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Abstract: There is a natural Moser type transformation along any curve
in the moduli spaces of Kähler metrics. In this paper we apply this transfor-
mation to give an explicit construction of the parallel transformation along a
curve in the Mabuchi moduli space of Kähler metrics. This is crucial in the
proof of the equivalence between the existence of the Kähler metrics with
constant scalar curvature and the geodesic stability for the type II compact
almost homogeneous manifolds of cohomogeneity one mentioned in [15]. We
also explain a new description of the geodesics and prove a curvature prop-
erty of the moduli space, called curvature symmetric, which makes it similar
to some special symmetric spaces with nonpositive curvatures although the
spaces are usually not complete. Finally, we generalize our geodesic stabil-
ity conjectures in [6] and give several results on the Lie algebra structures
related to the parallel transformations. In the last section, we generalize
the Futaki obstruction of the Kähler-Einstein metrics to the parallel vector
fields of the invariant Mabuchi moduli space. We call the related stability
the parallel stability. This includes the toric and cohomogeneity one cases
as well as the spherical manifolds.

1 Introduction

In the study of existence of Kähler-Einstein metrics Mabuchi introduced
the geodesic equations in [16]. It turns out that the special homogeneous
complex Monge-Ampére equation Semmes considered in [18] is exactly the
same equation considered by Mabuchi. Let (M,ω) be a compact Kähler
manifold, ϕ(t,m) be a real smooth function with variables of time t and

†Supported by NSF DMS-0103282

1



point m ∈ M . Regarding t as the real part of a complex number z0, ϕ is a
function of z0 and m. If ϕ satisfy the complex homogeneous Monge-Ampére
equation det(ω + ∂∂̄ϕ) = 0 and ωt = ω + ∂M ∂̄Mϕ is a Kähler metric for
t ∈ [0, T ], then ωt is a geodesic in the Mabuchi moduli space of the Kähler
metrics.

Locally if F (0,m) is the Kähler potential of ω and F (t,m) = F (0,m) +
ϕ, by letting F (z0,m) = F (t,m) we see that the equation is the same as
det(∂∂̄F ) = 0.

It was observed that the kernel of ∂∂̄F induced a vector field of certain
Moser type transformation. And the Moser type vector field W can be ap-
plied to any general curve in the space of the Kähler metrics. In this paper
we shall apply this Moser type transformation to give an explicit construc-
tion for the parallel transformation along any curve in the Mabuchi moduli
spaces of Kähler metrics. The existence of the parallel transformation was
proven in [16 p.234] by integration of a vector field and then in [7], without
knowing Mabuchi’s first proof, obtained by solving one of the two quasi-
linear equations which led to the existence of the geodesics therein. That
eventually gave a proof of the opposite direction of [10] and [12] in 2003 for
the cohomogeneity one case. We shall give a different proof of the existence
of the parallel transformation in this paper. The corresponding quasi-linear
equation is actually LWh = 0. Our arguement here is independent of [7].
While we dealt mostly with the case with a flat Mabuchi moduli space of
Kähler metrics in a given Kähler class in [7], we deal with the general case
here.

One can also easily observe that the geodesic equation is actually LW Ḟ =
0.

From the properties of the Moser vector fields we also expect that there
should be some applications to metrics flows. We shall investigate this in
the last three sections and in a near future. In particular, we prove that the
curvature is parallel on the Mabuchi moduli space of the Kähler metrics of
a given Kähler class.

After the first version of this paper, many things happened. It is evi-
dent that to define a generalization of Kähler metrics with constant scalar
curvature, instead of the scalar curvature being a potential function of a
holomorphic vector field as Calabi did, we could consider with a Kähler
metrics of a scalar curvature being a function as the restriction of a par-
allel function on the equivariant Mabuchi moduli space of Kähler metrics.
This is motivated by [5]. For example, in the case of cohomogeneity one
with a semisimple automorphism group in [6], [15], the Futaki invariants are
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zero. Therefore, there is no Calabi extremal metrics in general. However,
there are nontrivial parallel functions on the equivariant Mabuchi moduli
space and therefore, there are many “generalized” Calabi extremal metrics,
see also [13]. In particular, any equivariant Kähler metrics is a generalized
Calabi extremal metrics in this sense. Of course, we need more restriction
to get a more meaningful generalized Calabi extremal metrics. In [11] in
2001, it was proven that Calabi flow was better than the generalized Ricci
flow in general. But it seemly was only true for the low dimensional case.
When we try to publish [11], we proposed that the Calabi flow always has
the long time existence property just as what Cao and Koiso observed in
the Kähler-Ricci flow. However, it seems possible that it is only true for the
low dimensional case. For example, in the case of CP n with the standard
cohomogeneity one metrics as in [11], as one end has a high codimension n,
the Calabi flow might not always have long time existence. Therefore, it is
easier to consider a generalized Calabi metrics called the m-extremal met-
rics and the related m-Calabi flow [14]. To make the short time existence
easier, one might actually consider an exponential Calabi extremal metrics
or e-extremal metrics and e-Calabi flow.

