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In this paper, we deal with the problem of classifying compact

complex solvmanifolds with holomorphic symplectic structures

and obtain some structure results which make the classification

possible. In particular, we reduce the classification to the nilpo-

tent case with the same dimension, which we call the nilpotent

reduction. The same method also works for the real compact

solvmanifolds with real symplectic structures. The real six di-

mensional case was treated completely. This is one of the major

steps to obtain further examples of compact holomorphic sym-

plectic manifolds. For example, the Kodaira-Thurston surface

is NOT a complex homogeneous manifold with a transitive Lie

group action which keeps the complex structure invariant, but a

real solvmanifold with a complex structure.
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1 Introduction

Let M be a complex manifold, ω be a closed differential 2-form representing

a class in H2(M,R). If dimC M = n and ω is nondegenerate at every point,

i.e., ωn 6= 0 at every point, we call ω a symplectic structure. If ω is also in

H1,1(M), we call it a pseudo-kählerian structure of M . If, at the other end,

ω is in H2,0(M) + H0,2(M), we call it a holomorphic symplectic structure.

In the latter case, ω is the real part of the usual holomorphic 2-form.

In the case in which M is also Kähler as a compact complex manifold, M

to be holomorphic symplectic is the same as it is hyperkähler. There are a lot

of interests in the relation between hyperkähler and holomorphic symplectic

manifolds. Although there have been a lot of efforts to find new examples

of the compact simply connected ones of both of them, the examples are

still very few. Therefore, it is essential for us to see how far we could go

in the direction of [Gu10]. Some effort has also been done earlier in [GK]

(also [Gu2]) for the nilpotent case. In this paper, we shall also address the

non-nilpotent solvable case.

A compact complex homogeneous space with a pseudo-kählerian struc-

ture (not necessary invariant) was classified in [Gu1]. It is a product of a

classical projective homogeneous space and a pseudo-kähler complex solv-

manifold.

It turns out that all the pseudo-kähler complex compact solvmanifolds

have holomorphic symplectic structures when they have even complex di-

mensions. Actually they are hypersymplectic with a non-right invariant

involution which is anti-commutative with the symplectic structure. When

the complex dimension is odd, we can always make it even by product with

a complex torus. Actually we proved that if a compact complex solvmani-
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fold is pseudo-kähler-like, i.e., if the complex Lie group is the same as some

of the pseudo-kähler ones, then the manifold has a right-invariant holomor-

phic symplectic structure coming from the universal covering. These are a

little bit more than those manifolds which are actually pseudo-kählerian.

For example, the examples III-(3a) in [Nk] are pseudo-kähler-like but not

pseudo-kähler.

On the other hand, by the method in [Gu2], it is easy to construct

compact complex nilmanifolds with holomorphic symplectic structures.

Question 1: Are all the compact holomorphic symplectic solvmanifolds

from some kind of combination of these two classes of holomorphic symplec-

tic manifolds?

Most people might give a negative guess. But against all odds, from all

the information we already have, this might be true in certain sense. In

an earlier paper [Gu9], we saw that this is true for the case in which the

complex dimension is at most 5. We should see in the last section that in

the complex dimension eight, the complexification of the Benson-Gordon

manifold has a two steps nilpotent radical with non-nilpotent actions at

each level. Therefore, it is not the product in the strict sense. However,

the non-nilpotent actions are: A. Semisimple; B. With pairs of eigenvectors

of opposite eigenvalues. Therefore, after modification of forgetting the non-

commutative products in the nilradical, it is pseudo-kähler-like.

In general, so far we could not get A. yet. However, we can get B.:

Theorem A. Let G/Γ be a compact complex solvmanifold with a holo-

morphic symplectic structure, a be a non-nilpotent element in the Lie alge-

bra. Then the semisimple part of ada has pairs of eigenvectors with opposite

eigenvalues.
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Now, the following question is very natural:

Question 2: Let M = G/Γ be a compact complex solvmanifold with a

holomorphic symplectic structure. Could the Lie algebra of G be a direct

sum of two Lie subalgebras A and N such that [A,N ] ⊂ N with A abelian,

N nilpotent? That is, could G be Chevalley in the terminology of [Nk]1?

We saw that this is also true for those cases in which the complex di-

mension is at most 5 in [Gu9]. Moreover, we see that the action of A on N

is always semisimple. One might conjecture that this is true for any com-

pact complex solvmanifold. That is, we have the Semisimple Chevalley

Conjecture that any compact complex solvmanifold is Chevalley with A

acts on N semisimply.

In [Gu4], we prove that any compact complex homogeneous manifold

with a holomorphic symplectic structure is actually a complex solvmanifold.

Although the argument for the pseudo-kähler case and the general real sym-

plectic case had a gap (it was fixed in [Gu5, 6, 1]), the argument worked well

for the holomorphic symplectic case, which was our major purpose there.

Notice that all the holomorphic forms are right invariant. A classification of

compact solvable complex parallelizable manifolds with holomorphic sym-

plectic structures is overdue.

