the six

dimensional case. We expect that this is true for any dimension compact

complex solvmanifolds with holomorphic symplectic structures.

The reason that we choose to deal with these cases in which the complex

dimension ≤ 5 is not because that is how far we can go. It is because that

it is convenient for us since there was already a (long) list of the possible

ones in [Nk] for the cases in which the complex dimension is ≤ 5. For the

higher dimensional case, the work would be a little bit tedious if we do not

apply a more systematic argument. Therefore, we shall deal with the higher

dimensional cases only in the future.
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The classification of compact complex solvmanifolds is also important for

the classification of compact complex homogeneous spaces as it was shown in

[Gu3]. In this paper we obtain a much shorter list and completely solve the

classification problem for the compact complex solvmanifolds of dimension

≤ 5. Therefore, we have:

Classification Theorem. There are only seven types of compact com-

plex non-nilpotent solvmanifolds of complex dimension ≤ 5. They are:

(1) III-(3) in [Nk] in complex dimensional 3. See the manifold at the

beginning of the third section. A product with a 1-dimensional complex torus

is a holomorphic symplectic solvmanifold.

(2) IV-(4) and IV-(6) in [Nk] in complex dimension 4. Only IV-(4) has

a holomorphic symplectic structure. That is the same as the one given by

III-(3) in the universal covering. For the manifold IV-(6), see the middle of

the third section.

(3) V-(7), V-(12), V-(15), V-(17) with α = −1 in [Nk] in complex

dimension 5. Only V-(7) and V-(17) have holomorphic symplectic structures

after producting with a 1-dimensional complex torus. The one from V-(7)

is a product of IV-(4) with a 2-dimensional complex torus in the universal

covering. The one from V-(17) is a torus bundle product of two (possibly

different) copies of VI-(4). The description of these manifolds can be found

in the fourth section.

We note here that H. C. Wang studied the compact complex paralleliz-

able manifolds, i.e., compact complex manifolds with trivial tangent bundles.

He proved in [Wa] that these manifolds are complex homogeneous manifolds,

i.e., compact quotients of complex Lie groups by their cocompact discrete

subgroups. In [Nk], the author dealt with the case in which the big complex
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Lie groups are solvable. Therefore, our classification theorem also applies to

compact complex paralizable solvmanifolds of complex dimension ≤ 5.

Combining with [Nk] and [Gu3], it will be easy to classify compact com-

plex homogeneous spaces of complex dimension ≤ 5. To make this paper

easier to the reader, we shall treat this in another paper. The classification

of compact complex homogeneous spaces of complex dimension three is due

to Tits [Ti2]. One note I like to make here is that by [Gu3] for a compact

complex homogeneous manifold, the nonzero part of the first Chern class

only come from the factors with the trivial actions of the semisimple part

of the bigger group on the their radicals. That is, the calculation reduces

to the one similar to that in [Gu8] since the given Cartan subalgebras for

the other factors only have zero dimensional intersections with the isotropy

subalgebra.

In [Gu4], we prove that any compact complex homogeneous manifold

with a holomorphic symplectic structure is actually a complex solvmanifold.

Although the argument for the pseudo-káhler case and the general real sym-

plectic case had a gap (it was fixed in [Gu5, 6, 1]), the argument worked well

for the holomorphic symplectic case, which was our major purpose there.

A classification of compact solvable complex parallelizable manifolds with

holomorphic symplectic structures is overdue.

Here, I thank Professor Salamon for telling me the Schanuel’s conjecture

which led me to the solution of complex dimension five and led my attention

to Alan Baker’s solution [Ba] (Theorem 1 there) on Gelfond conjecture,

which led Baker to his reward of the Fields Medal in 1970. I also like to

express my thank to Professor Bogomolov for mentioning Gelfond’s solution

of the Hilbert seventh problem, i.e., the Euler-Hilbert conjecture. That led
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me to the reference [Ge] in the references. I also thank T. Yamada for

drawing my attention to Nakamura’s paper [Nk]. I also thank A. Fino for

mentioning Witte’s work [Wi] to me. It turns out that our modification

in [Gu6] is already in [Wi], e.g., Proposition 8.2. He just used a different

terminology. He actually modified the original Lie group by a compact torus.

That is, the modification has only pure imaginary eigenvalues. Actually, we

can use Hattori’s reult in [Ha] instead of the Mostow’s result in [Gu5]. See

the remark after the proof of Corollary 3. I also take this chance to thank

the editors and the referees for their useful comments.

2 The Compact Complex Pseudo-kähler-like and

Hypersymplectic Solvmanifolds

In this section, we shall quickly review the pseudo-kähler-like case, using

the third proof mentioned in [Gu1]. Let M = G/Γ be a compact complex

solvmanifold with a pseudo-kählerian structure. In [Gu1], we found a real

solvable Lie group G1 such that there is a cofinite subgroup Γ′ of Γ and the

algebraic closure of G1 is the same as that of Γ′. We proved in [Gu1] that

the complex structure is right invariant under G1 and the nilradicals NG

does not affected by the modification, M ′ = G1/Γ
′ is a finite covering of M .

