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Abstract: In this paper we start the program of the existence of the
smooth equivariant geodesics in the equivariant Mabuchi moduli space of
Kähler metrics on type II cohomogeneity one compact Kähler manifold. In
this paper, we deal with the manifolds Mn obtained by blowing up the
diagonal of the product of two copies of a CPn.

1 Introduction

Motivated with the Hilbert scheme construction in [Gu4], we consider the
manifolds Nn = Mn/S2 in [Gu8], where Mn is constructed by blowing up
the diagonal of the product of two copies of a complex projective space and
S2 is the symmetry group of two elements.

The manifolds Mn are Fano. In [GC], we proved the existence on Mn of
the Kähler-Einstein metric in the Ricci class by considering the symmetric
Ricci curvature equation and in [Gu7] we dealt with the general Kähler
classes on Mn by the symmetric scalar curvature equations as in [Gu2].

In [Gu8] we deal with a similar situation for Nn. We adapt the method
in [Gu5] to our situation to solve the uniqueness and then to obtain a clearer
picture of the existence. We proved that the existence of extremal metric
is the same as the negativity of certain integral, i.e., the positivity of the
generalized Futaki invariants (see also [Gu6]). This is a demonstration of
the relation between the existence and the stability.

The relation between the existence and the stability can also be seen in
[Gu2] where we obtain a solution, up to the positivity of ϕ, for any Kähler
class on the projective line bundle with the conditions therein (except the
positivity of the Ricci curvature). The positivity of ϕ is depended on the
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negativity of the partial integrals
∫D
a Φ′(U)dU with D > a > −d (we call

the Kähler class being stable if this is true by comparing with the condition
(9) in [Gu8]), or equivalently, the negativity of

∫−d
a Φ′(U)dU . Hence, we

studied the stability of [Gu2] together with the situation of Nn. We were
able to prove the equivalence between the stability and the geodesic stability
in [Gu8].

To test the geodesic stability further, we need first to find the smooth
geodesics.

We shall deal with this for Mn in this paper and for general type II of
almost homogeneous manifolds of cohomogeneity one in [Gu9].

Most of this work was done in the summer of 2002. Here, I like to thank
Professors Kobayashi, Wong for their supports and interests. I also thank
the mathematics department of The University of California at Riverside for
their supports such that this work is possible to be done. Thanks goes to
Professor Qi Zhang for showing me the book [Ga] and his suggestion for the
solution of the differential equations. I also like to take this chance to thank
Professors G. Tian, K. F. Liu, X. Y. Zhou, C. P. Wang for their supports.
And thanks goes to Professor S. X. Feng and the School of Mathematics and
Statistics in Henan University for their hospitalites when I was prepraring
this paper.

2 Preliminary

Let Mn be the blow-up of CPn ×CPn along the diagonal. Here we recall
some formulas in [GC] and [Gu7] on the calculation of Kähler metrics on
Mn.

To calculate the Kähler metric ω on Mn, we consider the pushdown of
the metric by the map p : Mn → Pn = CPn ×CPn. Then

p∗ω = aω1 + bω2 + ∂∂̄F, (1)

where ωi (i = 1, 2) are the standard metrics on the first and the second copy
of CPn and F is a function with some singularities on the diagonal.

Now the automorphism group of Mn is PSL(n+1,C), and the maximal
connected compact subgroup K = PSU(n+1) has real hypersurface orbits.

All K invariant functions are functions of θ = |(z,w)|2

|zw|2 where z and w are

the homogeneous coordinates of the CPn’s and |zw| = |z||w|. The diagonal
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corresponds to θ = 1. The orbit with θ = 0 is a very special orbit. If the
metric is K invariant, then F is a function of θ.

Recall that ω1 = ∂∂̄ log |z|2 and ω2 = ∂∂̄ log |w|2. We also have that
∂∂̄F = ∂(F ′∂̄θ) = ∂(θF ′∂̄ log θ). If we let f = θF ′, then f(0) = 0 and

p∗ω = aω1 + bω2 + θf ′∂ log θ ∧ ∂̄ log θ + f∂∂̄ log θ. (2)

Because of the action of the isometric group we only need to calculate
p∗ω at points with z0 = 1, w0 = 1 and zi = wj = 0 for i 6= 0, 1, j 6= 0. This
choice covers a dense set of the values of θ. By calculation we obtain:

