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In this paper, we apply a modification theorem for a compact

homogeneous solvmanifold to compact complex homogeneous

manifolds with pseudo-kählerian structures. We are able to clas-

sify these manifolds as certain products of projective rational

homogeneous spaces, tori, simple and double reduced primitive

pseudo-kähler spaces.

1 Introduction

Let M be a complex manifold, ω be a closed differential 2-form representing

a class in H1,1(M) ∩ H2(M,R). If dimC M = n and ω is nondegenerate

at every point, i.e., ωn 6= 0 at every point, we call ω a pseudo-kählerian

structure of M . In particular, if ω is the Kähler form of a hermitian metric,

that is, h( , ) = ω( , J ) is positive definite, we call ω a Kählerian structure

on M .
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A compact complex homogeneous space with an invariant Kählerian

structure was classified by Matsushima in [Mt2]. A compact complex ho-

mogeneous space with a Kählerian structure (not necessary invariant) was

classified by Borel and Remmert in [BR]. A compact complex homoge-

neous space with an invariant pseudo-kählerian structure was classified by

Dorfmeister and the author in [DG]. A solution of the classification of com-

pact complex homogeneous space with a pseudo-kählerian structure was

proposed in [Gu1,2]. However, the classification turns out to be much more

complicated than we suggested therein.

In this paper, we shall put the last piece of the puzzle into the solution

of this problem and completely solve it. The major piece of the puzzle

which was missing in [Gu1,2] is the calculation of the cohomology group of

a compact solvmanifold.

A compact real homogeneous manifold M = G/H is called a solvman-

ifold if G is solvable and H is discrete. Here we always assume that G

is connected and simply connected. If Ad(G) has the same real algebraic

closure as that of Ad(H), we say that M has the Mostow condition with

respect to G and H. When M is a solvmanifold and satisfies the Mostow

condition, the cohomology of M can be calculated by the cohomology of

the Lie algebra (see [Mo], [Rg Corollary 7.29]). But in general, it is very

difficult to calculate the cohomology for a general compact solvmanifold.

In this paper we solve the problem of for which solvmanifold we can apply

Mostow’s Theorem and first prove the following:

Modification Theorem. If M = G/H is a compact real homogeneous

solvmanifold, there is a finite abelian covering space M ′ = G/H ′, i.e., H/H ′

is a finite abelian group, such that there is another simply connected solvable
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real Lie group G′ which contains H ′ and is diffeomorphic to G such that (1)

M ′ = G′/H ′, (2) M ′ satisfies the Mostow condition with respect to G′ and

H ′.

From our proof we can easily see that we can let H ′ = H if and only

if AdH is in the identity component of the algebraic closure of AdH. We

shall see later on that this is the case for the pseudo-kähler manifolds in this

paper.

In particular, we partially solve the problem posted in [Mt1], [No], [Mo]

and have:

Cohomology Theorem. If G is solvable and H is discrete, M = G/H

is compact, then we have H∗(M ′) = H∗(G′), where G ′ is the Lie algebra of

the Lie group G′ in the Modification Theorem.

For the case in which H 6= H ′, we need a little bit more work. We have

that H∗(M) = H∗
H/H′(M ′). Major refinements have been found at the end

of the second section. But this is already good enough for this paper.

There is also a simpler proof for the modification theorem. Since G is

solvable and simply connected, G has a faithful linear representation π(G).

We can just use the algebraic closure of π(G) and use it in the place of A(G)

in the next section. But we still do not know how to get the refinement with

this new argument. If ρ is a finite dimensional representation, we can use

π + ρ in the place of π to get a similar result of the cohomology group with

respect to ρ.

A smooth 2n-dimensional manifold M equipped with a smooth transitive

action of a Lie group is what we call a homogeneous space. If in additional

M is a symplectic manifold, we refer to it as a homogeneous space with a

symplectic structure and, if the structure is invariant, a homogeneous space
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with an invariant symplectic structure.

Recently there has been much progress in the area of symplectic mani-

folds and group actions. I was interested in the classical problem of classify-

ing compact homogeneous spaces with symplectic structures. The difficulty

is that we do not know anything about the transitive group and the isotropy

group (Cf. [DG], [Hk], [Gu3]).

The case with invariant symplectic structure was solved (Cf. [Gu3]).

I am also interested in the structure of compact homogeneous manifold

with any symplectic structure (which might not be invariant under the group

action)

We also posted following conjecture therein [Gu3]:

CONJECTURE. If G/H is a compact homogeneous space with a sym-

plectic structure, then G/H is diffeomorphic to a product of a rational pro-

jective homogeneous space and another homogeneous space N , where N up to

a finite quotent is a compact quotient of a compact locally flat parallelizable

manifold with a symplectic structure.

Our Modification Theorem will be a major step toward a proof of this

conjecture. Here we call a manifold N locally flat parallelizable if N = G/H

for a simply connected Lie group G which is diffeomorphic to Rk for some

integer k and H is a uniform (i.e., cocompact) discrete subgroup.

In this paper, we shall finish the complex case and prove:

Splitting Theorem. If M = G/H is a compact complex homoge-

neous space with a symplectic structure and G is complex (we can always

assume this), then M is a product of a rational projective homogeneous

space and a complex solvmanifold N = NG(H0)/H. Moreover, if we let

G1 = NG(H0)/H0 and Γ = H/H0, then there is a subgroup Γ′ of Γ such
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that Γ/Γ′ is finite and N up to a finite quotent is a solvmanifold G2/Γ
′ with

a right invariant symplectic structure of a real Lie group G2 which contains

the nilradical of G1 and is possible different from G1. In particular, if M

has a pseudo-kählerian structure, so is N and if the pseudo-kählerian struc-

ture is also right invariant by G1 action, N is a torus. And, if M has a

holomorphic symplectic structure, then M = N .