By Mostow’s theorem, we can assume that the pseudo-kähler structure ω is

right invariant under the action of G1.

We consider a fiber bundle

G1/Γ
′ → G1/Γ

′NG = B,

with a fiber F .

Now, any element α in H1(NG/Γ′ ∩NG,R) is β + β̄ with a holomorphic

right invariant form β since NG is nilpotent and complex. By α being closed,
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we have that β is closed. This means that dβ = 0 and β is not from the

derivation [NG, NG] but from NG/[NG, NG] since NG is complex (see [Gu1]).

Let ωF = ω|NG/Γ′∩NG
∈ H2(NG/Γ′ ∩ NG,R). By dωF = 0 and ωF =

∑

i aiβi ∧ β̄i with βi a basis of holomorphic differential form on NG/Γ ∩NG

we see that dβi = 0 if ai 6= 0. That is, ωF comes from NG/[NG, NG] also.

Let N1 be the kernel of ω on NG. N2 be a complement of N1 in NG.

Let A be a complement of the Lie algebra of NG in the Lie algebra of G1

which is orthogonal to N2 with respect to ω. Here, for convenient, we also

denote the Lie algebra of NG by NG when there is not confusion. Then

ω ∈ ∧2A∗ + A∗ ∧ N∗
G + ∧2N∗

G. We write ω = ω0 + ω1 + ω2 correspondingly.

As in [Gu1], we see that for any a1, a2 ∈ A (being (1,0) vectors)

[a1, n], [ā2, n] ∈ NG

(being (1,0) vectors) for any n ∈ NG (being (1,0) vectors).

There is a relation between the differential of the differential 1-forms and

the Lie bracket. See (1.1) in [Nk] for example. See also [Nk] Lemma 1.1 (2)

for another interpretation for a 2-form to be closed. This works both for the

complex case in this paper and the real case. e.g., for the Kodaira-Thurston

surfaces.

We want to see that ω1 ∈ A∗ ∧ N∗
G is in H1(B,H1(F )). ω1 =

∑

j(αj ∧
β̄j + ᾱj ∧ βj) with βj ∈ NC,∗

G being holomorphic.

∂ω1 =
∑

j

(αj ∧ ∂β̄j + ᾱj ∧ ∂βj).

We notice that by our assumption ∂β̄ can not have any term of ᾱ ∧ β ′ for

any β, β′ ∈ NC,∗
G being holomorphic by our result in the last paragraph (see

also the last statement of Lemma 5 in [Gu1]). We have

∂β̄j =
∑

akl
j αk ∧ β̄l +

∑

Akl
j αk ∧ ᾱl,
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∂βj =
∑

bkl
j αk ∧ αl +

∑

ckl
j αk ∧ βl +

∑

dkl
j βk ∧ βl.

If dkl
j is not zero, one can not cancel out the similar terms from a different

ᾱj′ ∧ βj′ by αj being linearly independent. It can not cancel out with those

terms from ω2 neither. Therefore, by closedness of ω, all the dkl
j must be

zeros. We have βj ∈ H1(F ). We can identify ω2 with ωF .

So, a right invariant pseudo-kähler form on G1/Γ
′ actually comes from

M1 = G1/[NG, NG]Γ′ since all the three parts in ω come from M1. By the

nondegeneracy of the pseudo-kählerian form we see that G1/Γ
′ = M1.

Lemma 1.: If M is a compact complex pseudo-kählerian solvmanifold,

then M is a complex torus bundle over a complex torus and up to a finite

covering has a right G1 invariant pseudo-kählerian structure. G and G1

have abelian nilradicals.

To go further, we now replace NG by N = [G,G]. That is, we let A be a

complement of N . We use βj for a basis of the dual of N and αi for a basis

of the dual of A. Again we have the decomposition of ω into three parts.

Similarly, we can define N1 and N2.

Now, let bj be the dual of βj ∈ N∗
1 , then for any n ∈ N , ω(bj , n) = 0.

Therefore, for any a ∈ A,

ω([a, bj ], n) = −ω(bj, [n, a]) = 0.

That is, N1 is an ideal.

Notice that by our construction of the modification group G1, we only

modified the action by a semisimple torus. We might assume that both N1

and N2 are invariant under the action of the modification torus and all the bk

are eigenvectors. Then the only nonzero akl
j are akj

j . Again, by the linearly

independent property we obtain that all akl
j are zeros. That is, N1 is also in
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the kernel of the modification torus action. All the nonzero eigenvectors of

the modification torus action are in N2 (Cf [Wi] Proposition 8.2).

Now, we might assume that A is invariant under the modification torus.

Then as in the proof of the Lemma 5 in [Gu1] we have:

Lemma 2.: Let N = [G,G] and A be the complement of N in G with

respect to the prealgebraic toric abelian group T , Then for any x, y ∈ AC

such that jx = ix, jy = −iy, we have [x, y] = 0. Similarly, if z ∈ N C is

holomorphic, so is [w, z] for any w ∈ G.