∂∂̄ log |z|2 = θ(dz ∧ dz̄ − (1− θ)dz1 ∧ dz̄1)

∂∂̄ log |w|2 = dw ∧ dw̄

∂z∂w̄ log θ = dz ∧ dw̄ ∂w∂z̄ log θ = dw ∧ dz̄

∂ log θ = z̄1(dw1 − θdz1)

p∗ω = (a− f(θ))∂∂̄ log |z|2 + (b− f(θ))∂∂̄ log |w|2

+ f(θ)(∂z∂w̄ + ∂w∂z̄) log θ + θf ′(θ)∂ log θ ∧ ∂̄ log θ

= (a− f(θ))θ(θdz1 ∧ dz̄1 +
∑

i>1

dzi ∧ dz̄i) + (b− f(θ))dw ∧ dw̄

+ f(θ)(dz ∧ dw̄ + dw ∧ dz̄)

+ (1− θ)f ′(θ)(θdz1 − dw1) ∧ (θdz̄1 − dw̄1).

We observe that the complex 2-dimensional subspaces Vi generated by ∂
∂zi

,
∂

∂wi
are orthogonal to each other for different i with 1 ≤ i ≤ n. If we regard

the tangent space as the complex vector space generated by the vector fields
corresponding to the elements of the Lie algebra of K, then the semisimple
part of the centralizer of the isotropy group has these Vi’s as invariant sub-
spaces of the tangent space. To calculate the volume form, we only need to
calculate the determinant τi of the restricted metric for each Vi and compare
them with the corresponding determinants on the standard Kähler-Einstein
metric on CPn ×CPn.

We notice that τi, i ≥ 2 are all equal to

∣

∣

∣

∣

∣

θ(a− f(θ)) f(θ)
f(θ) b− f(θ)

∣

∣

∣

∣

∣

= θ(a− f(θ))(b− f(θ))− f2(θ).
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If ω comes from the pullback of the standard metric, then a = b = n + 1

and the determinants of the standard metric on each Vi are τ0i = (n+1)2

|zw|2
for

i > 1. So τi
τ0
i

= |zw|2

(n+1)2 (θ(a − f(θ))(b− f(θ))− f2(θ)) must be a function of

θ, we have

τi =
1

|zw|2
A

with i > 1, where A = (a− f(θ))(b− f(θ))− θ−1f2(θ).
For i = 1 we have:

τ1 =

∣

∣

∣

∣

∣

θ2(a− f(θ) + (1− θ)f ′(θ)) f(θ)− θ(1− θ)f ′(θ)
f(θ)− θ(1− θ)f ′(θ) b− f(θ) + (1− θ)f ′(θ)

∣

∣

∣

∣

∣

= θ2[(a− f(θ) + (1− θ)f ′(θ))(b− f(θ) + (1− θ)f ′(θ))

−(θ−1f(θ)− (1− θ)f ′(θ))2].

In the same way, we observe that τ01 = (n+1)2

|zw|4 and hence

τ1 =
1

|zw|4
B

with

B = (a− f(θ) + (1− θ)f ′(θ))(b− f(θ) + (1− θ)f ′(θ))

− (θ−1f(θ)− (1− θ)f ′(θ))2.

We have the following result in [GC]:

Proposition 1. The volume form is

1

|zw|2n+2
An−1Bdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n ∧ dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n.

Now we try to describe the conditions for f(θ) such that the 2-form
defined by f(θ) is a Kähler form at any point outside the diagonal. We have
the following (see [GC]):

Proposition 2. (A(1 − θ))′ = −B.

We let C = A(1− θ) and

dV = dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n ∧ dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n.
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Then the volume form is

Cn−1BdV

|zw|2n+2(1− θ)n−1
= ΦdV.

We will see more geometrical meaning of this formula later on.
If ω is positive, then τ1 > 0. That is, B > 0. Proposition 2 says

that A(1 − θ) is decreasing. We observe that A is positive if and only if
limθ→1A(1− θ) ≥ 0. Let θ = 0. We observe that a, b > 0 since ω is positive
on Vi with i > 1. On the other hand, if a, b > 0 and A > 0, then ω is
positive on Vi with i > 1 at θ = 0; and ω is always positive on Vi (i > 1) by
the continuity (otherwise ω has zero direction on some Vi (i > 1), but this
contradicts A > 0). In the same way, we observe that ω is positive on V1 if
and only if a+ f ′(0), b+ f ′(0) > 0 and B > 0. We have (see [GC]):

Proposition 3. ω is a Kähler metric outside the diagonal of Mn if and
only if (1) B > 0, (2) limθ→1C ≥ 0 and min(a, b, a + f ′(0), b + f ′(0)) ≥ 0.