In this paper we shall deal with the general case and obtain some struc-

ture results. In the process, we see that our methods actually also work

for the compact real solvmanifolds with real symplectic structures. This is

essential if we really try to apply the method of [Gu10]. Notice that the

Kodaira-Thurston surface is not a complex homogeneous space.

In section 2, we apply our modification method again. This time, instead

1It is easy to check that our condition implies the existence of a Chevalley decompo-
sition in [Nk] p.91.
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of using a finite covering and changing the Lie group structure as we did in

[Gu5], we have to change the manifold completely. We first tried to obtain a

semisimple Chevalley modification with the same dimension. It does not al-

ways work. The reason is that we could not get a nondegenerate symplectic

form on it in general. Therefore, we got a semisimple Chevalley modi-

fication of complex dimension n + b1, where b1 is the first Betti number of

M . To our surprise, in the third section, we found that the restriction of the

symplectic form (after a modification) on the nilshadow is nondegenerate.

Therefore, we have a nilpotent modification of the same complex dimension

instead. We call the nilmanifold modification the nilpotent reduction.

We have:

Theorem B. For any compact complex holomorphic symplectic solvman-

ifold of complex dimension n, there is a holomorphic symplectic semisimple

Chevalley modification of complex dimension n + b1 and a corresponding

holomorphic symplectic nilpotent reduction of complex dimension n.

Notice that in the complex case b1 is always even.

In the fourth section, using the Dirichlet Theorem for the algebraic units,

we proved that:

Theorem C. For any compact solvmanifold M = G/Γ, there is a finite

covering M ′ = G/Γ′ such that AdΓ′ has only real eigenvalues on the Lie

algebra.

Using Theorem C, we can assume that after modification through the

original finite covering method as we did in [Gu5], the Lie algebra only have

real eigenvalues. That is, if we assume that ada = R+I +N with R the real

semisimple part, I the pure imaginary semisimple part, and N the nilpotent

part, then the original modification through the finite covering as we did in
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[Gu5] can be achieved by forgetting I.

We carry all our arguments to the real compact solvmanifolds with real

symplectic structures. The modification of this paper is adding the element

R and a companying trivial element T . If the same dimensional semisimple

Chevalley modification is successful, it is doing so by forgetting N . But

in general, we have to use the higher dimensional semisimple Chevalley

modification. The dimension is n+2b1 instead of n+b1 in the complex case.

Surprisingly, the restriction of the symplectic structure (after a modification)

on all the N including the original nilpotent ones, i.e., the nilshadow, is

nondegenerate. Therefore, we have the nilpotent reduction again.

In particular, we classified the real compact six dimensional solvmani-

folds with real symplectic structures, following a suggestion from Professor

Anna Fino. There are only six corresponding nilpotent reductions. Our

classification fits quite well with the classification in Bock’s dissertation [Bk]

later told by professor Salamon.

For the complex case, there are more obstructions by the cocompact

discrete subgroups (Cf. [Gu9], [Ba]). The only survivor for the nilpotent

reduction is the last one, which is abelian. Therefore, we have:

Theorem D. All the complex six dimensional compact holomorphic sym-

plectic solvmanifolds are pseudo-kähler-like.

It is plausible that our results made a computer program for the classifi-

cation of real compact solvmanifold with real symplectic structures possible.
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2 Semisimple Chevalley modifications of compact

complex solvmanifolds with holomorphic sym-

plectic structures

In this paper, if there is no confusion we shall use the same notation, e.g.,

G, for both the Lie group and its Lie algebra—just as what we did in [Gu3].

The reason is: the Lie algebra is part of the Lie group. And it is very

convenient for us.

Now, we assume that the solvable manifold is not nilpotent. Therefore,

there is at least a non-nilpotent element γ1 ∈ Γ in the Lie group which is not

unipotent. It corresponds to a linear action Aγ1
on the Lie algebra by the

induced inner automorphism. Let N be the commutator of G. Aγ1
actually

acts on the rational Lie algebra of N ∩ Γ, which we also denote by N by

abusing the notation. By [Bo] Chapter 7, Section 5, no. 9, Theorem 1, any

rational action A on the N can be written as sn with s semisimple and n

unipotent rational actions. Actually, by our construction, all the eigenvalues

of A are algebraic units. Therefore, when we apply the Chinese Reminder

Theorem in [Hu p.18], we use it for the algebraic numbers field generated

by the eigenvalues and obtain a polynomial with algebraic numbers. By

the coefficients being invariant under the Galois group we have that the

coefficients are rationals. To go one step further, we notice that s acts on

the lattice in the Lie algebra, which is the preimage of the lattice through

the exponential map (see also [Au] page 246). The reason is that the lattice

is a Z module which, after extension, is a direct sum of submodules which

are the modules of the ring generated by Z and the eigenvalues (and its

conjugates, see [BS p.83]), which are algebraic units. The original lattice

is a subset invariant under the Galois group action. By the construction of
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the Jordan decomposition, we see that s also acts on the lattice. We denote