Let A1 be all the elements in A generated by the dual of the differential

forms in A∗ involved in ω1 which is the part of ω in A∗ ∧ N∗
1 . A2 be a

complement of A1 in A including the subspace generated by the dual of the

differential forms in A∗ involved in ω′
1 which is the part of ω in A∗ ∧ N∗

2 .

This can be down by the definition of N1. Therefore,

ω ∈ ∧2A∗ + A∗
1 ∧ N∗

1 + A∗
2 ∧ N∗

2 + ∧2N∗
2 .

We have

∂(ᾱj ∧ βj) ∈ ᾱj ∧ (A∗ ∧ (A∗ + N∗))

and

∂(αj ∧ β̄j) ∈ αj ∧ A∗ ∧ β̄j ,

∂(βj ∧ β̄k) ∈ A∗ ∧ (A∗ + N∗) ∧ β̄k.

Therefore, the first one must be zero. The modification only changes the

imaginary part of the A action. Therefore, if the A action is trivial after

modification, it should be trivial for the original action. By our assumption

the modified group has the same algebraic closure as the cocompact sub-

group, we see that the second one must be zero also. Another agument is
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that in the case that the first one is zero, even if the second one might not

be zero, we can modified ω by an exact form to make the second one to be

zero. That is N1 = 0 and A is orthogonal to N with respect to ω.

Lemma 3.: N1 = 0 and A is orthogonal to N with respect to ω.

Corollary 1.: A is an abelian Lie subalgebra.

Proof: For any a1, a2 ∈ A, we have that

ω([a1, a2], n) = ω(a1, [a2, n]) + ω(a2, [n, a1]) = 0

for any n ∈ N. That is, [a1, a2] = 0.

Q. E. D.

Lemma 4.: The action of A on N is semisimple.

Proof: Since A is abelian, N is decomposed into Jordan blocks. Let

J1 and J2 be two Jordan blocks such that ω(J1, J2) 6= 0. Now, Ā acts

semisimply and ω is (1,1), we can assume that J2 ⊂ N̄2 is an eigenvector b

of A. then J1 ⊂ N .

Let b1, · · · , bs be a basis of J1. We might assume that ω(bs, b) 6= 0 by

choosing the right J2. Let k1(a) and k2(a) be the eigenvalues, we have:

k1(a)ω(bs, b) = ω([a, bs], b) = ω(bs, [b, a]) = −k2(a)ω(bs, b).

Therefore, k1(a) = −k2(a).

We also have

ω([a, bs−1], b) = ω(bs−1, [b, a]).

Therefore, [a, bs−1] = k1(a)bs−1. This implies that s = 1. J1 has complex

dimension 1.

Q. E. D.
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Proposition 1.: If ω(n1, n2) 6= 0 for eigenvectors n1, n2 with eigenvalue

functions k1(a), k2(a), then k2(a) = −k̄1(a). Moreover, all kj(a) are real.

ω(n1, jn1) = 0 always.

Proof: Since ω is a (1,1) form, one of them can be chosen as antiholo-

morphic and the other one as holomorphic.

k1ω(n1, n2) = ω([a, n1], n2) = ω(n1, [n2, a]) = −k̄2ω(n1, n2).

Let kj(a) =
∑

(aiαi + biᾱi), then

∂(βj ∧ β̄′
j) = (−

∑

i

(ai − b̄i)αi) ∧ βj ∧ β̄′
j = 0.

That is bi = āi. Therefore, kj(a) =
∑

i(aiαi + āiᾱi) is real.

By [a + t(a), jn1] = j[a + t(a), n1] and jt(a)n1 = t(a)jn1 we have that

[a, jn1] = j[a, n1] = k1(a)jn1. Therefore, ω(n1, jn1) = 0 since k1 6= 0.

Q. E. D.

Now, since Γ′ ∈ G1, we see that Γ′ also acts semisimply with pairs of

real eigenvalues.

Proposition 1 gives us a good picture for the Lie algebra of the compact

complex solvmanifold with pseudo-kählerian structures. And therefore, it

gives a good classification for the compact complex pseudo-kähler-like solv-

manifolds.

What we have for G1 is only the modified Lie group. The original com-

plex Lie group G has the structure equations: dαi = 0, dβ2j−1 = −kj∧β2j−1,

dβ2j = kj ∧ β2j where we regard kj as (1,0) forms on A.

There are natural closed holomorphic 1-forms αi and 2-forms:

β2j−1 ∧ β2j .
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Theorem 1.: All the pseudo-kähler-like compact complex solvmanifolds

are holomorphic symplectic, up to product with a torus of complex dimension

one if it is needed.