We consider how the Kähler metric ω in Proposition 3 extend to a metric
on the diagonal. As above, we only consider the points at which z0 = w0 = 1
and zi = wj = 0 for i > 1, j > 0.

Proposition 4. Let ω be a Kähler metric as in Proposition 3. Then it is
a metric on the diagonal of Mn (resp. Nn) if and only if limθ→1 f(θ)(1−θ) <
0, limθ→1B > 0 (resp. = 0), and limθ→1C > 0.

To calculate the Ricci curvature of ω on Mn, we notice that C(0) =
A(0) = ab. We let

U = ab− C

= ab− (1− θ)((a− f(θ))(b− f(θ))− θ−1f2(θ))

= θab+ (a+ b)f(θ)(1− θ) + θ−1f2(θ)(1− θ)2

= θ[ab−
(a+ b)2

4
+ (

a+ b

2
+ θ−1f(θ)(1− θ))2]

= θ[−
(a− b)2

4
+ (

a+ b

2
+ θ−1f(θ)(1− θ))2]

= −
(a− b)2

4
θ + g2,

where g = θ
1

2 (a+b
2 + θ−1(1 − θ)f), then Φ = (ab−U)n−1U ′

|zw|2n+2(1−θ)n−1 and U(0) = 0.

Therefore, the Ricci curvature is −∂∂̄ log Φ. We also let

V = θ(log Φ|zw|2n+2)′,
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then V (0) = 0 and

Ricci(ω) = (n+ 1)ω1 + (n+ 1)ω2 − θV ′∂ log θ ∧ ∂̄ log θ + V ∂∂̄ log θ. (3)

Again, we only need to calculate the Ricci curvature at points with
z0 = 1, w0 = 1 and zi = wj = 0 for i 6= 0, 1, j 6= 0. By calculation we
obtain:

Ricci(ω) = ((n+ 1) + V )∂∂̄ log |z|2 + ((n+ 1) + V )∂∂̄ log |w|2

− V (∂z∂w̄ + ∂w∂z̄) log θ − θV ′∂ log θ ∧ ∂̄ log θ

= (n+ 1 + V )(
dz ∧ dz̄

|z|2
−

|z1|
2dz1 ∧ dz̄1
|z|4

)

+ (n+ 1 + V )
dw ∧ dw̄

|w|2
− V (∂z(

zdw̄

(z, w)
) + ∂w(

wdz̄

(w, z)
))

− θV ′(−
z̄1dz1
|z|2

+
z̄1dw1

(w, z)
) ∧ (−

z1dz̄1
|z|2

+
z1dw̄1

(z, w)
)

= (n+ 1 + V )(
dz1 ∧ dz̄1

|z|4
+

∑

i>1

dzi ∧ dz̄i
|z|2

)

+ (n+ 1 + V )dw ∧ dw̄ − V (dz ∧ dw̄ + dw ∧ dz̄)

− θV ′|z1|
2(
dz1
|z|2

− dw1) ∧ (
dz̄1
|z|2

− dw̄1).

We observe that the complex 2-dimensional subspaces Vi generated by
∂
∂zi

, ∂
∂wi

are orthogonal to each other for different i with 1 ≤ i ≤ n with
respecting both the metric and the Ricci curvature. To calculate the scalar
curvature, we only need to calculate the restricted σi =

1
2Ricci(ω)∧ω|Vi

for
each Vi and compare them with the corresponding items on the standard
Kähler-Einstein metric on CPn ×CPn.

We notice that σi, i ≥ 2 are all equal to
∣

∣

∣

∣

∣

∣

a+b
2

−f(θ)

|z|2 f(θ)

−V n+ 1 + V

∣

∣

∣

∣

∣

∣

=
1

|z|2
(
a+ b

2
− f(θ))(n+ 1 + V ) + f(θ)V.

If ω comes from the pullback of the standard metric, then a = b = n+1 and

σ0
i = (n+1)2

|zw|2 for i > 1. So σi

σ0
i

= |zw|2

(n+1)2 (
1

|z|2 (
a+b
2 − f(θ))(n+ 1 + V ) + f(θ)V )

must be a function of θ, and we have

σi =
1

|zw|2
A1
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with i > 1, where A1 = (a+b
2 − f(θ))(n+ 1 + V ) + θ−1f(θ)V .