We notice that for the splitting theorem of [Gu1,2] to hold we only need

a real symplectic structure which is invariant under the maximal compact

subgroup and this is provided by the existence of G′ in our Modification

Theorem. Also, the complex structure is right invariant under the action of

G2, see Lemma 3 in the fourth section.

Some examples with holomorphic symplectic structures will be addressed

also at the end of this paper.

The case when M = N with a right invariant pseudo-kählerian metric

was proven in [Gu1,2] (see [Gu2 proof of Lemma 1] or [DG 3.3] in 1989). The

theorem in [DG] follows also from our splitting theorem. Applying the same

method in [DG] to G2 one can easily prove that if N is pseudo-kählerian,

then the nilradical NG1
of G1 has at most two steps. An application of the

Leray spectral sequence to the fiber bundle G2/Γ
′ → G2/NG2

Γ′ shows that

the derivator [NG2
, NG2

] = 0, see Lemma 4 in the fifth section.

Moreover, with a breakthrough in Lemma 7 we prove in Corollary 1 and

Theorem 2 the following:

Chevalley Theorem. Let M = G/Γ be a compact complex solvmanifold

with a pseudo-kähler structure. The Lie algebra of G is a direct orthogonal

sum of two abelian Lie subalgebras A and V such that [A, V ] = V , V ⊂ NG,

with respect to a pseudo-kählerian structure ω which is right invariant on

5



the universal covering under the modified Lie group G2. In particular, G is

Chevalley in the terminology of [Nk]. We also have that both ω|A and ω|V

are closed, and are nonzero cohomology classes.

This is done with a new algebra called complex-parallelizabe-right-invariant-

pseudo-kählerian algebra, which is similar to what we used in [DG, Gu3] (see

our proof of the Lemma 3). The first proof of this Theorem was done with

a complicated calculation, as we did in [DG], in the March of 2007. Then

I received a paper from Yamada with an elegant proof of the Lemma 4 in

April 2007. Yamada’s proof implied some rich structures of the manifolds,

especially for the cohomologies. Then I refined his result to give a shorter

proof. After we understand better the relation between this Theorem and

the Leray spectral sequences, I obtain an even shorter proof, without using

[Ym2] and hence [Wk], in the Aug. 2009. The third proof follows a simple

argument as in [DG 3.3], which was also one of the fundamental arguments

of [DG]. I believe that the new (third) proof catches the essence of the first

proof. This paper was written with the second proof. We added the third

proof accordingly. With proving of this theorem, one can give a proof for

the whole paper basically without [Ym2] and [Wk]. See the remark after

Lemma 7. Therefore, the readers who are not familiar with [Wk] might carry

out what I said in the remark as exercises.

We also deal with the pseudo-kählerian case in the last four sections and

give a classification, see our Theorem 6, and Theorem 9. The Borel-Remmert

Theorem can also be a corollary.

We also give yet another proof of the Borel-Remmert Theorem. When

the pseudo-kählerian structure is Kähler, the original average process in

[Gu1,2] works and gives an averaged Kähler structure. Then the splitting
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theorem holds there and an application of our argument there produces

another proof of the Borel-Remmert Theorem.

An announcement [Gu4] of our modification theorem (which is a little

weaker than Theorem 1) was published with complete but sketch proofs.

The classification has been announced in [Gu5].

As an application of our work on the compact complex homogeneous

manifolds with pseudo-kähler structures we obtain many example of com-

pact holomorphic symplectic solvmanifolds which have obstructed deforma-

tions:

Holomorphic Symplectic Theorem. Every complex even dimen-

sional compact solvable complex homogeneous manifold with pseudo-kählerian

structure admits a right invariant holomorphic symplectic structure. In par-

ticular, every product of two complex odd dimensional compact solvable com-

plex homogeneous manifolds with pseudo-kählerian structures admits a right

invariant holomorphic symplectic structure.

In the last part of this Theorem, one can pick one of the manifold to

be a complex torus. A similar argument in [Nk] shows that the nonabelian

ones have obstructed deformations.

Our classification also shows that the pseudo-kähler manifold is far from

being Kähler manifolds as complex manifolds but is very close to Kähler

manifolds as symplectic manifolds.

A classification of compact solvable complex parallelizable manifolds

with holomorphic symplectic structures is overdue.

2 The Modification

1. Here we collect some results we need from the splitting theory of the
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solvable Lie group (see [Gb1]). Let G = R be a simply connected Lie group.

We call G a splittable Lie group if R = TU with T ∩ U = {e} such that T

acts semisimplely and U acts unipotently on the Lie algebra G. We call a Lie

group embedding α : G → M(G) from G to a splittable simply connected

solvable Lie group M(G) = T · S · U a Mal’cev splitting or M-splitting if

α(G) is a normal subgroup of M(G) and M(G) is a semidirect product of

T and α(G), and α(G) · U = M(G).

Lemma 1. For any simply connected solvable Lie group G there is a

unique Mal’cev splitting.

The Mal’cev splitting can be constructed as following:

For the material of algebraic group, one might look at [Ch]. Especially,

section 14 of chapter 2

Consider the adjoint representation AdG : G → GL(G); put G∗ =

AdG(G), and let < G > be the algebraic closure of G∗ in GL(G). Since

< G > is algebraic, it has a Chevalley decomposition

< G >= T ∗U∗,

where U ∗ is the unipotent radical and T ∗ is abelian and consists of semisim-

ple (i.e., completely reducible) elements. As a discrete algebraic group,

T ∗∩U∗ is finite. Let t∗ : T ∗U∗ → T ∗/T ∗∩U∗ be the natural epimorphism,

with kernel U ∗. Writing T̂ = T ∗/T ∗ ∩ U∗, we have clearly t∗(AdG) ⊂ (T̂ )0,

since G is connected. If for the connected abelian Lie group (T ∗)0 we

consider the universal covering for πT : T̃ → (T ∗)0, it is obvious that

t∗ · πT : T̃ → (T̂ )0 is the universal covering for (T̂ )0. Since G is connected

and simply connected, there exists a unique homomorphism t̃ : G → T̃ such

that t∗ ·πT · t̃ = t∗ ·AdG. Put T = t̃(G), T ∗
G = πT · t̃(G); then T is a connected
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simply connected abelian Lie group covering of T ∗, while T ∗
G ⊂< G >. We

see that T ∗
G can be regarded as a subgroup of AutG. The imbedding T ∗

G →

AutG and the homomorphism πT induce a homomorphism φ : T → AutG,

with kerφ = ker πT ∩ T discrete. Then we can get the Mal’cev splitting

M(G) = T ×φ G and M(G) = TU for a unipotent group U such that

dimU = dimR, dimU/NG = dimT,

where NG is the nilpotent radical of G.