the map from A to s by ϕ, i.e., s = ϕ(A). For many mathematicians,

this decomposion is called the Jordan decomposition. It is related to the

Jordan decompositon of the linear algebra. It is called Chevalley-Jordan

decomposition in [Hu]. Personally, I was taught by Professor Dorfmeister in

the Lie algebra level. This induces an extension of the Lie group G by s. We

can do this for all the possible non-unipotent elements in Γ. Since Γ/Γ∩NG

is finite generated abelian. This can be done in finite steps. Therefore we see

that the solvmanifolds can be regarded as a submanifold of a bigger manifold

with a complex algebraic group G1. We need to extend the symplectic form

to the extension. Let X be an element in the Lie algebra, Xs its semisimple

part which is also in the new extended Lie algebra G1, then G1 is generated

by Xs eigenvectors. For two elements X1, X2 we have:

ω(X, [X1, X2]) = ω([X,X1], X2) + ω([X2, X], X1)

= ω([X,X1], X2) + ω(X1, [X,X2]).

Similarly, for any element [X1, X2] in the Lie algebra N of the commutator,

we can define the symplectic structure by

ω(Xs, [X1, X2]) = ω([Xs, X1], X2) + ω(X1, [Xs, X2]).

To make the definition consistent for different expression we only notice that

the formula for X is true by the closeness of ω. Then by G and Γ has the

same complex algebraic closure (see [Iw]) we see that the formula is true for

Xs also. Then we just extend the symplectic form to G1. This is doable since

by our construction the differential forms corresponding to the elements in

the given basis which is not in the commutator are closed.
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We could always assume that Xs is not in the kernel of the symplectic

form. Otherwise, we might just extend G by product a two dimensional

torus, then modify the symplectic form. Now we just replace X by Xs with

restrict the symplectic structure to the new Lie algebra G ′ as a subalgebra

of G1. Therefore, if the restriction is nondegenerate, we obtain a new real

compact solvmanifold with a real symplectic structure. We call the new

manifold a semisimple modification with respect to γ1.

Now, by induction, we could obtain a compact complex solvmanifold

with a holomorphic symplectic structure such that the Lie group G′ has

Chevalley decompositon G′ = ANG′ with a semisimple action of A on the

nilradical NG′ . We obtain the new solvmanifold by a twisted modification.

Different from those in [Gu5], we obtain possibly a complete different man-

ifold.

Definition 1. We say that two compact nilmanifolds G/Γ and G′/Γ′,

with both G and G′ simply connected, are twisted equivalent if they have

the same dimension. A linear isomorphism between the two Lie algebras is

a twisted map if it sends the preimage of the exponential map of Γ to that

of Γ′.

Of course, two compact nilmanifolds are twisted equivalent with some

twisted map if and only if they have the same dimensions.

Definition 2. We say that two compact solvmanifolds M = G/Γ and

M ′ = G′/Γ′ are twisted equivalent if there is a common unipotent sub-

group N such that

1. N ∩ Γ = N ∩ Γ′ is cocompact in N and

2. (G/N)/(Γ/N ∩ Γ) is twisted equivalent to (G′/N)/(Γ′/N ∩ Γ′) as

nilmanifolds with a twisted map which keep the eigenvalues and eigenvectors
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in the Lie algebra of N .

We say that two compact solvmanifolds are strong twisted equivalent

if G/N is abelian.

Definition 3. We say that two compact complex nilmanifolds G/Γ and

G′/Γ′, with both G and G′ simply connected, are complex twisted equivalent

if they are twisted equivalent with a complex twisted map.

Obviously, two compact complex nilmanifolds may not necessary twisted

equivalent even if they have the same complex dimension.

Definition 4. We say that two compact complex solvmanifolds are

complex twisted equivalent (or strong complex twisted equivalent)

if the common unipotent subgroup N and the twisted map in the definition

2 are both complex.

Therefore, we obtained:

Theorem 1. Let M = G/Γ be a compact complex solvmanifold. Then

M is strong complex twisted equivalent to another compact complex solvman-

ifold M ′ = G′/Γ′ such that G′ has a Chevalley decomposition G′ = ANG′

with an abelian A action on the nilradical NG′ semisimplely.

Proof: Let γ1 ∈ Γ be a non-unipotent element in Γ, use the γ1,s we have

a real compact 1-dimensional solvmanifold extension Mγ1
of the original

compact complex solvmanifold. Now, the centralizer Cγ1,s
of γ1,s in the

new solvmanifold induces a compact subsolvmanifold Cγ1,s
/Γ ∩ Cγ1,s

(see a

proof below). Cγ1,s
contains a complement of the nilradical. We pick up

a non-unipotent element γ2 in Cγ1,s
∩ Γ which represents a non-unipotent

element in the complement of γ1. Then we use γ2,s to get a real compact

1-dimensional solvmanifold Mγ1 ,γ2
of Mγ1

.