For i = 1 we have:

σ1 =

∣

∣

∣

∣

∣

∣

a+b
2

−f(θ)+|z1|2θf ′(θ)

|z|4
f(θ)|z|2−|z1|2θf ′(θ)

|z|2

−V |z|2+|z1|2θV ′

|z|2 n+ 1 + V − θV ′|z1|
2

∣

∣

∣

∣

∣

∣

=
1

|z|4
((
a+ b

2
− f(θ) + (1− θ)f ′(θ))(n+ 1 + V − (1− θ)V ′)

+(θ−1f(θ)− (1− θ)f ′(θ))(θ−1V − (1− θ)V ′)).

In the same way, we observe that σ0
1 = (n+1)2

|zw|4
and hence

σ1 =
1

|zw|4
B1

with B1 = (a+b
2 − f(θ) + (1− θ)f ′(θ))(n+ 1 + V − (1− θ)V ′) + (θ−1f(θ)−

(1− θ)f ′(θ))(θ−1V − (1− θ)V ′).
We have the following result which is similar to Proposition 2 (see [Gu7]):

Proposition 5. (A1(1− θ))′ = −B1.

Proof: A′
1 = −θ−2f(θ)V +V ′(a+b

2 − f(θ)+ θ−1f(θ))− f ′(θ)(n+1+V −
θ−1V ). Therefore, we have

(A1(1− θ))′ = A′
1(1− θ)−A1

= −θ−2f(θ)V − (
a+ b

2
− f(θ))(n+ 1 + V )

− (1− θ)(−V ′(
a+ b

2
− f(θ) + θ−1f(θ)) + f ′(θ)(n+ 1 + V − θ−1V ))

= −B1.

Q. E. D.
We let C1 = A1(1− θ). Then we have (see [Gu7]):

Proposition 6. The scalar curvature is 2n (C1C
n−1)′

(Cn)′ .

We shall determine the equation for metrics with constant scalar curva-
tures. By Proposition 6, this is the same as

(C1C
n−1)′

(Cn)′
= R0.

Let
lim
θ→1

(1− θ)f(θ) = −c,
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then by Proposition 4 we have c > 0.

U(1) = ab− C(1)

= ab− lim
θ→1

(−a− b)f(θ)− θ−1f2(θ)(1− θ))(1− θ)

= ab− (a+ b)c+ c2 = (a− c)(b − c) > 0

we have a, b > c since if we increase only a without changing other quantities
we should still get a metric. We have:

Proposition 8. The Kähler classes on Mn (resp. Nn) are one to one
to with the elements in the set ∆ = {(a, b, c)|a,b>c>0} (resp. (a, b)|a>c>0).
For any Kähler metric on Nn, we have U ′ = (1− θ)u(θ) with u(1) 6= 0.

We can regard Mn as a K-equivariant fiber bundle over CPn. To cal-
culate the equivariant integrals we only need to calculate them on an open
dense set of the fiber. Therefore, the total volume is

∫

Mn

ΦdV = −C(n)

∫ +∞

0

((ab− U)n)′

n(1 + r2)n+1(1− θ)n−1

r2n−1

(2n − 1)!
S(2n− 1)dr

= A(n)

∫ 0

1
((ab− U)n)′dθ = A(n)((ab)n − (ab− (a− c)(b − c))n)

= A(n)((ab)n − (c(a+ b− c))n,

where C(n) (resp. S(2n−1)) is the volume of CPn (resp. the sphere S2n−1)
and

θ =
1

1 + r2
, A(n) =

C(n)S(2n − 1)

(2n)!
.

In the same way, we have that the total scalar curvature on Mn is

A(n)(C1(ab− U)n−1)|01

= A(n)(
n+ 1

2
(a+ b)(ab)n−1 − C1(1)(c(a + b− c))n−1).

3 Some general results on almost homogeneous

manifolds

Theorem 1. Let K be a compact Lie subgroup of the automorphism group
of a compact Kähler manifold M such that KC has an open orbit. Then the
Mabuchi moduli space of the K equivariant Kähler metrics is flat.

The flatness comes from the fact that the curvature of the Mabuchi
moduli space is determined by the Poisson brackets of two functions. Since
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the the complexification Lie group KC has an open orbit, say U , at each
poit in U the vector fields related to K generates the whole holomorphic
tangent space, the K⊥ to the metric is perpendicular to itself with respect
to the symplectic structure.