Actually, we see that the pseudo-kähler manifolds with even complex di-

mensions are complex hyper-quaternion-symplectic manifolds. That is there

are three linear transformation Ti, i = 1, 2, 3 such that (1) T 4
i = I the iden-

tity, TiTj = −TjTi = εijTk where εij are signs; (2) T1 is a complex structure;

(3) there is a symmetric two form h such that h( , Ti ) are symplectic struc-

tures. (1) is called hyperquarterionic. (2) is called complex. (3) is call

symplectic. We note that in our definition, we do not assume that T2, T3

have any integrability.

Especially, if T 2
2 = −I, we call it a hypercomplex-symplectic structure.

We call it a hypersymplectic structure if T 2
2 = I and it was first defined by

Hitchin [Hi] in 1990. I heard about Hitchin’s definition in a talk given by

Gueo Grantcharov in 2011. To find hypersymplectic structures on compact

solvmanifolds, it will be very natural to find the pseudo-kähler ones. Our

results show that the hypersymplectic ones are as general as the pseudo-

kähler ones at least for the compact complex solvmanifolds. We call a

hypercomplex-symplectic manifold hyperkähler if h is positive definite. The

hypercomplex-symplectic manifolds are very rare. But we do not have much

control of the index of h. Actually, we can use both h or −h from a hy-

perkähler manifold. And a product of hyperkähler manifolds with different

chosen signs for h can have a big range of the index of the h. We shall see

that the index of h for any hypersymplectic manifold must be 0. One might

ask:

Question 3: Are all the compact simply connected hypercomplex-
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symplectic manifolds hyperkähler?

Question 4: Are all the compact simply connected holomorphic sym-

plectic manifolds hypersymplectic up to a lower dimensional subset?

Any product of hyperkähler manifolds, hypercomplex-symplectc and

hypersymplectic manifolds are both holomorphic symplectic and hyper-

quaternion-symplectic manifolds.

Of course, in our case, the complex hyper-quarterion-symplectic struc-

tures are usually not right invariant. Actually, any compact complex solv-

manifold with a pseudo-kähler structure is hypersymplectic if it has a com-

plex even dimension.

If only (1) and (2) are true with T 2
2 = I, according to [AS], we have an

almost complex product structure. The almost complex product structure

is very general. Let x + iy be the differential form generating C. We define

T1 to be the standard complex structure, and T2 to be defined by T2(x) = x

and T2(y) = −y. Then we have an almost complex product structure on the

standard C.

On the other hand, if there is an almost complex structure on a vector

space, the T1, T2, T3 generate an sl(2,R) action on the vector space. T2

generates a Cartan subalgebra. By the eigenvalues of T2, we see that all the

irreducible representations of sl(2,R) in this vector space are the standard

C. That is, the vector space is Cn with the standard almost complex product

structure.

Now, assume that (h, T1, T2, T3) is a hypersymplectic structure on a vec-

tor space. By h(x, T2y) skewsymmetric, we have

h(T2x, T2y) = −h(y, T2(T2x)) = −h(y, x) = −h(x, y).

Therefore, both eigenspaces of T2 are in the nullcone of h. Moreover, by
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h(x, T1y) skewsymmetric, we have that h(x, T1x) = 0. That is, any standard

copy of C is also in the nullcone of h. Now, if we let β1 = x1 + iy1 generate

a copy of the standard C, by the nondegeneracy of h, there is a β2 =

x2 + iy2 such that the h is nondegenerate on the space generated by β1, β2.

In particular, we have that h is proportional to x1·y2−x2·y1 since h(x2, y1) =

h(T1x2, T1y1) = −h(y2, x1) = −h(x1, y2). The corresponding pseudo-kähler

metric h(x, y)+ih(x, T1y) is proportional to β1β̄2−β2β̄1. The corresponding

holomorphic symplectic form ω = h(x, T2y) + ih(x, T3y) is proportional to

β1 ∧ β2. This fits quite well with the compact complex solvmanifolds with

pseudo-kähler structures (see [Gu1] or Proposition 1).

Actually, this also fits with the Kodaira-Thurston surface. Of course,

the Kodaira-Thurston surface is not a compact complex solvmanifold in

this paper, instead it is only a compact quotient of a real Lie group with a

cocompact discrete subgroup. The structure equations are

dz = dx1 = dx2 = 0, dy = x1 ∧ x2.

We just let β1 = x1 + ix2, β2 = z + iy, which also defind a right-invariant

complex structure. Then everything go through. This was also shown much

earlier by Kamada in [Ka].

Corollary 2.: All the even dimensional compact complex solvmanifolds

with pseudo-kähler structures has a hypersymplectic structure. The same is

true for the Kodaira-Thurston surface.

Corollary 3.: For any pseudo-kähler-like compact complex solvmani-

folds, there is a finite covering which admits a hypersymplectic structure.

Proof: From [Gu1], the manifold is pseudo-kähler if and only if the

discrete subgroup only has real eigenvalues. This can be also observed by
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the fact that the modification does not affect the discrete group at all. This

can be achieved by the fact that every algebraic unit has a finite power which

is real.

If a is an algebraic unit, so is b = aā−1. By the Dirichlet’s Theorem on

the units, seee [BS] page 112, we see that b is a root of 1.