To prove the existence of γ2, we need to prove a similar result of the
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Lemma 14 in [Gu3 p.54]. We regard γ1,s as an automorphism of G. As in

the Lemma 13 in [Gu3 p.53], we have a compact fundamental domain Ω of

G/Γ. For any c ∈ Cγ1,s
, there is a γc ∈ Γ such that γcc ∈ Ω. γ1,s(γc)γ

−1
c =

γ1,s(γcc)c
−1γ−1

c ∈ γ1,s(Ω)Ω−1, which is compact. That means that there are

finite many cj such that for any c, there is a cj with

γ1,s(γc)γ
−1
c = γ1,s(γcj

)γ−1
cj

.

That is, γ1,s(γ
−1
cj

γc) = γ−1
cj

γc. Therefore, γ−1
cj

γc ∈ Cγ1,s
∩Γ. Thus, Cγ1,s

/Γ∩

Cγ1,s
is compact.

Then, we have the centralizer Cγ1,s,γ2.s
. Arguing as above and the proof

of Lemma 14 in [Gu3 p.54] (by replacing ni there with γi,s) we have that

Cγ1,s,γ2,s
/Γ ∩ Cγ1,s,γ2,s

is compact. Eventually, we get γ1, ..., γ2k ∈ Γ and

M1 = Mγ1,...,γ2k
such that γ1, ..., γ2k induces a complement of the nilradical.

We see that M1 is actually complex. Now, by deleting γ1, .., γ2k we proved

our theorem.

Q. E. D.

However, for the manifolds with holomorphic symplectic structures, the

restriction of the holomorphic 2-form might be degenerated in the above

process. Therefore, instead of the modification, we might consider the bigger

compact complex solvmanifold M1 = G1/Γ1. M1 can be regarded as a

twisted product of M and a complex torus induced by the automorphism

ϕ. To obtain a holomorphic symplectic manifold, we can product M1 with

a torus of complex dimension k = dimC M1 − dimC M . Note that k is

the complex dimension of the base of the Mostow fibration. That is, k =

dimC G/NG, where NG is the nilradical of G. Let M ′ be the new manifold,

then M ′ is a twisted product of M and an even dimension complex torus.

We therefore obtained:
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Theorem 2. Let M = G/Γ be a compact complex solvmanifold with a

holomorphic symplectic structure. Then, after twisted product with a com-

plex torus T of complex dimension 2k if it is necessary, M ′ = M ×ϕ T =

G′/Γ′ has a holomorphic symplectic structure such that G′ has a Chevalley

decomposition G′ = ANG′ with an abelian A acting on the nilradical NG′

semisimplely.

This is the first part of our Theorem B. After finishing our results in this

section we found a similar construction (to the Theorem 1) in [Au] chapter

IV section 2.

3 Semisimple Chevalley compact complex solvman-

ifolds with holomorphic symplectic structures

3.1 Definition 5. We say that a solvable Lie group G is Chevalley if there

is a decomposition G = ANG with an abelian subgroup A and the nilradical

NG. we say that G is semisimple Chevalley if A acts on NG semisimplely.

We say that a compact solvmanifold M = G/Γ is semisimple Chevalley if G

is semisimple Chevalley.

3.2 Now, we assume that our solvmanifold is semisimple Chevalley. Let

the Lie algebra have a basis ai, bj with ai semisimple and bj nilpotent. We

assume that bj are eigenvectors of ai. Let αi, βj be the corresponding holo-

morphic 1-forms. Consider αij ∧ βj be the only one with βj in ω. If the

eigenvalue is not zero for βj , we denote it by α′

j . then d(αij ∧βj) has a term

−αij ∧α′

j∧βj , which must be zero. therefore αij is proportional to α′

j. That

is αij ∧ βj is exact modulo the wedge products of βj ’s. Therefore, we can

always get rid of these terms if βj has nonzero eigenvalues.
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3.3 Now, for any term βj ∧ βj′ , the differential has a term

(α′

j + α′

j′) ∧ βj ∧ βj′ ,

which must be zero. Therefore, α′

j = −α′

j′ . That is, βj and βj′ have eigen-

values negative to each other.

3.4 We now consider the term αij ∧ βj again. We now know that βj

has zero eigenvalue. We claim that dβj = 0. Otherwise, d(αij ∧ βj) =

αij ∧ (
∑

akβjk
∧βj′

k
) with all the βjk

βj′

k
having eigenvalues negative to each

other. They could not come from other term. We have dβj = 0 as desired.

3.5 Therefore, we obtained:

Theorem 3. Let M be a semisimple Chevalley compact complex solv-

manifold with a holomorphic symplectic structure. Then the holomorphic

symplectic form can have a form

ω2,0 = ω0 +
k

∑

i=1

βi ∧ βk+i

such that ω0 is a linear combination of products of closed holomorphic 1-

forms and βi, βk+i correspond to eigenvectors with eigenvalues negative to

each other.

3.6 Therefore, A is perpendicular to the commutator N of G. This is

because of

ω(a, [x, y]) = ω([a, x], y) + ω([y, a], x).