Now we see that Aut(U) and the semidirect product Aut(U) ∝ U are

prealgebraic groups, i.e., identity components of algebraic groups. We can

regard T ∗
G as a subgroup of Aut(U). Let a(T ∗

G) be the prealgebraic hull of

T ∗
G in Aut(U), and

Al(G) = a(T ∗
G) ∝ U.

We see that Al(G) is prealgebraic. Let Ml(G) = T ∗
GU as a quotient of M(G),

we see that there is a natural embedding G ⊂ Ml(G). Then:

Lemma 2. The group Al(G) is prealgebraic, and there exists an imbed-

ding β : Ml(G) → Al(G) such that the following properties hold:

1) Al(G) is splittable, and if Al(G) = T ′U ′, where U ′ is unipotent and T ′

a prealgebraic torus, then β(Ml(G)) ⊃ U ′, where U ′ = U .

2) The prealgebraic closure of each of the subgroup β(Gl) and β(Ml(G)) in

Al(G) is Al(G) itself.

Here we like to give a very simple example: Let G = G1×G2, G1 = TN

with T , N, G2 abelian and T acts on N almost faithfully and as a compact

torus without any eigenvector. Then < G >= AdG(T )N, U ∗ = N ,

t∗ : AdG(T )N → AdG(T ) = T̂

9



πT : T → AdG(T )

t̃ : TN × G2 → T

T ∗
G = AdG(T ), φ : T → AdG(T )

M(G) = T ×φ G = TU, U = {(t, t−1, n, g)|t∈T n∈N g∈G2
}

Al(G) = Ml(G) = AdG(T )U.

2. Here we prove the modification for a compact homogeneous solvman-

ifolds. This method was first used in [Gb2]. Similar construction can be

found in the study of homogeneous Kähler manifolds, e.g., [Dm], [DN].

In this subsection we only deal with the case when G is solvable and H

is discrete, in particular H0 is also the identity.

Let M = G/H be a compact homogeneous solvmanifold of a simply

connected solvable real Lie group G. We go through the proof with the

similar notations as in [Gu3] 3.1.7., that might help us understand the both

constructions here and therein. In our case, we set G∗ = Gl = G/l(S) =

G = R be the image of G(H∗ = H/H ∩ l(S) = H be the image of H) in

Al(G). We also set P∗ be the algebraic closure of β(H) in Al(G). Then the

nilradical NR ⊂ P∗ by a theorem from Mostow [Rg Theorem 3.3] , see also

[Rg Corollary 8.27, 8.28] (in [Gu3] 3.1.7. this condition was true by the fact

that the nilradical is in the normalizer of H0, which of course is trivial in

our case here since H0 is the identity and we see that our modification is

quite different from the one we mentioned in [Gu3]). Since the subgroup

P∗ is an algebraic group, the group π0(P∗) is finite. Passing from H to the

subgroup H1 = H ∩π−1(P 0
∗ ∩H∗) of finite index, where π : M(G) → Ml(G)
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is the natural epimorphism, we might assume that H∗ ⊂ P 0
∗ by considering

a finite covering M ′ of M . This inclusion will be assumed to hold in what

follows.

We consider the natural epimorphism γ : Al(G) → Al(G)/NG. We have

Al(G)/NG = T∗ × π(U)/NG with T∗ is a prealgebraic torus; π(U)/NG =

U/NG. So Imγ = T∗ × U/NG, we denote it by A. A is connected and

Abelian. There is a natural embedding of the group G∗/NG = G/NG in

Ml(G)/NG which is contained in A.

We denote the image of G/NG by B. We have that U/NG is the pro-

jection of B to the second factor U/NG. By our construction we have

dimU/NG = dimG/NG. The composition of γ and the projection restricted

on G/NG is an onto linear map between two Eucliden spaces with same

dimensions, and therefore is an isomorphism. That implies B ∩ T∗ = {e}.

We see that the projection µ : T∗ × U/NG → U/NG to the second factor is

an isomorphism on B, i.e., B is closed in A. Now we consider the subgroup

H∗/H∗ ∩ NG of A and its closure H∗/H∗ ∩ NG (in the Euclidean topology)

which we denote by A1. Since H∗/H∗∩NG ⊂ B we have A1 ⊂ B. Since the

group B is simply connected and Abelian, A1 is a closed subgroup of it, A1

is torsion free and isomorphic to Rp ×Zq for some p, q ≥ 0.

Finally we consider the subgroup γ(P∗) ⊂ A. The subgroup Kerγ = NG

is closed in the “Zariski topology” on Al(G), so does the Lie group P∗,

therefore γ(P∗) is a closed subgroup of A. But H∗ ⊂ P∗, so H∗/H∗ ∩ NG ⊂

γ(P∗) and hence A1 ⊂ γ(P∗), i.e., A1 ⊂ γ(P 0
∗ ) by our convention. The

group γ(P 0
∗ ) is connected and Abelian and hence γ(P 0

∗ ) = K × V , where

K is a maximal compact subgroup of γ(P 0
∗ ) (which is a torus), and V is

simply connected. Since A1 is closed in A and torsion free, A1 ∩ K = {e}.
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Hence the projection K × V → V onto the second direct factor on A1 is a

monomorphism. Now it follows from this that there exists a closed simply

connected subgroup C ⊂ γ(P 0
∗ ), such that A1 ⊂ C and A1 is uniform in

C (we notice that C is not always in B). We set Φl = γ−1(C). Then

Φl ⊂ P 0
∗ and therefore has the same algebraic closure as Hl. And Φl is a

closed connected subgroup of Al(G). To it corresponds a closed connected

subgroup Φ of A(G) the universal covering of Al(G).