Q. E. D.

The argument in the proof also implies that for any compact real solv-

manifold, there is a finite covering such that the discrete subgroup has only

real eigenvalues. This also implies that in [Gu5], we can apply Hattori’s

result in [Ha] instead of the Mostow’s result therein. Also, in the proof of

[Gu1], we have A1 = H∗/H∗ ∩ NG = H/H ∩ NG ⊂ V and p = 0, C ⊂ V in

the proof of the theorem 1 there in 2. of the second section. The modifica-

tion can be obtained by just the projection K × V → V , that is, forgetting

the K effects. Therefore, the modification only modifies the imaginary part.

In [Gu9, 10], we see that Question 4 is positive for the examples there

including the K3 surfaces. We now have the following questions which is

related to the fourth question:

Question 5. Are some of the Hilbert scheme of the Kodaira-Thurston

surface hypersymplectic?

Question 6. Are all the simply connected holomorphic symplectic man-

ifolds birational to some quotient of hypersymplectic solvmanifold?

We noticed that for the K3 surface, Proposition 1 in [Ko] implies that

there is no nonkählerian pseudo-kähler structure.
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3 Compact complex solvmanifold of complex di-

mension three and four

In [Nk], Nakamura and the Kodaira group classified all the three dimensional

compact complex solvmanifolds. The only non-nilpotent one they obtained

is the III-(3) case in [Nk].

It is exactly what we obtained in the last section with the Lie algebra

generated by a1, b1, b2 and a = 1. In the dimension three case we can always

make a = 1 by choosing a1 properly.

To construct the solvmanifold, we need to make a lattice in A. If we

regard the A action as a Gm = C∗ action on N , there is a natural generator

2iπ which gives 1 ∈ Gm by the exponential map. The other generator might

come from an algebraic unit number α such that log α is linearly independent

of 2iπ. If it is real, then we have a pseudo-kähler solvmanifold, the III-(3b)

in [Nk]. If α is not a real number, then we only have a pseudo-kähler-like

solvmanifold III-(3a) in [Nk] (notice that the example they gave does not

work since one of the eigenvalue should be α and α+3 is a cubic root of −1,

that is, up to finite covering the action on the nilradical is trivial). Both of

them have a holomorphic symplectic structure

β1 ∧ β2 + α1 ∧ γ

after product with a one dimensional complex torus, where γ comes from

the torus. III-(3b) has an obstructed deformation but not for III-(3a).

For complex dimension four, [Nk] gave four possible Lie algebras: IV-(4),

IV-(5), IV-(6), IV-(7).

IV-(4) is the same as III-(3) product with a torus in the universal cov-

ering. We just let α2 = γ from above.
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They proved in [Nk] page 110, the paragraph after Lemma 6.2, that

IV-(7) does not exist (not IV-(6), there was a typo).

IV-(6) has the structure equations: dα1 = 0, dα2 = α1 ∧ α2, dα3 =

−α1 ∧ α3 then dα4 = α2 ∧ α3. It is a central extension of III-(3) with

the closed holomorphic 2-form α2 ∧α3. There is no holomorphic symplectic

structure, but it is more like a holomorphic contact solvmanifold in a certain

sense. By modification from [Gu5](see also [Gu1]), we also see that there is

not real symplectic structure. By the argument in the proof of corollary 3

in the last section, we could assume that the discrete subgroup only has real

eigenvalues. By writing αk = xk + iyk we have that the structure equation

for the modified Lie group is: dx1 = dy1 = 0, dx2 = x1 ∧ x2, dy2 = x1 ∧ y2,

dx3 = −x1∧x3, dy3 = −x1∧y3, dx4 = x2∧x3−y2∧y3, dy4 = x2∧y3+y2∧x3.

Assume that ω be a real symplectic structure, Xk, Yk are the dual of xk and

yk. Then

ω(X4, Xk) = ω(X4, Yj) = ω(Y4, Xk) = ω(Y4, Yj) = 0

for all k 6= 1 and j. For example,

ω(X4, X2) = ω(X4, [X1, X2]) = ω([X4, X1]) + ω([X2, X4], X1) = 0

and

ω(X4, Y1) = ω([X2, X3], Y1) = 0.

Therefore, there is a nonzero 2-vector (a, b) such that aX4 + bY4 is in the

kernel of ω, a contradiction.

Now, we deal with IV-(5) with structure equations: dα1 = 0, dα2 =

α1 ∧ α2 then dα3 = aα1 ∧ α3 and dα4 = −(1 + a)α1 ∧ α4 with a(1 + a) 6= 0.

They were not able to determine the existence of this one (see [Nk] page

110 last paragraph, not IV-(5), there was a typo. See also page 86, the
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paragraph right before the Prelimilaries and page 94, page 98 Case 3 and

page 100, 110, etc.).