Assuming x, y are eigenvectors, the right side is zero unless x, y have opposite

eigenvalues. But then the right side is also zero.

3.7 Let N1 be the subspace of N which is perpendicular to N , and N2

be a subspace of N which is a complement of N1 and is invariant under the

action of A. We see that ω is nondegenerate on N2.
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Since N is perpendicular to A, there is a subspace N3 in NG which

intersects N only at zero such that ω is nondegeneate on N1 + N3. We

let N0 = N3 + N ⊂ NG. By deleting the possible βj which involves in ω0

from ω0 and modify ω0 if it is necessary, we can make the 1-forms involved

perpendicular to all the βj in the second term. Then we let A0 be the

orthogonal complement of N0.

Corollary 1. G = A0N0 with N corresponding to the unipotent subgroup

generated by β1, ..., β2k and A0 an abelian subgroup. In particular, if our

semisimple Chevalley compact complex solvmanifold is the one we obtained

in Theorem 2, then N0 can have the same dimension as the original manifold

there. That is, we can identify N0 as the nilshadow.

Proof: Let A0 be the subgroup generated by those elements in the Lie

algebra which are perpendicular to the Lie algebra N0 of N0. For any a1, a2

being perpendicular to N0, we have

ω([a1, a2], n) = ω(a1, [a2, n]) + ω(a2, [n, a1]) = 0

for any n ∈ N0. Therefore, [a1, a2] is also perpendicular to N0. But G/N0

is abelian. we have [a1, a2] = 0.

The reason for the last statement is because that the element in the

center is always perpendicular to N . Therefore, those elements we obtained

by product a torus in the Theorem 2 can be also chosen in A0.

Q. E. D.

This is our Theorem A and the second part of Theorem B.

3.8 Now by the Mostow Fibration or Structure Theorem in [Mo] page

6 to 7, section 5 Theorem, also [Au] page 249 or Chapter IV, section 3,

we see that our manifold is a nilmanifold bundle over a torus. By our
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structure of the symplectic structure, if the nilmanifold has an even complex

dimension, we can always change the symplectic structure such that it is a

holomorphic symplectic nilmanifold bundle over a holomorphic symplectic

torus. If the nilmanifold has an odd complex dimension, we can always

product a copy of complex torus of dimension 1 such that the new manifold is

a holomorphic symplectic nilmanifolds bundle over a holomorphic symplectic

torus. Then the method in [Gu2] (Cf. [GK]) gives a way to classify the

compact holomorphic symplectic solvmanifolds by inductions.

3.9 Actually, after applying Theorem 2 and the last statement of the

Corollary 1, we can have nilmanifold bundle over (G/NG)/(Γ/Γ∩NG)× T k

and the fiber is the unipotent modification (or nilpotent reduction as we

mentioned before) of M , that is, in the construction of Theorem we replace

the elements by its unipotent part instead of the semisimple part. Therefore,

to classify the compact complex solvmanifolds with holomorphic symplectic

structures, we can just start from the compact complex nilmanifolds with

holomorphic structures of the same dimension.

In particular, we see that the unipotent modification is always holomor-

phic symplectic, while in general the semisimple modification of the same

dimension in the Theorem 1 might not be holomorphic symplectic. In this

special situation, the modification of the symplectic structure in 3.8 is un-

necessary although the modification of 3.2 might be needed.

Corollary 2. If M is a compact complex solvmanifold with a holomor-

phic symplectic structure, then it is strongly twisted equivalent to a compact

complex nilmanifold with a holomorphic symplectic structure.

However, the unipotent modification lost a lot of information from the

original manifold. Therefore, Theorem 2 is more important than Corollary 2.

15



But we do need to understand the unipotent modification first to understand

the semisimple Chevalley modification. We shall see in the next section

that actually, we get a lot of more for the structure of N0 and very few of

symplectic nilmanifolds can be N0.

In the next section, we shall see that the same method works for the

compact real solvmanifold with real symplectic structures although in that

general case we have to use the result in [Gu5].

4 Compact real solvmanifolds with real symplec-

tic structures

Similarly, we can also work on the compact real solvmanifolds with real

symplectic structures. By [Gu5], we can always reduce to the situation, up

to a finite covering, such that the symplectic structure is right invariant and

the group and the uniform discrete subgroup have the same (real) algebraic

closure. Then the same argument as in the earlier sections reduces the

situation to the semisimple Chevalley modification. Then we can apply the

argument in the previous section.

For the convenience of the readers, suggested by the referees, we explain

a little bit about [Gu5] here. In general, for many years, people did not

know how to calculate the cohomology of the compact solvmanifolds. It was

known that, the right invariant cohomology might be strictly smaller than

the actual cohomology, e.g., see [Rg], [Ya2]. This made the classification of

compact solvmanifolds with real symplectic structures unreachable, see [BG]

and [Bk] for examples. However, if the big (Lie) group G and the uniform

subgroup Γ have the same algebraic closure in the representation AdG, then

Mostow proved that cohomology can be calculated by the right invariant
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cohomology. In [Gu5], the author used our earlier method to prove:

Proposition 1. For any compact solvmanifold M = G/Γ, there is a

cofinite subgroup Γ′ of Γ and another solvable Lie group G′ such that: (A)

G/Γ′ = G′/Γ′; and (B) Γ′ and G′ have the same algebraic closure in the

representation of AdG′ .