Let H ′ = β(H) ∩ Φ and AdΦ : A(G) → Aut(Φ), then the pull back

of the algebraic closure of Ad(β(H)) contains P∗ and hence Φ. That is,

the algebraic closure of Ad(β(H)) contains Ad(Φ). We also notice that

the algebraic closure of H ′ is a normal subgroup of A(G). Therefore, the

algebraic closures of β(H) and H ′ have the same identity component.

We say that an abelian subgroup is toric if its action is semismple. We

also use a(AdH) to denote the algebraic closure of the AdH.

With this construction at hand, we have the following theorem:

Theorem 1.: Let M = G/H be a compact homogeneous solvmanifold

of a simply connected Lie group G. Then there exists a normal subgroup H ′

of finite index in H and a subgroup Φ of A(G), such that:

(a) Φ is a connected, simply connected, closed subgroup of A(G), containing

H ′ and NG,

(b) UΦ = UG (although M(Φ) and M(G) are not generally isomorphic),

(c) for the decomposition A(G) = TU with T a prealgebraic toric Abelian

subgroup of A(G) we have Φ ⊂ TG, G ⊂ TΦ, where Φ∩T = G∩T =

{e},

(d) there exists a diffeomorphism η : Φ → G which is the identity on the
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subgroup H ′ and induces a diffeomorphism Φ/H ′ → G/H ′, Actually,

it induces a diffeomorphism of the torus bundles G/H ′ → G/H ′NG

and Φ/H ′ → Φ/H ′NG.

(e) AdΦ has the same algebraic closure as that of AdH ′.

Moreover, H ′ = H if and only if AdH is in the identity component of the

algebraic closure of AdH. In general, H/H ′ is the abelian group

a(AdH)/a(AdH)0.

Proof: The diffeormorphism is induced from the torus isomorphism

(Φ/N)/(H ′/N ∩ H ′) → (G/N)(H ′/N ∩ H ′).

By our condtruction, we also see that Φl is simply connected since C is.

Therefore, Φ = Φl. For the last sentences we notice that we have the maps:

H/H ∩ NG → G/NG → Ml(G)/NG → Al(G)/NG →< G > /AdG(NG).

According to [Rg] p.11, the algebraic closure HAl
of H/H∩NG in Al(G)/NG

is a product of a subgroup AAl(G) of α(T ∗
G) and an unipotent subgroup of

U . The latter is connected. The connected components of HAl
is determi-

nated by those of AAl(G). Similarly, the connected components of algebraic

closure HAd of Ad(H)/Ad(H)∩Ad(N) is determinated by the those of the

corresponding AAd ⊂ T ∗
G. But with the induced maps

T ∗
G → α(T ∗

G) → T ∗
G

we see that the connected components of AAl(G) are one to one corresponded

to those of AAd.
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Q. E. D.

We obtained our Cohomology Theorem by applying the Mostow The-

orem (see [Rg Corollary 7.29]). One might notice that our proof here is

almost word to word identical to the corresponding parts 3.1.6 and 3.1.7 in

[Gu3], but the purposes are quite different.

The existing of H/H ′ is not too bad. Once we understand how H/H ′

acts on H ′, we should be able to calculate H∗
H/H′(M ′). Those hyperelliptic

surfaces at the end of page 586 in [GH] are good examples. Since A(G) =

TΦ, the semisimple action of T on the Lie algebra G2 of Φ induces a T action

Φ. Therefore, A(G) acts on Φ with isotropic group T . In particular, H acts

on Φ and induces an action on G2. That is, H acts on G2 and H ′ is in the

kernel of the action. We have

H∗(M) = H∗
H/H′(M ′) = H∗

H/H′(G2).

The reason that this is true is that

G = Aut(G2) ∝ G2 → G2

induces a homogeneous structure on G2 with an action of G. Regarding

H having a group homomorphism onto a subgroup of G, it sends the left

invariant forms to the left invariant forms.

3 Splitting of the Manifolds

For the proof of the Splitting Theorem, one could easily apply the cohomol-

ogy Theorem to G1/Γ and follow the proof of our previous work in [Gu2].

For the convenience to the reader, here I should give a sketch of the

proof:
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The method in [Gu2] is to prove that the fiberation

G/H → G/NG(H0)

is a product.

First, we use the Leray spectral sequence to prove that the fiber NG(H0)/H

is solvable. To see this, we let K be the maximal connected semisimple sub-

group of G1 = NG(H0)/H0. Then K acts on M from the right side. We

have the quotient M//K, and we want to get a K bundle to apply the Leray

spectral sequence.

For a reference of the spectral sequences, see [GH p.463].

A problem might be that MK = M//K might have some singularity.

However, in [Gu2] we proved that up to a finite covering we can make MK

smooth. By the Leray spectral sequence, the symplectic class is a sum of

ω1, ω2 and ω3 with ω1 ∈ H0(MK ,H2(K)) = 0, ω2 ∈ H1(MK ,H1(K)) = 0,

and ω3 ∈ H2(MK ,H0(K)) = H2(MK ,R). But the symplectic structure

is nondegenerate. That forces K to be the identity. We have that G1 is

solvable.

Now, with G1 solvable we can apply the modification theorem. By the

argument in [Gu2], there is a finite covering M ′ = G/H ′ of M such that there

is a differential form ω0 in the symplectic class of the original symplectic

structure on M ′ which is invariant under the left action of the maximal

compact subgroup KG of G and invariant under the right action of G2.

Then ω0 is nondegenerate everywhere and is a symplectic structure itself.