Theorem 2. Assume that the Mabuchi moduli space is flat. Let ϕ(s, t)
be a two parameters family of the Kähler metrics in the Mabuchi moduli
space such that ϕ(s, 0) = ϕ1, ϕ(s, 1) = ϕ2, φ0 be a function on M . Then
the parallel transformation φ1(s) of φ0 along the curve ϕs = ϕ(s, t) are
independent of s.

Proof: Along each curve ϕs, φ is parallel, therefore, ∇tφ = 0. We have
∇t∇sφ = ∇s∇tφ = 0, i.e., ∇sφ is also parallel. But ∇sφ = 0 at t = 0, we
have ∇sφ = 0 at t = 1 also.

Theorem 3. Let M be a Kähler manifold, ϕ(t) be a path in the Mabuchi
moduli space of the Kähler metrics. If φ0 is a function on M , we can regard
φ0 as a vector at ϕ0, then the parallel transformation of φ0 along ϕ(t) exists.

Proof: We need to solve the equation

φ̇−
1

2
(dφ, dϕ̇)ϕ(t) = 0,

which is φ̇− gij̄ϕ̇iφj̄ = 0.
Here we apply a method from [Ga p.18]. Regarding the graph of v =

φ as a hypersurface we have the normal vector (−φ̇,−φj̄ , 1). If α(s) =
(t(s), zj(s), v(s)) is a curve such that

α′(s) · (−φ̇,−φj̄ , 1) = 0,

then α(s) is a curve on the graph if and only if the initial point is on the
graph.

In particular, if α′(s) = (1,−gij̄t ϕi, 0), α(s) is a curve on the graph if
α(0) is. We call the curves with this condition the characteristic curves of

this equation. In this case we have v′(s) = 0, t′(s) = 1,
dz̄j
ds

= −gij̄ϕ̇i.

Therefore, φ is constant along these characteristic curves, t = s,
dz̄j
dt

=

−gij̄ϕ̇i.
Now the ordinary differential equations have good enough conditions

such that these curves exist and unique. Therefore, the parallel transforma-
tion exists.

Q. E. D.
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4 The Existence of the Geodesics

In [GC] we proved that there is a unique Kähler-Einstein metric in the Ricci
class on Mn. By the result of [LS], we see in [Gu7] that there is an open
subset Ω0 such that for any Kähler class in Ω0 there is a unique Kähler
metric of constant scalar curvature on Mn. Although this argument does
not work for Nn with a general n, we applied a modified method of [Gu5]
and proved the existence of the geodesics in the Mabuchi moduli space of
Kähler metrics. We can not apply our method of Legendre transformation
as in [Gu5,6] to our case when a 6= b. Here we will apply our Theorem 2 and
3 in section 3 and then integrate the parallel vector field to get the geodesics.

The parallel transformation equation is

φ̇ =
1

2
(dφ, dḞ )

=
ḟ

2θ
(dφ, dθ)

= θḟφ′(∂ log θ, ∂̄ log θ)

= 2ḟφ′(1− θ)θ−
1

2 gB−1

= 2gġφ′B−1 = U̇φ′(U ′)−1.

But if we regard φ as a function of U and t, then

φ̇(θ, t) = φ̇(U, t) +
∂φ

∂U
U̇ = φ̇(U, t) + φ′ U̇

U ′
.

Therefore, we have φ̇(U, t) = 0, i.e., φ only depends on U .
The equation for the geodesic is:

Ḟ = φ(U)

then φs = ġ. where g = θ
1

2 (a+b
2 + θ−1(1 − θ)f) = (U + (a−b)2

4 θ)
1

2 and

s = ln 1+θ
1
2

1−θ
1
2

. In particular,

U̇ = 2gġ = 2(U +
(a− b)2

4
θ)

1

2φUUs.

Regard z = U(s, t) as a graph, (−Us,−U̇ , 1) is the normal vector. The
characteristic curve is U =constant, t = t,

ds

dt
= −2(U +

(a− b)2

4
θ)

1

2φU .
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By integration we get that if

D =

√

(a− b)2

4
θ + U +

√

θ(
(a− b)2

4
+ U)

then

D2 = C0U(1− θ) exp(−2tφU

√

(a− b)2

4
+ U).