2 Preliminaries

Definition: Let ωt be a family of symplectic forms. If a vector field X(t,m)
satisfies X(ωt) = 0, then we call X a Moser vector field.

See also Moser’s original paper [17].
Regarding ∂∂̄F = (Fij̄) as a matrix. Let (Aij̄) be the adjoint matrix,

then Fij̄Ajk̄ = δik det(∂∂̄F ) for any i, k ∈ (0, 1, · · · , n). Apply this formula
we obtain:

Lemma 1. Y = A00̄
∂

∂z0 + A0s̄
∂

∂zs is in the kernel if det(∂∂̄F ) = 0.

Let W = Re Y
A00̄

. In general, we let ωt = (ωt,ij̄) = ω0 + ∂∂̄ϕt be a curve

in the space of Kähler metrics even if we do not have det(∂∂̄F ) = 0, and we
can define Y and W in the same way with Ft = F0 + ϕt. Then by direct
calculation we obtain:

Lemma 2. LW (∂M ∂̄MF )|M = 0.

Proof: Let X = Y
A00̄

and denote ∂i = ∂
∂zi , ∂ī = ∂

∂z̄i . Then

LX = L∂0
+ LA0s̄

A
00̄

∂s

.

3



By

Lai∂i
(dzk)(∂l) = Lai∂i

(δkl − dzk([ai∂i, ∂l])

= dzk(∂l(ai)∂i)

= ∂l(ak)

= ak,l

and similarly we have
Lai∂i

(dzk)(∂l̄) = ak,l̄,

that is, Lai∂i
(dzk) = ak,ldzl + ak,l̄dz̄l. Similarly, we have Lai∂i

dz̄k = 0.
Combinning this together with the identity

F0m̄A00̄ + Frm̄A0r̄ = 0

and its differentiations with respect to zs and z̄s, we finally obtain:

LX(Fsm̄dzs ∧ dz̄m)|M = (Ḟsm̄ +
A0r̄

A00̄
Fsm̄r

+ Frm̄(
A0r̄,s

A00̄
−

A0r̄A00̄,s

A2
00̄

))dzs ∧ dz̄m + Frm̄(
A0r̄

A00̄
)s̄dz̄s ∧ dz̄m

=
−A00̄,s

A2
00̄

(Ḟm̄A00̄ + Frm̄A0r̄)dzs ∧ dz̄m − (Frm̄s̄
A0r̄

A00̄

+ Ḟm̄s̄)dz̄m ∧ dz̄s

= 0.

as required.

Proposition 1. W induces a family of Moser differential transforma-

tions T (t) such that T (∂M ∂̄MF |M ) = ∂M ∂̄MF |M .

By the parallel transformation formula in [16] and [5,7] we have:

Lemma 3. A function h is a parallel transformation, regarding as a

vector field in the moduli space of Kähler metrics, along a path ωt = ω0 +
∂M ∂̄Mϕ if and only if ḣ − 1

2(dh, dḞ ) = 0.

3 Existence of the Parallel Transformations

In general, let ωt = (ωt,ij̄) = ω0 + ∂∂̄ϕt be a curve in the space of Kähler
metrics (might not be a geodesic curve), we see that

A00̄(ḣ −
1

2
(dh, dḞ )) = ReA0̄ihi = A00̄LWh.

4



Therefore, we have:

Theorem 1. h is parallel if and only if LWh = 0. In particular, ωt is a

geodesic if and only if LW Ḟ = 0.

Once we have a curve in the moduli space of Kähler metrics we have the
orbits of the Moser vector field W . Let h0 be any function on M , regarding
as the initial vector field at ω0, we can let h to be constant along the orbits.
Then h is parallel along this given curve in the moduli space. In this way,
we have an explicit construction of the vector field h from the initial value
h0. Therefore, we have:

Corollary 1. Given any curve C : ωt with t ∈ [0, 1] in the moduli space

of the Kähler metrics in a Kähler class and an initial vector h0 at ω0, there

is a unique smooth parallel vector field along C.