Let SKG
be the semisimple part of KG. Since ω0 is invariant under the

action of SKG
, we can prove as in [Hk] and [Gu2] that the moment map

of SKG
gives a trivial bundle over a rational projective homogeneous space.

Therefore, M ′ is a product of a rational projective homogeneous space and
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a solvmanifold. So is M .

4 Invariance of Complex Structure

Moreover, since G1 is a complex Lie group, we have at e

Ad(g) · J = J · Ad(g)

for any g ∈ G1. Therefore, we also have that

α · J = J · α

for any α ∈< G1 >. Now we let

j(x + t) = Jx (mod Lie(< G1 >)),

where Lie(< G1 >) is the Lie algebra of < G1 >. One could easily check

that

[j(x + t), j(y + s)] = −[x, y]

= −[x, y] + jt(jy) + t(y) − s(x) − js(jx) + [t, s] (modLie(< G1 >))

= j[j(x + t), y + s] + j[x + t, j(y + s)] + [x + t, y + s]

for any x, y ∈ G1, s, t ∈ Lie(< G1 >). That is, the complex structure on

G1 is always invariant under the action of A(G1), see [Dm, DN, DG] for

this formula. This is because of that the action of A(G1) on G1 is factored

through the map:

AdG1
: A(G1) →< G1 > .

Lemma 3.: The complex structure on N of the Splitting Theorem is

right invariant under the action of G2.
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5 The Two Steps Theorem

For the pseudo-kähler case, we can use the Leray spectral sequence argument

again. We have a fiber bundle

G2/Γ
′ → G2/Γ

′NG1
.

Now any element α in H1(NG1
/Γ∩NG1

,R) is β + β̄ with a holomorphic

right invariant form β since NG1
is nilpotent and complex. By α being

closed, we have that β is closed. This means that dβ = 0 and β is not from

the derivation [NG1
, NG1

] but from NG1
/[NG1

, NG1
] since NG1

is complex

(see [Gu1]). We actually shall prove in Lemma 7 that β = 0 for those

β involved in the ω below. This can be done without Lemma 6.

That implies in Theorem 2 that G2 is Chevalley. This is the major

breakthrough in this paper, which leads to the classification.

Let ωF = ω|NG1
/Γ∩NG1

∈ H2(NG1
/Γ ∩ NG1

,R). By dωF = 0 and ωF =
∑

i aiβi∧ β̄i with βi a basis of holomorphic differential form on NG1
/Γ∩NG1

we see that dβi = 0 if ai 6= 0. That is, ωF comes from NG1
/[NG1

, NG1
] also.

Let A be a complement of the Lie algebra of NG1
in the Lie algebra of G1

with respect to the modification of the torus action. For convenient, we also

denote the Lie algebra of NG1
by NG1

when there is not confusion. Then

ω ∈ ∧2A∗+A∗∧N∗
G1

+∧2N∗
G1

. We write ω = ω0+ω1+ω2 correspondingly. We

want to see that ω1 ∈ A∗∧N∗
G1

is in H1(B,H1(F )). ω1 =
∑

j(αj∧β̄j+ᾱj∧βj)

with βj ∈ NC,∗
G1

being holomorphic. We notice that by our assumption ∂β̄

can not have any term of ᾱ∧β ′ for any β, β ′ ∈ NC,∗
G1

being holomorphic (see

also the last statemnet of Lemma 5). Therefore, by closedness of ω we have

βj ∈ H1(F ). We can identify ω2 with ωF .

A similar argument as in the proof of Lemma 7 later without
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using Lemma 6 will also imply that ω1 = 0 and A is an abelian Lie

algebra itself.

So, a right invariant pseudo-kähler form on G2/Γ
′ actually comes from

M1 = G2/[NG2
, NG2

]Γ′ since all the three parts in the Leray spectral squences

come from M1. By the nondegeneracy of the pseudo-kählerian form we see

that G2/Γ
′ = M1.

Lemma 4.: If M is a pseudo-kählerian manifold in the Splitting The-

orem, then N is a complex torus bundle over a complex torus and up to a

finite covering has a right G2 invariant pseudo-kählerian structure. G1 and

G2 have abelian nilradicals.

For a weaker version of this Lemma, see also [Ym2] for a confirmation,

with a different proof.

We should also prove later on that the torus bundle can be chosen to

be a pseudo-kählerian torus bundle over a pseudo-kählerian torus. That

is, the pseudo-kählerian structure splits also. These compact complex ho-

mogeneous parallelizable manifolds also show that the similar result of the

Mostow Theorem for the Dolbeault cohomology does not work in general,

since the holomorphic 1-forms (as elements in H 1,0(N)) are generally not

right invariant under the modified Lie group which satisfies the Mostow

condition.

6 The Corresponding Lie Algbras

A further application of the argument of the modification theorem is the so

called complex-parallelizable-right-invariant-pseudo-kählerian algebra.

Now we start from the good solvable Lie group Φ in the second section,

i.e., we assume the Mostow condition. We denote Φ by G instead. We
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investigate the opposite question of second section, that we modified G by

a torus T such that the modified group is a complex group.

Lemma 5.: Let N = [G,G] and A be the complement of N in G with

respect to the prealgebraic toric abelian group T , Then for any x, y ∈ AC

such that jx = ix, jy = −iy, we have [x, y] = 0. Similarly, if z ∈ N C is

holomorphic, so is [w, z] for any w ∈ G.

Proof: Since T (A) = 0, we have that t(y)(x) = 0 = t(x)(y). Moreover,

j[x + t(x), y + t(y)] = [j(x + t(x)), y + t(y)] = i[x + t(x), y + t(y)],

and

j[x + t(x), y + t(y)] = [x + t(x), j(y + t(y))] = −i[x + t(x), y + t(y)].

That is, [x + t(x), y + t(y)] = 0, we have [x, y] = t(y)x − t(x)y = 0.

Q. E. D.

This is true for any modification of a solvmanifold of a complex solvable

Lie group.