Therefore, according to Mostow, the cohomology of the finite covering

M ′ = G′Γ′ = G/Γ′ can be calculated by the G′ right invariant cohomology.

If G/Γ is symplectic, then G′/Γ′ is also symplectic and the symplectic form

on G′/Γ′ is right invariant. This made a classification of compact symplectic

solvmanifolds possible.

Therefore, we obtained:

Theorem 4. Let M = G/Γ be a real compact solvmanifold. Then, up

to a finite covering, it is strong twisted equivalent to a semisimple Chevalley

compact solvmanifold.

Theorem 5. Let M = G/Γ be a real compact solvmanifold with a real

symplectic structure. Then, up to a finite covering and after twisted product

with a torus, it is a semisimple Chevalley real compact solvmanifold with a

real symplectic structure.

Again, we could apply the same argument as above and obtain a similar

result as Theorem 3 and therefore the Corollary 1. But in this case, to write

a form as in the Theorem 3 in the real case, we need all the eigenvalues to

be real. This actually can be achieved after a finite covering. This is a result

from the algebraic units theory. See [BS] page 105 Theorem 2, which is a

special case of the Dirichlet Theorem on the group of units—the Theorem

5 in page 112. Let a be an algebraic unit, then b = āa−1 is also an algebraic

unit. Then by Theorem 2 there, it is a root of 1. That is after a finite power,
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a became a real number.

The same argument also implies that for any compact solvmanifold, up

to finite covering, we might assume that all the eigenvalues are real. This is

our Theorem C, which actually already appeared in [Gu9]. This is related

to the totally real algebraic number fields.

The same argument also implies that the eigenvalues in Theorem 3 can

be real up to a finite covering. And any compact complex solvmanifold with

a holomorphic symplectic structure is complex twisted equivalent to that

with a pseudo-kähler structure in a more general sense.

Even in the real case, the possible N0 are very few. For example, the b1

for N0 can not be 2. Otherwise, all the eigenvalues for the first level of the

descending central series of N0 are zeros and the original manifold must be

nilpotent.

We notice that all the modified elements in the basis of N0 has zero

eigenvalues. Therefore, there is at least one zero eigenvalue in the first

level of the descending central series of N0. Therefore, if b1 = 3, then the

eigenvalues for the first level have to be 0, 1,−1. And so on.

Therefore, if the dimension is 2 and 4, N0 is abelian. The reason is that

we can not have (0, 1,−1), 0. Otherwise, we let the first level be generated

by z, x1, x−1 and dx0 = x1 ∧ x−1 for the second level. But ω(Z,X0) =

ω(Z, [X1, X−1]) = 0, a contradiction.

If dimension is 6, then N0 must be one of n6,12, n6,21, n4,2⊕R2, n5.5⊕R,

H3⊕R3, R6. For the notation of N0, we follow [GK] page 307 to 311. They

are the number 20 with structure equation (0, 0, 0, 12, 13 + 14, 24), number

24 with the structure equation (0, 0, 0, 12, 13, 23), number 26, 31, 33, 34(the

last one) in the Table A.1 of [Sl]. Here, we use the notation of Salamon
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in [Sl] that the i-th coordinate kl + mn means dxi = xk ∧ xl + xm ∧ xn

so on. n4,2 has the structure equation (0, 0, 12, 13) and n5,5 has the struc-

ture equation (0, 0, 0, 12, 13). H3 has the structure equation (0, 0, 12). The

corresponding eigenvalues are (1,−1, 0), 0, (1,−1) for n6.12. The brackets

denote each level of the descending central series. We get nothing from

(0, 1,−1), 0, 0, 0 and (0, 1,−1), 0, (1,−1) as well as (0, 1,−1), (1,−1), 0. The

corresponding eigenvalues are (0, 1,−1), (0, 1,−1) for n6.21. We also have

(0, 0), 0, 0 for n4,2 and 1,−1 for R2. Nothing is for (0, 0, 1,−1), (0, 0). They

are (0, 1,−1), (1,−1) for n5.5 and 0 for R. Nothing for (0, 1,−1, k,−k), 0 if

k 6= 0. For (0, 1,−1, 0, 0), 0, we have (0, 0), 0 for H3 and (0, 1,−1) for R3.

And they are 0, 0, l,−l, k,−k for R6.

This offshoot was motivated by a question from Anna Fino in 2011.