In [7], without knowing the first proof of Mabuchi in [16 p.234], we had
used our Corollary 1 to find global parallel vector fields on the compact com-
plex almost homogeneous Kähler manifolds with algebraic reductive groups
and obtain parallel coordinates. Then by integrating the global parallel
vector fields we shall obtain many smooth geodesics.

4 Poisson Bracket and the Curvature Symmetric

Property of the Mabuchi Moduli Space of the

Kähler Metrics in a Given Kähler Class

For a given Kähler structure we have a symplectic structure. Therefore,
there is a Poisson structure {f, g} = ω∗(df, dg) or df ∧dg∧ωn−1 = {f, g}ωn.
By identifying {f ∈ C∞(M)|∫

M
fωn=0} with the tangent space at ω we have

an infinite dimensional Lie algebra structure on each tangent space. It is
actually an infinite dimensional Lie algebra with an invariant metric (more
like a compact Lie algebra of the finite dimensional case, see [8]). Now we
would like to see some more global pictures.

Let φ = φ(t) be a curve in the Mabuchi moduli space, and ϕi be two
parallel vector fields along φ for i = 1, 2.

Then in view of (Lemma 2 and) Proposition 1, identifying by the Moser
transformation we can consider the family of Kähler structures as the same
symplectic structure, and ϕi being regarded as functions of this symplectic
manifold are independent of t by Theorem 1. The Poisson bracket {ϕ1, ϕ2}
also does not depend on t and therefore is parallel along the curve of the
Kähler structures. This parallelism can be expressed as:

5



Theorem 2.

d

dt
({ϕ1, ϕ2}) =

1

2
(dφ̇, d{ϕ1, ϕ2}).

Therefore, by the formula of the curvature in [16] (see also [18], [3], [2
p.195 Theorem A]) that

R(f, g)h = −
1

4
{{f, g}, h}

we also have that the curvature is constant along the curve by the curvature
formula.

Theorem 3. On the moduli space ∇R = 0.

We call an infinite dimensional Riemannian manifold curvature sym-
metric if ∇R = 0. Theorem 4 just says that the Mabuchi moduli space of
the Kähler metrics in a given Kähler class is curvature symmetric.

Therefore, the moduli space has a quite good structure. However, we see
in [6] that the moduli space, in general, is incomplete. This gives a negative
answer to an expectation of Semmes [18] and Donaldson [3] that the moduli
space is an infinite dimensional kind of (complete) symmetric space.

On the other hand, our result in this section does give some good prop-
erties similar to a convex region (see [2]) in a special symmetric space of
nonpositive curvature (cf. [9]).

I personally do believe that the Mabuchi moduli space of the Kähler
metrics is locally symmetric, i.e., at each point there is a local isometric
map which fixes the given point and induces a map of −1 on the tangent
space.

5 The Fourth Geodesic Principle and the Geodesic

Stability Conjectures

When the curve is an infinite geodesic ray, we can obtain a good picture
for the general geodesic stability provided that there is enough smoothness.
Instead of using parallel geodesics, which works for the case with the moduli
space being flat as in [6], we could use infinite geodesic rays with the same
point at infinity. This was also pointed out in [11] Remark 4. It is just
as in the case of finite dimensional symmetric spaces. For example, two
maximal geodesic rays γ1 and γ2 with d(γ1(t), γ2(t)) < C for some positive
constant C go to the same point at infinity. One can use a finite dimensional
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nonpositively curved symmetric space as a model, e.g., the Poincare metric
on the upper half plane Imz > 0.

In the case with the Poincare metric, the geodesics are straight lines
perpendicular to the x-axis and the half circles with the centers on the x-
axis. Two geodesic rays go to the same point at infinity if their end points
on the x-axis are the same.

Now let us go back to the infinite dimensional picture on the Mabuchi
moduli space. Along each maximal geodesic ray, since ∇R = 0, we can have
a frame of vector fields such that the sectional curvatures are constant and
nonpositive. The corresponding Jacobi field of family of geodesics going to
the same point at infinity has the form

J =
+∞∑
i=0

aie
−bitϕi,

where ϕi are parallel along the geodesic, b0 = 0 < b1 < · · · < bi < bi+1 < · · ·
assuming that there exists an orthogonal basis with respect to both the
metric and the curvature along the given geodesic (notice that this is not
true in general). See [1 p.15] and notice a sign difference for the curvature.
The above formula will be J =

∑N
i=1 aie

−bitϕi for the finite dimensional case
and we just replace N by +∞ here. We had dealt with some flat cases in
[7] in which ai = 0 for i > 0.