Lemma 6.: The action of the elements in G on N are semisimple with

real eigenvalues, The action of A on N is isogent to a product of several

algebraic Gm’s modulo the kernel.

Proof: Here we use the argument in [Wk] Proposition 7.6.8. When we

calculate the H1,0(M) by the Leray spectral sequence, there is one factor

from H0(T,H1,0(F )) and another factor from

H1(T,H0,0(F )) = H1(T,C) = A,

where T = G/ΓN and F = N/N ∩ Γ. Now F is a torus and we have

that dimC H1,0(F ) = dimC F . If X is a holomorphic vector field, we let
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α = ω(X, ) ∈ H1,0(M). If X1, · · ·Xn is a basis, then α1 ∧ · · · ∧ αn ∧ Ω =

aωn is a nonzero volume form with a ∈ C, where Ω is the dual of Ω∗ =
∧

i Xi. That is, αi is nonzero in H1,0(M), and αi are linear independent in

H1,0(M). Here H1,0(F ) can be regarded as a holomorphic vector bundle

with an antiholomorphic A action. By [Wk] Proposition 6.2.5 we only need

to consider the sections of a trivial subbundle E over T . That is,

dimC H0(T,H1,0(F )) = dimC H0(T,E) = dimC E.

But

dimC T + dimC E = dimC H1,0(M) ≥ n = dimC T + dimC F.

Therefore, dimC E = dimC F and αi is a basis of H1,0(M). Also, by [Wk]

Proposition 7.2.1 there is a holomorphic group action on the fiber extending

the action of Γ1 = Γ/Γ ∩ N . For our case, we only deal with an abelian Lie

group and the proof for the Proposition 7.2.1 should be much easier for our

circumstance.

Moreover, H1,0(F ) is generated by linear combinations of αi. By our

construction there is also an antiholomorphic action of A on the fiber ex-

tending the action of Γ1. By the argument of [Wk] Proposition 7.6.8 we

have the map ρ1 : A → (Gm)k. In [Wk] (Gm)k is the algebraic closure of the

image ρ1. We claim that one actually have that ρ1 is onto. We only need to

prove for the case when ρ1 is locally effective. In that case we only need to

prove that the rank of Γ2 = Γ1∩ker ρ1 is k. If the rank of Γ2 is l < k, we let

A1 be the complex space generated by Γ1. Then there is a homomorphism

A → A/A1 = Ck−l. Then the argument in the proof of [Wk] Proposition

7.6.8 shows that k − l = 0, a contradiction.

Q. E. D.
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For a weaker result, see [Ym2].

Lemma 7.: The factor of ω that comes from H1(T,H1(N,R)) in the

Leray spectral sequences is zero.

Proof: Let N1 ⊂ N be the subalgebra consist of all the elements in N

which are perpendicular to N . Then N1 is an ideal since ω(n, [y, n1]) =

ω([n, y], n1) = 0 for any y ∈ G, n ∈ N,n1 ∈ N1. We only need to prove that

N1 = 0.

Otherwise, ω is trivial on N1 and we let n1 be an eigenvector. Let

z = n1 − ijn1, then jz = jn1 + in1 = iz. Let N0 ⊂ N be the subalgebra

generated by a set of linearly independent eigenvectors in N such that N0

is complement of N1, then N0 is also an ideal by our construction and ω is

nondegenerate on N0.

Let B0 be the subset perpendicular to N0, then B0 is a subalgebra by

N0 being an ideal. Let B1 be the subset perpendicular to N1 and B1 is also

subalgebra. The intersection C = B0 ∩ B1 is then a subalgebra. C is an

ideal of B0. Let C0 be a complement of N1 in C with zero t(x) eigenvalues.

Let C1 ⊂ B0 be the subset perpendicular to C0, then C1 is an ideal of B0

and ω are nondegenerate on B0, C0 and C1.

Modify A of Lemma 5 if necessary such that A is perpendicular to N0

and C0 ⊂ A. This is possible since t(x)B0 ⊂ N1 and the proof of Lemma 5

still go through. We still denote it by A. Then A ⊂ B0.

Let A0 = C0 be all the elements in A which is perpendicular to N ,

A1 ⊂ A all the elements perpendicular to A0. By a proper modification of

A, we can let A1 ⊂ C1. This is possible since t(x)C1 ⊂ N1 and the proof of

Lemma 5 still go through.
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We have

ω ∈
2

∑

i=1

∧2A∗
i + A∗

1 ∧ N∗
1 + ∧2N∗

0 .

Then there is one term z∗ ∧w∗ with w = y + ijy with a y ∈ A1 and it is the

only one with w∗. We have dw∗ = 0. Then there is either a term z∗∧a∗∧w∗

with a ∈ AC and ja = ia, or a term a∗
1 ∧ a∗2 ∧ w∗ with a1, a2 ∈ AC and

jak = iak, k = 1, 2 in ∂(z∗ ∧w∗). The latter can not come from another this

kind of term since we assume that there is only one of them with w∗, and it

can not come from the ∂(a∗∧n∗) with n ∈ N1, a ∈ A and jn = −in, ja = ia

by lemma 5. But the first term can not come from another term.

Q. E. D.

Remark: Similar arguments can also give Lemma 7 with only Lemma

4 and 5 but without Lemma 6. With Lemma 7, a similar argument as

in the proof of the Lemma 7 implies A is an abelian subgroup. Further

manipulation of the pseudo-kähler form implies that A acts semisimplely on

NG and the eigenvalues come out as pairs α,−ᾱ. The unimodular property

of the action of A then implies that all the α’s must be real. All these

therefore can be done without [Ym2] and [Wk].

Corollary 1.: A is perpendicular to N .

Theorem 2.: A is an abelian Lie subalgebra and the elements in A

acting on N are semisimple with real eigenvalues. Therefore, G is Chevalley.