Now, by applying [Ti1] Theorem 7.2 to our circumstance we see that

the representation of the algebraic Gm is isogent to a product of irreducible

Q representations. Let log α be a generator which is linearly independent

with 2iπ. One of the other eigenvalues should be either α or α−1. One

might also apply the argument in [Bo] Chapter 7, section 5, no. 9, p.44

that the decomposition is actually produced by polynomials with rational

coefficients. But then this contradicts to the condition or it becomes IV-(7).

This is impossible.

We have:

Theorem 2.: The only possible compact complex non-nilpotent solv-

manifolds of dimension three or four are III-(3), IV-(4), IV-(6) in [Nk].

All the holomorphic symplectic related ones are pseudo-kähler-like.They are

III-(3) and IV-(4). Moreover, IV-(6) does not admit any real symplectic

structures.

The nilradical of IV-(6) has two steps and therefore, it is clear not

pseudo-kähler-like by Proposition 1.

4 Compact complex solvmanifolds of complex di-

mension five and the Hilbert seventh problem

In [Nk], Nakamura and the Kodaira group had classified the possible struc-

ture equations for compact complex solvmanifolds of complex dimension

five. There is always no problem for the existence of the nilpotent ones,

once all the coefficients are integers.

The non-nilpotent solvable Lie algebras are: V-(7), V-(11) to V-(20).
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V-(7) can be a product of VI-(4) with a torus. It is therefore pseudo-

kähler-like.

They proved that V-(14) and V-(18) can not exist. But they can not

determine the existence of V-(11), V-(13), V-(16), V-(19), V-(20) (see [Nk]

page 110 the last paragraph).

V-(11) has the structure equations: dαi = 0 for i = 1, 2, dα3 = α1 ∧ α3,

dα4 = −α1 ∧ α4, dα5 = α1 ∧ α2.

If V-(11) exist, its center is generated by a5 the dual of α5. Therefore,

it has a quotient compact complex solvmanifold IV-(4).

IV-(4) has a nilradical generated by αi, i 6= 1. The Gm action of α1 splits

into two representations. One is generated by α2 and the other, we denote

it by N , is generated by α3 and α4. Therefore, α2 corresponding to a lattice

in C generated by γ1, γ2. The Gm action on N induces a lattice in C related

to α1 generated by log α, 2iπ. α is an (could be quadratic) algebraic integer.

Similarly, in V-(11), the nilradical splits into two representations of the

Lie group C corresponding to α1. One is generated by α2 and α5. The other

is just the preimage of N above, we also denote it by N . Now, it is not

difficult to see that N is an ideal. Combinning all what we have above, we

see that G/N induces a compact complex solvmanifold of complex dimension

three. It is a III-(2) manifold in [Nk]. It is also called the Iwasawa manifold.

We denote it by I.

Lemma 5. For any α and γi, i = 1, 2, the induced Iwasawa manifold I

does not exist.

Proof: Let

Π =







1 2iπ a1

0 1 b1

0 0 1






, Γ1 =







1 0 c1

0 1 γ1

0 0 1






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be two elements in Γ. Then ΠΓ−1
1 Π−1Γ1 ∈ Γ. That is, 2iπγ1 is in the

lattice in the C related to α5. Similarly, so are 2iπγ2 and log(α)γi, i = 1, 2.

Therefore, by log(α)γ1, 2iπγ1 being linearly independent, there are rational

numbers qij for i, j ∈ {1, 2} such that log(α)γ2 = q11 log(α)γ1 + q122iπγ1

and 2iπγ2 = q21 log(α)γ1 + q222iπγ1.

Therefore, let x = log(α)
iπ , then x is a quadratic number. This contra-

dict to the solution of the seventh Hilbert problem by Gelfond (1934) and

Schneider (1935), which was also called the Euler-Hilbert conjecture.

Actually, we only need a special case of the Gelfond-Schneider Theorem

obtained by Gelfond in 1929. Since x is not real and x2 + px+ q = 0 for two

rational numbers p and q. we have x = −p1 + i
√

q1 for two rational numbers

p1 and q1.

α = elog α = (−1)x = (−1)−p1(−1)i
√

q1

being algebraic implies that (−1)i
√

q1 is algebraic. This contradicts to the

statement in [Ge] p.102 if q1 is not a square of another rational number.

Now, if q1 = q2
2 with another nonzero rational number q2, then eπ = (−1)−i

is algebraic, a contradiction to another statement in the same page.

Q. E. D.

Corollary 4. V-(11) does not exist. That is, the corresponding complex

Lie group does not have any cocompact discrete subgroup.

Now, the next one, V-(12) has the structure equation dαi = 0, i = 1, 2,

dα3 = α1 ∧ α3, dα4 = α2 ∧ α4, dα5 = −(α1 + α2) ∧ α5.

This does exist, e.g., see [Ah] p.95 example 2. One might choose the

totally real number field over Q extended by, e.g., the equation

x3 + x2 − nx − 1
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with n > 1.

But there is no holomorphic symplectic structure. There is a closed

(actually exact) holomorphic 2-form

α1 ∧ α3 + α2 ∧ α4 + (α1 + α2) ∧ α5

with a kernel of complex dimension one.