Let us have another way to understand this. Let MK be the Mabuchi
moduli space of the invariant Kähler metrics with respect to a maximal
compact subgroup K of the complex automorphism group. Rescale it by a
sequence of positive numbers Ai → 0. Recall that on the tangent space at
ω of the Mabuchi moduli space, the Riemannian metric is

g(φ1, φ2) =

∫
M

φ1φ2ω
n.

We let gAi
= Aig and fix a Kähler metric ω. We denote the corresponding

marked Riemannian manifold by Ai(MK , ω). With assuming that we can
have an exponential map, we identify Ai(MK , ω) as a subset of (MK , ω) by
the differentiable map

jAi
= exp(MK ,ω) · iAi

· exp−1
Ai(MK ,ω)

where exp are the exponential maps at ω and iAi
is the natural identitity

map from the tangent space of Ai(MK , ω) to that of (MK , ω). Then for any
point ω, the marked infinite dimensional Riemannian manifolds Ai(MK , ω)
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converge as subsets to a cone C (rather than a sequence of Riemannian
manifolds) with ω as the vertex point. The structure of C depends on the
choice of ω. Any other point ω1 also converges to the vertex point. The

condition that an infinite geodesic ray γ1 from ω1 goes to the same point

at infinity as that of a given infinite geodesic ray γ from ω is defined as

limi→+∞ γ1 = limi→+∞ γ.

A general Jacobi field on (MK , ω) has the form

J = (a1
0ϕ

1
0 + a2

0tϕ
2
0) +

+∞∑
n=1

(a1
ne−bntϕ1

n + a2
nebntϕ2

n),

where ak
n are constants and ϕk

n are parallel functions for k = 1, 2 (or a2
n are

zeros except finite of them).
For Ai(MK , ω), we have ti = Ait and Aiϕ

k
n,i = ϕk

n. Therefore,

Ji = (a1
0Aiϕ

1
0,i + a2

0tiϕ
2
0,i) +

+∞∑
n=1

(Aia
1
ne−A−1

i
bntiϕ1

n,i + Aia
2
neA−1

i
bntiϕ2

n,i).

Therefore, formally we can let

J∞ = a2
0t∞ϕ0,∞ +

+∞∑
n=1

a2
nebnt∞ϕn,∞.

Other terms tend to zero. Let M(ω1, ω2) be the Mabuchi functional. For
any maximal geodesic ray γ, we let

F (γ) = lim
t→+∞

dM

dt
(γ(0), γ(t)).

We then have:

Conjecture 1. Two infinite geodesic rays γ1 and γ2 have the same

generalized Futaki invariant if limi→+∞ γ1 = limi→+∞ γ2.

The structure of the Jacobi field strongly supports this conjecture. We
already have three geodesic stability principles in [6], we might call
Conjecture 1 the geodesic stability principle 4.

This is exactly what we have in the Remark 4 of [11]. But we have more
detailed picture here.

Let C1 be the subcone of C of all incomplete maximal geodesic rays, i.e.,
those only parametrized on half lines, as in [6] we have:
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Conjecture 2. If we identify C1 as part of the tangent space at a given

Kähler metric ω0, Then there is an extremal metric if and only if the gener-

alized Futaki invariants of maximal geodesic rays are positive and bounded

from blow by a given seminorm.

As in [5,6], by the convex property of the modified Mabuchi functional
along the geodesics we see that the generalized Futaki invariant can not be
−∞. The generalized Futaki invariant of a maximal geodesic ray might be
+∞. We have:

Conjecture 3. The subset C ′ of maximal geodesic ray c ∈ C1 with finite

generalized Futaki invariant is a subcone and F (c), c ∈ C ′ is linear on C ′

with respect to J∞.

Then we have the following:

Conjecture 2’. A Kähler class has an extremal metric if and only if

F (c) ≥ |c| > 0, c ∈ C ′ for a given seminorm | |.

We remark here that we need a seminorm here, i.e., F (c) > 0, c ∈ C1

is not enough as we see in [6] and the Ding-Tian type generalized Futaki
invariant therein (cf. [4]) might not come from an F (c) as in [6]. We still
need to understand what the given seminorm is. However, our picture of
the existence of the extremal metrics is quite clear now.