Proof: For any a1, a2 ∈ A, we have that ω([a1, a2], n) = ω(a1, [a2, n]) +

ω(a2, [n, a1]) = 0 for any n ∈ N . Therefore, [a1, a2] = 0.

Q. E. D.

Theorem 3.: If ω(n1, n2) 6= 0 for eigenvectors n1, n2 with real eigen-

value functions k1(a), k2(a), then k2(a) = −k1(a). ω(n1, jn1) = 0 always.
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Proof: k1ω(n1, n2) = ω([a, n1], n2) = ω(n1, [n2, a]) = −k2ω(n1, n2).

By [a + t(a), jn1] = j[a + t(a), n1] and jt(a)n1 = t(a)jn1 we have that

[a, jn1] = j[a, n1] = k1(a)jn1. Therefore, ω(n1, jn1) = 0 since k1 6= 0.

Q. E. D.

The argument in the Lemma 6 now shows that if we write A and N by

complex coordinates z1, · · · , zk; w1, w2, · · · , w2l−1, w2l such that ω2 = dw1 ∧

dw̄2 − dw2 ∧ dw̄1 + · · · + dw2l−1 ∧ dw̄2l − dw2l ∧ dw̄2l−1, then the eigenvalue

functions are k2s−1(z) = Rels(z), k2s(z) = −k2s−1(z), where ls are complex

linear function of z.

Let L(z) be the diagonal matrix with ls as the nonzero elements. We

have product

(z, w)(z′, w′) = (z + z′, exp(ReL(z))w′ + w).

The corresponding complex Lie group is

(z, w)(z′, w′) = (z + z′, exp(L(z))w′ + w).

The right invariant holomorphic differential forms are dzk, exp(−ls(z))dws.

The basis for H1(G/Γ,O) are dz̄k, exp(−ls(z))dw̄s. The basis for H1,1 ∩H2

are dzk ∧ dz̄l, dws ∧ dw̄t − dwt ∧ dw̄s, i(dws ∧ dw̄t + dwt ∧ dw̄s) with ls = −lt.

In particular, the dimension of the Dolbeault cohomology is much bigger

than that of the de Rham cohomology.

We actually always have:

dimC(H1(M,C) ∩ H1,0(M)) = dimC(H1(M,C) ∩ H0,1(M)) = dimC A,

and

dimC H1,0(M) = dimC H0,1(M) = dimC M = dimC A + dimC N.
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7 Compact complex homogeneous manifold with

a pseudo-kählerian structure

After our understanding of the Lie algebra in the last section, we deal with

the original manifold with the original complex Lie group.

It will be convenient for us that we use both A and N for both the

subalgebras and their corresponding subgroups if there is no confusion.

From the group level, the action of A on N is an algebraic group action

of a product of C∗’s. The characters of C∗ are just the integer powers.

Therefore, L(z) is a matrix of integer numbers, i.e., the coefficients of ls can

be chosen to be integers. Moreover, if we write zk = xk + iyk then in the

modified group the action is only related to the integer linear combinations

of xk.

ΓN/N acts on NZ = Γ∩N as a rational representation of Zn. Therefore,

applying [Ti] Theorem 7.2 to our circumstance we see that the representation

is isogent to a product of representations with only pair of eigenvalues k2s−1

and k2s = −k2s−1. This is also comparable with the complex decompositon.

If the action of A on N only have one pair of eigenvalue functions k1 and

k2 = −k1 we call the compact complex parallelizable homogeneous manifolds

with a pseudo-kählerian structure a primary pseudo-kählerian manifold .

Theorem 4.: Every compact complex parallelizable homogeneous man-

ifold with a pseudo-kählerian structure is a pseudo-kählerian torus bundle

over a pseudo-kählerian torus which, up to a finite covering of the fiber, is

a bundle product of primary pseudo-kählerian manifolds.

We call a primary pseudo-kählerian manifold a reduced primary pseudo-

kählerian manifold if the action of A on N is almost effective. We could

always modify ω1 to whatever invariant form on A. We then have:
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Theorem 5.: After modifying of ω1 any primary pseudo-kählerian man-

ifold is, up to a finite covering, a product of a torus and a reduced primary

pseudo-kählerian manifold. Moreover, dimC A = 1 and dimC N = 2m with

m the complex dimension of the eigenspaces for a reduced primary pseudo-

kählerian manifold. In particular, the index of a reduced primary pseudo-

kähler space is either 1 or −1.

For the reduced primary space, we have l1(z) = z and l2(z) = −z. The

fiber torus up to a finite covering can be splitted into complex irreducible

ones with respect to the A action. For a primary pseudo-kähler space, if

the fiber is also an irreducible complex torus with respect to the A action,

we call it a primitive pseudo-kähler space. If the A action is also almost

effective, we call it a reduced primitive pseudo-kähler space. By modifying

ω1 on A we can always obtain any reduced primary space, up to a finite

covering of the fiber, from a torus bundle product of primitive ones.

For a primitive pseudo-kählerian space, the rational representation NZ

of Z = ΓN/N can be splitted into two dimensional spaces, but m above can

be any positive integer.

Theorem 6.: Any compact complex parallelizable homogeneous space

with a pseudo-kähler structure as a torus bundle over T is, up to a finite

covering of the fiber, a bundle product of primitive pseudo-kählerian spaces.

Moreover, a primitive pseudo-káhlerian space is, up to a finite covering,

a product of a torus and a reduced primitive pseudo-kähler space. For a

primitive pseudo-kählerian manifold, m can be any given positive integer.

Proof: We only need to prove the last statement. Using the construction

of Yamada, we notice that construction of the Γ action has nothing relate

to the complex structure. We now want to construct a real lattice on Cm
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which does not have any subgroup which is a nontrivial lattice of a lower

dimensional complex subspace. That is, the corresponding torus is simple

(does not have any proper subtorus). Then we apply Yamada’s action on

the direction sum of two copies of our Cm. Actually, we shall see in the

next section that any primitive pseudo-kählerian manifold has this form if

N/N ∩ Γ is not simple as a complex torus.