V-(13) does not exist by the same reason as IV-(5).

V-(15) is a product of IV-(6) and a torus. It does not admit any holo-

morphic symplectic structure. By the same argument as we discussed for

IV-(6), there is no real symplectic structures on it.

V-(16) has a structure equations: dαi = 0, i = 1, 2, dα3 = α1 ∧ α3,

dα4 = −α1 ∧ α4 and dα5 = α1 ∧ α2 + α3 ∧ α4.

We notice that the nilradical N is generated by αi, i 6= 1. There is a

natural map

G/Γ → T

with the fiber generated by N . [N,N ] is generated by α5. There is another

fibration

G/Γ → M1 = G/[N,N ]Γ.

M1 is a IV-(4) manifold and the Gm action has two representations. One

generated by α2 and the other by α3 and α4. Quotient by the first rational

representation, take a finite covering if it is necessary, we obtain a fibration

M1 → M2.

This induces, after taking a finite covering, a fibration

M → M2.
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The fiber is generated by αi, i = 2, 5. We denote the fiber by F and the

cocompact subgroup by ΓF , the group by GF . Now, GF is an ideal of G, we

can consider the adjoint action of G on GF which induces the adjoint action

of Γ on ΓF . The kernel of this adjoint action is exactly N . Therefore, we

can construct an Iwasawa manifold (G/NΓ) ×AdGF
(G) F .

Applying our Lemma 5 we have a contradition.

Corollary 5.: V-(16) does not exist.

Next, we consider V-(17). The structure equations are: dα1 = 0, dα2 =

α1 ∧ α2, dα3 = aα1 ∧ α3 and dα4 = bα1 ∧ α4, dα5 = −(1 + a + b)α1 ∧ α5.

Again by Tits’ result, one of a, b,−(1 + a + b) should be 1 or −1.

If a = 1, one of b,−(2 + b) must be 1 or −1. Otherwise, we have a

rational representation with eigenvalues {1, 1}. This can not be true since

we need the trace to be zero. If b = 1 also, we get V-(18), which can not

happen by [Nk] Lemma 6.2. If b = −1, we might just assume that a = −1

and b = 1.

Lemma 6. In the case V-(17), a = −1.

Now we consider the last two cases.

For the case V-(19), the structure equations are: dα1 = 0, dα2 = α1∧α2,

dα3 = −α1 ∧ α3, dα4 = α1 ∧ α4 + α1 ∧ α2 and dα5 = −α1 ∧ α5 − α1 ∧ α3.

N = [G,G] is generated by αi, i 6= 1. [N,G] is generated by αi, i = 4, 5.

G/[N,G]Γ is III-(3) (see below for the existence of the quotient manifold).

Therefore, the lattice in C related to α1 is generated by an algebraic number

α and 2iπ.

By [Bo] Chapter 7, Section 5, no. 9, Theorem 1, any rational action A on

N can be written as sn with s semisimple and n unipotent rational actions.

This will induce a V-(17) manifolds with a = −1 by the semisimple part.
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This is clear. See also [Au] Chapter IV section 2 for a similar construction.

Now, we also try to get another solvmanifold from the unipotent part.

This can be done because AdN (G) is abelian. In this way, we get a V-(4)

compact complex nilmanifold. See [Au] chapter IV section 2 for a similar

construction. The structure equations of V-(4) are: dαi = 0, i = 1, 2, 3,

dα4 = α1 ∧ α2 and dα5 = −α1 ∧ α3.

The semisimple model induces the so called Mostow or nilradical fibra-

tion (see [Nk] for example) and the nilpotent model induces a commutator

fibration (see [Rg] for example).

As above, let

γ1 = (g1, g2), γ2 = (αg1, α
−1g2), γ3 = (h1, h2), γ4 = (αh1, α

−1h2)

be a basis which generates the lattice in C2 related to αi, i = 2, 3. Then

(2iπg1, 2iπg2), (log(α)g1, log(α)g2), (2iπαg1, 2iπα−1g2), log(α)(αg1, α
−1g2)

are in the lattice Γ0 of C2 related to αi, i = 4, 5 and they are linearly inde-

pendent by the Gelfond-Schneider solution of the Euler-Hilbert conjecture

in [Ge] p.104 or Theorem II in p.106..

Similarly, 2iπγ3, log(α)γ3 ∈ Γ0. As above we have

x =
log α

iπ
=

n21 + n22x + n23α + n24αx

n11 + n12x + n13α + n14αx

with some rational numbers nij . Again, by the Gelfond-Schneider Theorem

([Ge] p.106 Theorem II) we have a contradiction.

Lemma 7. V-(19) does not exist.