Remark 1. To convince the readers that the geodesic stability is the
right stability we should give a philosophical “proof” for the Kähler Einstein
case. If we consider the Kähler Ricci flow, Perelman’s estimate, also earlier
by Cao and Koiso, shows that the change of the metric is bounded. If a
subsequence of the metrics converges to a metric of a finite distance, even a
singular metric, then by the first and the second geodesic stability principles
in [6] (see also [15] for updated version), it has a finite Mabuchi functional
and the sequence of the Kähler metrics converges to a Kähler Einstein met-
ric. If there is not any finite limit, by the first stability principle there is a
unique geodesic connecting g0 and gt. We call it γt. Extend the γt to be
a maximal geodesic ray. Let ti be a series of t such that γti converges to a
possibly singular maximal geodesic ray γ. Then the stability conditon in the
third geodesic stability principle (or our conjecture 2 here) would imply that
the Mabuchi functional would increase along γ eventually, a contradiction.
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6 Global Parallel Vector Fields

Moreover, by [5] the potential functions of the vector fields of the Lie algebra
K of K is parallel on the moduli space of the invariant metrics. In particular,
the vector potential functions of elements of the center T of the Lie algebra
K of K also induce families of invariant Kähler metrics. Notice that no all
the potential functions of Lie algebra in the tangent space of the moduli
space of the invariant Kähler metrics—they are in the tangent space the
bigger (nonnecessary invariant) moduli space. And it is natural for us to
restrict our attention to the smaller moduli space. Therefore, these functions
from the center are in the tangent space of the Mabuchi moduli space of the
invariant Kähler metrics and are parallel. Thus, there might be some global
parallel vector fields on MK . We denote the set of all the global parallel
vector fields by P. Then by our Theorem 1 and 2, we have:

Theorem 4. Let f1, · · · , fk ∈ P, then for any analytic function

F (x1, · · · , xk), the composition function F (f1, · · · , fk) is parallel. Moreover,

the set of all these parallel vector fields is closed under the Poisson bracket.

For these parallel vector fields we can obtain the geodesics by the method
of section 3. However, as what happened for the toric varieties in [6], unlike
those in T the maximal geodesic might be incomplete and might actually
be finite.

Moreover, for any f1, f2 ∈ P, starting from any invariant metric, one
should get a 2-dimensional net of geodesics P2. If we can prove this, then
P2 is a geodesic submanifold of MK . Since both f1, f2 are parallel on P2,
we expect that the curvature is zero. That is:

Theorem 5. For any g, {g, f} = 0 if f ∈ P. In particular, the Poisson

structure on P is trivial, i.e., P is abelian.

Proof: Let ω be any equivariant Kähler metric, and g be any function
in the equivariant tangent space, f ∈ P, ω(s, t) be a 2-parameter family
of Kähler metrics such that ω(0, 0) = ω and ω(s, 0) has tangent g, ω(0, t)
has tangent f . Let f ∈ P, then R(g, f)f = (∇g∇f − ∇f∇g)f = 0. Since
R(g, f)f = − 1

4{{g, f}, f} (see [2 p. 195]) we get {{g, f}, f} = 0 and hence
(R(g, f)f, g) = 0, i.e.,

∫
{g, f}2ωn = 0. Therefore, {g, f} = 0 for any tangent

vector g.
In particular, if g ∈ P also, we have that P is abelian.
Now we see that P is in a way similar to T . But some time P is bigger

than the algebra of functions generated by T . For the examples in [6,7], T =
0 but P is generated by the function U there. Let k = supm∈M dim dP|m,
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then at a generic point m ∈ M , we can have k functions fi ∈ P which are
independent. We call f1, · · · , fk a parallel coordinate at m with regarding
M as a symplectic manifold.

Theorem 6. The L2 closure of the infinite dimensional Lie algebra of

equivariant functions TK = TMK
splits as an orthogonal direct sum of the

closure of P and the closure of another infinite dimensional Lie subalgebra

{TK , TK}.