Q. E. D.

8 Constructions and Classification

In this section, we shall reconstruct Yamada’s example and construct more

examples of reduced pseudo-kähler space of any complex odd dimension.

We recall that the fiber F = N/Γ ∩ N .

We call a reduced primitive pseudo-kähler space a simple reduced prim-

itive pseudo-kähler space if F is a simple complex torus.

We call a reduced primitive pseudo-kähler space a double reduced primi-

tive pseudo-kähler space if F is isogent to a product of two identical complex

torus.

We now construct some new three dimensional reduced primitive pseudo-

kähler spaces by constructing new lattice in C2 which is invariant under

an element of SL(2,Z). Let B =

[

0 1
−1 n

]

with n > 2 a integer, γ1 =

(1, 0), γ2 = Bγ1, γ3 = i(1, t), γ4 = Bγ3. Let Lt be the lattice in C2 generated

by Pγi i = 1, 2, 3, 4 with PBP−1 diagonal as it is in [Ym]. Then L0 is the L2

in [Ym p.117]. We can use Lt instead of L2 in Yamada’s construction. We

obtain the reduced primitive pseudo-kähler space Mt. When t ∈ Z, Mt is

just the Yamada’s example. When t ∈ Q, Mt is a double reduced primitive

space. When t ∈ R−Q, Mt is a simple reduced primitive space.
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In the proof of Theorem 6, we constructed the 2m + 1 complex dimen-

sional double reduced primitive pseudo-kähler space by letting L = P (Γ,Γ)

with Γ a simple lattice in Cm.

Theorem 7. Let M be a reduced primitive pseudo-kähler space, if F is

not simple, then M must be a double reduced primitive pseudo-kähler space

constructed above.

Proof: Let α be a generator in the corresponding lattice of Gm (e.g.,

α = PBP−1 in the examples above. In general, as an action on vector space

over R the matrix representation of α is just a product B’s). If F1 is a

proper subtorus of F , then F0 = F! ∩ αF1 is a proper subtorus and it is

invariant under α. Therefore, F is isogent to a product of two proper A

invariant complex subtorus and M is not primitive. We have that F0 is just

finite points. F 1 = F1(αF1) must be F . Otherwise we apply our argument

for F0 above to F 1 and have a contradiction.

Q. E. D.

Theorem 8. The generic reduced primitive pseudo-kähler spaces are

simple primitive pseudo-kähler spaces.

Proof: With a fixed eigenspace Cm in N , the moduli of the 2m+1 com-

plex dimensional double reduced primitive pseudo-kähler spaces constructed

above has complex dimension 2m2.

If F is a simple complex torus with a latice Γ in C2m and Γ is invariant

under the A with a corresponding action of (Cm,Cm), then we can construct

a simple reduce primitive pseudo-kähler space as above.

Therefore, the construction has a moduli space of complex dimension

4m2 > 2m2. Thus, the generic example constructed in this way is simple.

Q. E. D.
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All the reduced primitive pseudo-kähler spaces can be constructed in

this way.

Let us recall that a projective rational homogeneous space is a complex

manifold G/P with G complex semisimple and P a parabolic subgroup of

G, that is, P contains a Borel subgroup B of G which is generated by a

Cartan subgroup and all the positive root vectors.

Finally, with the splitting theorem we have:

Theorem 9.: Every compact complex homogeneous manifold with a

pseudo-kählerian structure is a product of a projective rational homogeneous

space and a solvable compact parallelizable pseudo-kähler space. In partic-

ular, any compact parallelizable pseudo-kähler space is solvable. Moreover,

any compact parallelizable pseudo-kähler space M is a pseudo-kählerian torus

bundle over a pseudo-kählerian torus T such that M , up to a finite cover-

ing of the fiber, is a bundle product of several simple and double primitive

pseudo-kähler spaces.

9 Further Results

Now, we consider the case m = 1. That is, dimC M = 3. In this case A is

locally isomorphic to Gm = C∗. F = T 2 is a complex two dimensional torus.

Let Λ be the lattice for F , i.e., F = C2/Λ. Let α ∈ Gm be a generator of

the infinite part of the corresponding lattice of Gm (the lattice might have

a finite subgroup which acts on C2 as Z2 generated by −1), then αΛ ⊂ Λ

and α 6= 1.

Let γ ∈ Λ be a prime element. Since the elementary polynomial of α

has degree 2 and α has eigenvalues ek with k ∈ R, ek1 = α and k2 = −k1,
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γ and αγ consist of a basis of C2. The representation matrix of α must be
[

0 1
−1 n

]

with an integer n > 2 and α = n
2 +

√

n2

4 − 1. Therefore, we classify all the

possible α. This is the same for any positive integer m above.

We see that there is a δ ∈ Λ such that Λ is generated by γ, αγ, δ, αδ.

Moreover, γ is not an eigenvector of α. Therefore, C2 is generated by γ

and αγ. We could just let γ = (1, 0) and αγ = (0, 1). We write δ = (d1, d2).

By picking up the right basis of C2 we could always assume that Imd1 > 0

and 0 ≤ Red1,Red2 < 1. Therefore, obviously we can classify all the pseudo-

kähler three spaces. Similar things could be done for higher dimensional

spaces.

For a much weaker version of the complex three dimensional case, see

[Ha] for a confirmation.

One more observation is that:

Let Z represent the coordinate for one of the eigenvector space for a

primary space and W for the other, then dZ ∧ dW is closed. Therefore, we

have the holomorphic symplectic theorem:

Theorem 10. Every complex even dimensional compact complex homo-

geneous solvmanifold with pseudo-kählerian structures admits a holomorphic

symplectic structure. Moreover, it is a holomorphic symplectic torus bundle

over a holomorphic symplectic torus. In particular, every product of two

complex odd dimensional compact complex homogeneous solvmanifold with

pseudo-kählerian structures admits a holomorphic symplectic structure.
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