Let t = 0 we obtain

C0 = (U(1− θ0))
−1(

√

(a− b)2

4
θ0 + U +

√

θ0(
(a− b)2

4
+ U))2 =

D2(θ0, U)

U(1− θ0)

if θ0 6= 1. That is θ = (x−U)2

(x+U)2+(a−b)2x where x = C0Uekt,

k = −2φU

√

(a− b)2

4
+ U.

We notice that

C0 >
(1 + θ

1

2

0 )
2

1− θ0
=

1 + θ
1

2

0

1− θ
1

2

0

> 1.

Since both x and U > 0, it is not difficult to see that 0 ≤ θ < 1 always hold
if θ0 < 1. For θ0 = 0, we have

C0(0) =
(
√

(a−b)2

4 + U ′(0) + |a−b|
2 )2

U ′(0)
.

If a = b. then D = U
1

2 (1 + θ
1

2

0 ), D2 = C0U(1 − θ)exp(−2tφUU
1

2 ).

C0 =
1+θ

1
2
0

1−θ
1
2
0

, x =
U(1+θ

1
2
0
)

1−θ
1
2
0

exp(−2φUU
1

2 t). Let y = x
U
, then when t = 0, we

have y =
1+θ

1
2
0

1−θ
1
2
0

> 1. Therefore, by θ =
(

y−1
y+1

)2
, we have θ

1

2 = y−1
y+1 . That is

ln y = s.
Therefore, in general, we might use s1 = ln y in the place of s. But in

general, s1 depends on U and can not be a function of θ only.
Now we try to connect two metrics by a geodesic. Regard x as a function

of t. Let θ1 be the value of θ of the second metric which corresponds to U(θ0).
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We notice that the characteristic curve has U as constant, we can then solve
the equation

θ1 =
(x(1) − U)2

(x(1) + U)2 + (a− b)2x(1)
.

we obtain that

C0Uek =
2U(1 + θ1) + (a− b)2θ1 +

√

(4U + (a− b)2θ1)(4Uθ1 + (a− b)2θ1)

2(1 − θ1)
.

We can also have

(1− θ0)D
2(θ1, U)

(1− θ1)D2(θ0, U)
= exp(−2φU

√

U +
(a− b)2

4
) = ek.

From this we get k and hence φ. To get φU (1), we apply

lim
U→(a−c)(b−c)

1− θ0(U)

1− θ1(U)
= lim

U→(a−c)(b−c)

θ0,U
θ1,U

.

To prove this does give a path of metric we only need to prove that

θU = [ (x−U)2

(x+U)2+(a−b)2x ]U > 0 always.

θU =
x− U

((x+ U)2 + (a− b)2x)2
[x′(4U+(a−b)2)(x+U)−2x(2(x+U)+(a−b)2)]

for 0 < U < U(1). For U = 0, we have

θU (0) =
(y − 1)2

(a− b)2y

with y = x/U .
For U = U(1), we only need to check limU→U(1)m(t)/x > 0, i.e.,

limU→U(1)
y′

y2
> 0. That is same as limU→U(1) C

−1
0 (logC0)

′ > 0. This is
always true.

Therefore, θU > 0 if and only if

m(t) =
x′

x
[4U + (a− b)2]− 4−

2(a− b)2

x+ U
> 0

for U 6= 0 and y > 0 at U = 0.

12



If this is true for the two metrices at the end of the geodesic, i.e., for
x(0) and x(1), then by lnx = t lnx(0) + (1− t) lnx(1), we have

x′

x
[4U + (a− b)2]− 4 = (t

x′(0)

x(0)
+ (1− t)

x′(1)

x(1)
)[4U + (a− b)2]− 4

> 2(a− b)2[
t

x(0) + U
+

1− t

x(1) + U
]

≥
2(a− b)2

x+ U
.

The last inequality comes from the fact that the function h(t) = (et + 1)−1

is concave (h′′ > 0) for t > 0 by noticing that y(0), y(1) hence y > 1.
We notice that if b = a, we only need x′

x
U − 1 > 0 or (ln y)′ > 0.

Theorem 4. On Mn, there is always a smooth geodesic curve between
two metrics in the same Kähler class.

Therefore, we have:

Theorem 5. There is an unique Kähler metric of constant scalar cur-
vature up to the automorphism group in each Kähler class on Mn if there is
one.

We notice that the existence problem for the compact type II cohomo-
geneity one Kähler manifolds were solved in [Gu6].
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