This fits quite well with the recent work of Bock [Bk], about which I was

told by Professor Salamon in 2011. Let me explain a little bit our result and

his results: Theorem 3.8.3.2 there gave a manifold with n6.21. In Proposi-

tion 3.8.3.3, the discrete subgroup has pure imaginary eigenvalues and the

manifolds are nilpotent after a finite covering. For example, he put t1 = π
3
,

then a six to one covering has only the identity 1 as the eigenvalues for the

cocompact discrete subgroup. By [Gu5] (and [Gu1]) we can modify the big

group such that the big group only has the identity 1 as the eigenvalues.

That is, after a six to one covering, it is unipotent. For Theorem 3.8.3.4

there, the nilpotent modification is n6,12 in [GK]. For Proposition 3.8.4.3

and 3.8.4.4, the nilpotent modification is n4,2 ⊕R2. For Proposition 3.8.4.4

and 3.8.4.5, those manifolds are actually nilpotent. For Proposition 3.8.4.6,

the nilpotent modification is n5,5 ⊕ R with (0, 1,−1), (1,−1) for n5,5 and 0

for R. Those manifolds in Propositions 3.8.4.8, 3.8.4.9, 3.8.4.10 are actually
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nilpotent after a finite covering since the eigenvalues are pure imaginary.

For the manifolds in Proposition 3.8.4.11, after a finite covering to get rid of

the pure imaginary in the eigenvalues of the cocompact discrete subgroup,

the nilpotent modification is R6 with eigenvalues (0, 1,−1, 0, 1,−1).

This is also true for the decomposable manifolds there. They are all in

the Table 3.6 in the section 3.9 there. Actually, there are two tables there.

The first one lists the possible product of a five dimension manifold with a

torus. The second table lists the possible product of two three dimensional

manifolds. The gp,−p,−1

5,7 is the same as g−1,0,r
5,13 . They are with R6 and

(0, 1,−1, p,−p; 0). g−1
5,8 is H3 ⊕ R3 with (0, 0), 0 and (0, 1,−1). g0

5,14 is

unipotent after a finite covering. g−1
5,15 is with n5,5⊕R. For gp,−p,r

5,17 with r = 1

or −1, one can see from Proposition 3.7.2.12 that the cocompact subgroup

only has real eigenvalues and therefore, one can use [Gu5] or [Gu1] to modify

the Lie group; and according to Propositions 3.7.2.13 and 3.7.2.14, for g0,0,r
5,17

there, the eigenvalues are pure imaginary and therefore, can be modified

into nilmanifolds. Now, finally for g0
5,18, the eigenvalues are pure imaginary

and can be modified into nilmanifolds.

Now, let us look at the second table for the product of two three dimen-

sional manifolds. The first one, g−1
3,4 ⊕ R3, R6. For the second one, g0

3.5,

eigenvalues are pure imaginary, a finite covering is unipotent. g3,1 ⊕ g−1
3,4 ,

H3 ⊕ R3. g3,1 ⊕ g0
3,5, finite covering is nilpotent. g−1

3,4 ⊕ g−1
3,4 and g−1

3,4 ⊕ g0
3,5

are with R6, with eigenvalues (0, 1,−1, 0, 1,−1) and (0, 1,−1, 0, 0, 0). The

last one g0
3.5 ⊕ g0

3,5 is nilmanifold after a finite covering.

Our arguments are much shorter.

For the complex case only the last case related to R6 occurs according

to the methods in [Gu9] and [Ba]. Therefore, we have:
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Corollary 3. Every six complex dimensional non-nilpotent compact

complex solvmanifold with holomorphic symplectic structures are pseudo-

Kählerian-like and have hypersymplectic solvmanifolds as finite coverings.

This is our Theorem D. Therefore, as in the last section, the method in

[Gu2] and [GK] gives an inductive classification.

5 Further comments and examples

Therefore, in general, our methods could reduce the classification of com-

pact complex solvmanifolds with holomorphic symplectic structures to the

situation in which the complex Lie group has a Chevalley decomposition

G = AN as in the question 2 such that A acts on N semisimplely. The

symplectic form, after a series of modifications, has the form

ω = ω0 +
∑

β2i−1 ∧ β2i,

where ω0 comes from those closed 1-forms and β2i−1, β2i ∈ N ∗ are pairs of

holomorphic 1-forms which corresponding to the pairs of eigenvectors with

eigenvalues different by a sign. In particular, we can build up the compact

complex solvmanifolds with holomorphic symplectic structures from those

compact complex nilmanifolds (of at most the same dimension) with holo-

morphic symplectic structures of the form

ω1 =
∑

β2i−1 ∧ β2i,

which could be classified by following the process in [Gu2] (Cf. [GK]) with

applying the Mostow Fibration Theorem. Up to finite covering, one can

actually see that the eigenvalues for the discrete subgroup could be real

algebraic units.
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Different from the pseudo-Kähler-like case in [Gu9], the 1-forms involved

in ω0 might also correspond to pure nilpotent elements with nontrivial ad-

joint actions.