Proof: We want to prove that f ∈ TK is perpendicular to {TK , TK} if
and only if f ∈ P. ∫

M
f{g, h}ωn = 0

for any g, h ∈ TK if and only if
∫
M{h, f}gωn = 0 for any g ∈ TK with

any given h ∈ TK , that is, {h, f} = 0 for any h ∈ TK . In the proof of
our Theorem 6 we already see that if f ∈ P then {h, f} = 0. We can also
prove the other direction. If {h, f} = 0 for any h ∈ TK , then R(g, h)f = 0.
We want to prove that f can be globally defined as a parallel vector field on
MK . We notice that the Lie algebra {TK , TK} is invariant under the parallel
transformation and hence so is the function orthogonal to {TK , TK}. Let
ω(s, t) be a family of curves in MK and ω(s, 0) = ω0, ω(s, 1) = ω1. Let
f(s, t) be family of functions on M such that f(s, 0) = f and fs(t) is parallel
along the curves Cs(t) = ω(s, t). Then f(s, t) are orthogonal to {TK , TK}.
Therefore, R(g, h)f(s, t) = 0 for any g, h ∈ TK . Now we want to prove that
f(s, 1) does not depend on s. Since f is parallel along each ωs we have
∇tf = 0, then

∇t∇sf = (∇t∇s −∇s∇t)f = R(ft, fs)f = 0,

that is, ∇sf is also parallel along each ωt. But ∇sf = 0 at t = 0, we have
∇sf = 0 always. In particular, ∇sf = 0 at t = 1, i.e., f(s, 1) is independent
of s. Therefore, f can be extended as a global parallel vector field, i.e.,
f ∈ P.

Now, for any f ∈ TK , (f, g) g ∈ P definds a functional on the closure
of P. But the property of a Hilbert space we have a f1 in the closure of P
such that (f1, g) = (f, g) for any g in the closure of P. Let f2 = f −f1, then
f2 is in the closure of {TK , TK} and f = f1 + f2.

Q. E. D.
For those maximal geodesic rays generated by the functions in P we

already applied our generalized Futaki invariants in [6]. If M is a com-
pact spherical almost homogeneous manifold under an algebraic reductive
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group, i.e., the K invariant functions are generated by an abelian ideal, then
TK = P, e.g., when M is cohomogeneity one. In that case, any tangent vec-
tor at a point can be extended to a global parallel vector field. In these
cases, we can apply Mabuchi’s definition to define the Futaki invariants for
the maximal geodesic rays. The existance of the Kähler-Einstein metrics
should imply the positivity of the Futaki invariant for those not coming
from any holomorphic vector field. Even for the toric manifolds, this give
new obstructions since the function might be a function of the potential
functions of holomorphic vector fields but itself is not a potential function
of any holomorphic vector field. That is exactly what we did in [6]. Also, for
these manifolds, the invariant Mabuchi moduli space is flat. In general, even
not all the tangent vectors in the tangent space of the invariant Mabuchi
moduli space come from parallel vector fields, we can use the parallel ones
to get new obstructions just like the original futaki obstruction. We call the
related stability parallel stability , then we expect that for the cohomogeneity
one and the spherical cases including the toric manifolds the existence is the
same as the parallel stability.

We can actually expect that the direct sum can be realized as C∞ func-
tions.

Conjecture 4. TK = P + {TK , TK}.

While the conjectures 1, 2, 3 (2’) might be very difficult to be proved,
conjecture 4 would be easier. We should try to prove our conjecture 4 in a
near future.

Remark 2. When the group G is Hamiltonian (This is true whenever
the manifold is simply connected, e.g., when M is Fano), i.e., every element
in the Lie algebra G of G corresponds to a given function, from (3) and (4)
of [8 p.3362] one could easily to see that P is generated by the functions
related to the Lie algebra of the torus which is the complement of H in
J . We notice here that G is compact and J is locally a direct product of
a torus and H. And the functions on the symplectic reduction produces
the major part of {TK , TK}. To make the picture clearer to the reader,
let Φ : M → G∗ be the moment map with Φ(m)(g) = g(m). On each
generic orbit G/H, we have the moment map Ψ = Φ|G/H : G/H → G/J .
The codimension of G/J = Ψ(G/H) is the same as the dimension of the
torus J/H. Therefore Ψ(M)//G has a dimension of that of J/H. P is the
pullback of the functions on Ψ(M)//G and the symplectic reduction MG

gives the major part of {TK , TK}. That is, locally TK is the functions on
Ψ(M)//G × MG. This basically gives a proof for the Conjecture 4.
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Remark 3. In the case of [6], one could easily calculate that θ is the
square of the norm of Ψ(m) under the standard product metric of CP n ×
CP n. Therefore, the name phase angle (or square phase angle) is justified.
Similarly, U is the square of the norm of Ψ(m) for the corresponding metric.
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