Now, we look at the possible V-(20) compact complex solvmanifold in

[Nk] p.109. The structure equations are: dα1 = 0, dα2 = α1 ∧ α2, dα3 =

α1 ∧ (α3 +α2, dα4 = aα1 ∧α4 and dα5 = −(2+a)α1 ∧α5 with a(2+a) 6= 0.
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Again, we can pass it into the related semisimple and the nilpotent

models as above by [Bo] Chapter 7, Section 5, no. 9, Theorem 1. The

semisimple model is a V-(17) solvmanifold, we have that a = −1 by Lemma

6. From the nilpotent model we get a Lie group Gn. Nn = [Gn, Gn] is

generated by α3. The center Cn of Gn is generated by αi, i = 3, 4, 5. There-

fore, Gn/Γn → Gn/CnΓn is a fiber bundle and the fiber has a subtorus

Nn/Nn ∩ Γn, which induces a torus bundle over Gn/CnΓn. The latter is an

Iwasawa manifold and we can apply Lemma 5. A contradiction.

Therefore, we have:

Corollary 6. V-(20) does not exist.

Combining all of what we have in this section, we get:

Theorem 3. The five dimensional non-nilpotent compact complex solv-

manifolds are V-(7), V-(12), V-(15), V-(17). The holomorphic symplectic

related ones are pseudo-kähler-like. They are V-(7) and V-(17).

V-(15) is not pseudo-kähler-like with the same reason as that for IV-

(6). V-(12) is not pseudo-kähler-like because of Proposition 1. Again, as

what we did for IV-(6), we see that V-(12) and V-(15) do not have any real

symplectic structures. See also the comments at the end of the next section

for V-(12). Therefore, we have following natural question:

Question 7: Are all the compact complex homogeneous solvmanifolds

with real symplectic structures holomorphic symplectic?

5 Further comments

In general, our methods can reduce the classification of compact complex

solvable manifold to the case in which the complex Lie group has a Chevalley
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decompositon G = AN as in the question 2 such that A acts on N semisim-

ply. We shall do this in a different paper. The symplectic form, after a series

of modifications, has the form

ω = ω0 +
∑

β2i−1 ∧ β2i,

where ω0 comes from those closed 1-forms and β2i−1, β2i ∈ N∗ are pairs of

holomorphic 1-forms which corresponding to the pairs of eigenvectors with

eigenvalues different by a sign. Different from the pseudo-kähler-like case,

the 1-forms involved in ω0 might also correspond to pure nilpotent elements

with nontrivial adjoint actions.

To see some examples, we could just take any example in [Ya1] with real

symplectic structures, then we complexify them by the principle of Propo-

sition 4 in [Gu7] similar to what Yamada did in [Ya2]. For the semisimple

actions, we just extend the action naturally. The 2iπ with e2iπ = 1 will give

the other generators we need in the lattice. For the nilpotent actions, we

simply complexify the action as Yamada did.

Once we have some examples, we can always use the Proposition 4 in

[Gu7] to construct more examples.

Another example comes from [BG] example 3. By our argument in the

second section, it is not difficult to see that the example 2 there does not

exist. But we can easily see that example 3 does exist. Let α be a root of

the equation:

x2 − nx + 1 = 0

with n > 2. Let A = diag(α, α−1) be the lattice for the R2 generated by

Xi, i = 1, 2 be generated by γ1 = (1, 1), γ2 = Aγ1 = (α, α−1). Similarly

for the R2 generated by Yi, i = 1, 2. Then, Aγ2 − nγ2 + γ1 = 0 and we
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have the action of a generator a we need for both Xi and Yi. a acts on the

first by A and the second by A−2. For the lattice related to Zi, i = 1, 2

we use γ2
1 = (1, 1), γ1γ2 = Aγ2

1 . We notice that γ2
2 = Aγ1γ2 and action

of a on Zi by A−1. See also the construction in [SY] (I was told by C.

Benson about this paper after I told him our construction. However, their

further construction related to the example 2 can not have any compact

complexification). After complexifying this example, we obtain an example

of compact holomorphic symplectic solvmanifold such that the Lie group has

three steps. This means the relation between the pseudo-kähler-like ones

and the holomorphic symplectic ones in our theorems does not extend to

the complex eight dimensional cases, actually not even to the complex seven

dimensional cases since the same example can be obtained by a product of

a complex one dimensional torus and a seven dimensional compact complex

solvmanifold. But in a different paper we shall see that the relation is

still true for the complex six dimensional compact complex solvmanifolds.

Therefore, the answer for our question 1 is yes up to complex dimension 6

and partially true for higher dimensions. These examples also show that

the question 3 is not true without simply connectedness even up to a finite

covering for the non-nilpotent solvmanifolds.

However, we believe that the answer for our question 2 is yes always.

The major different from the pseudo-kähler-like case is that Lemma 1

and Lemma 4 do not work in general.

One may make other further and different modifications such that all the

1-forms involved in ω0 are closed, semisimple and the βj generate a subspace

of the abelian nilradical. That is, it has a pseudo-kähler-like modification.

This is also even true for the real symplectic solvmanifolds after modifica-
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tion. One consequence of this is that, again, V-(12) does not have any real

symplectic structure by the opposite signs for the eigenvalues similar to the

statement in Proposition 1. We shall deal with these progresses in another

paper.
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