To see some examples, we could just take any example in [Ya1] with real

symplectic structures, then we complexify them by the principle of Propo-

sition 4 in [Gu7] similar to what Yamada did in [Ya2]. For the semisimple

actions, we just extend the action naturally. The 2iπ with e2iπ = 1 will give

the other generators we need in the lattice. For the nilpotent actions, we

simply complexify the action as Yamada did.

In all our examples, the group is complex. Therefore, they do not satisfy

the Mostow condition. The cohomologies might not be right invariant. For

example, the pseudo-kähler forms on the pseudo-kähler solvmanifolds are

not right invariant. However, the holomorphic symplectic forms are all right

invariant since all the holomorphic forms are right invariant. For the real

examples in this paper, they have however right invariant cohomologies since

all have only real eigenvalues. That is, Hattori’s result applies.

Another example comes from [BG] example 3. By our argument in the

second section, it is not difficult to see that the example 2 there does not

exist. But we can easily see that example 3 does exist. Let α be a root of

the equation:

x2 − nx + 1 = 0

with n > 2. Let A = diag(α, α−1) and the lattice for the R2 generated by

Xi, i = 1, 2 be generated by γ1 = (1, 1), γ2 = Aγ1 = (α, α−1). Similarly for

the R2 generated by Yi, i = 1, 2. Then, Aγ2 −nγ2 +γ1 = 0 and we have the

action of a generator a we need for both Xi and Yi. a acts on the first by

A and the second by A−2. For the lattice related to Zi = [Xi, Yi], i = 1, 2
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we use γ2
1 = (1, 1), γ1γ2 = Aγ2

1 . We notice that γ2
2 = Aγ1γ2 and action of a

on Zi by A−1. See also the construction in [SY] (I was told by C. Benson

about this paper after I told him our construction). After complexifying

this example, we obtain an example of compact holomorphic symplectic

solvmanifold such that the Lie group has three steps. Their further example

in [Sa] similar to the proposed example 2 in [BG] does have our form in the

fourth section. However, it can not be complexified as a compact complex

solvmanifold with holomorphic symplectic structures.

The Lie algebra in this example is generated by a, b,Xi, Yi, Zi i = 1, 2.

We have [Xi, Yi] = Zi, [a,Xi] = (−1)i+1Xi, [a, Yi] = 2(−1)iYi, [a, Zi] =

(−1)iZi and other Lie brackets are zeros. The symplectic form is ωa,b,c,d,e =

aα∧β+bx1∧z1+cx2∧z2+dx1∧x2+ey1∧y2 for nonzero numbers a, b, c, d, e.

We could actually apply the modification backward to obtain the original

compact solvmanifolds with symplectic structures. For example, we might

assume that there is only one dimensional non-nilpotent elements. Then

semisimple part Xs can be just a, we let N be the nilpotent part, and

our manifold is obtained by a direct modification as we proposed at the

beginning of our section 2. Then we have NX1 = kZ2 and NX2 = lZ1,

others are zeros. We only need

ω(NX1, X2) + ω(X1, NX2) = −ck + bl = 0.

Then, we can easily replace a by a+N to get the original compact solvman-

ifolds with symplectic structures if we could obtain a rational representation

of the modified element.

We see easily that there is a subgroup generated by a, b,Xi, Zi i = 1, 2.

The action of A on the R4 is diag(α, α−1, α−1, α). By NA = AN we see
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that N =

[

0 N1

0 0

]

and N1 =

[

0 n1

n2 0

]

. This fits for the compact real

solvmanifolds with real symplectic structures. But this does not fit for the

complex case by the argument in the proof of the Lemma 7 in [Gu9] by

using the (Hilbert Seventh problem related) results in [Ba], [Ge]. Therefore,

one might suggest that for the complex case (or at least for the case with

holomorphic symplectic structures), the solvmanifold is always semisimple

Chevalley. We shall deal with this in a further publication.

The major difference from the pseudo-kähler-like case in [Gu9] is that

Lemmas 1 and 4 in [Gu9] do not work in general.

After that, one might make other further and different modifications

such that all the 1-form involved in ω0 are closed, semisimple and βj has

nonzero eigenfunctions. Since the rational structure of the nilpotent group

is the same as its Lie algebra through the exponential map (see also [Au]

page 246), we can actually have a pseudo-kähler-like modification in a more

general sense. By a finite covering, that actually lead to a pseudo-kähler one

by the algebraic units theory. This should lead to some kind of classification

as certain product, similar to the one in [Gu8], of two types of holomorphic

symplectic solvmanifolds. The reason that the pseudo-kähler-like ones only

have one type is that all the pseudo-kähler-like nilpotent ones are tori. This

also applies to the real symplectic solvmanifolds after modifications as we

see in last section.

By our arguments in the last section, we can also avoid the Mostow

condition and Mostow Theorem on the cohomology in [Gu5, 6] and modify

the Lie group by torus only, i.e., the imaginaries, then use Hattori’s result

in [Ha] instead. After reading [Au], we found a similar construction to our

Theorem 1 in Chapter IV section 2. That is also the foundation of our
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Theorem 2.
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