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In [Gu] we gave a proof of the conjecture of the pinching of the bisec-
tional curvature mentioned in [HGY] and [CHY]. Moreover, we proved that
any compact Kähler-Einstein surface M is a quotient of the complex two
dimensional unit ball or the complex two dimensional plane if (1) M has
nonpositive Einstein constant and (2) at each point, the average holomorphic
sectional curvature is closer to the minimal than to the maximal. Following
[SY], [HGY] and [CHY], we used a minimal holomorphic sectional curva-
ture direction argument, which was easier for the experts in this direction
to understand our proof. In this note, we should use a maximal holomorphic
sectional curvature direction argument, which is shorter and easier for the
readers who are new in this direction.

1 Introduction

In [SY] the authors conjectured that any compact Kähler-Einstein surface
with negative bisectional curvature is a quotient of the complex two di-
mensional unit ball. They proved that there is a number a ∈ (1/3, 2/3)
such that if at every point P , Kav − Kmin ≤ a[Kmax − Kmin], then M is
a quotient of the complex ball. Here, Kmin (Kmax, Kav) is the minimal
(maximal, average) of the holomorphic sectional curvature. The number a
they obtained is a < 2

3[1+
√

6/11]
(almost 0.38, see [P2] page 398). In [HGY],

Yi Hong1 pointed out that this is also true if a ≤ 2

3[1+
√

1/6]
< 0.476. We

also observed in Theorem 2 that if a ≤ 1
2 , then there is a ball-like point P .

Key Words and Phrases: Kähler-Einstein metrics, compact complex surfaces, pinching
of the curvatures.

Math. Subject Classifications: 53C21, 53C55, 32M15, 32Q20.
1 For this part, it is due to Professor Hong. Notice that he was the first author there.
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That is, at P , Kmax = Kmin. We notice that
√

1/6 > 1/3. Therefore, we
conjectured in [HGY] that M is a quotient of the complex ball if a = 1

2 . In
general, we believe that we might not get a quotient of the complex ball if
a > 1

2 . In [P1, P2], the author used a different method and proved that a

can be (3+ 4
√

3
3 )/11 (almost 0.48 according to [CHY] page 2628 right before

Theorem 1.2), see [P1] page 669, or [P2] page 398. In [CHY], the authors
improved the constant to a < 1

2 that gave a proof of a weaker version of the
conjecture.

In [Gu], we proved:

PROPOSITION. Let M be a connected compact Kähler-Einstein surface
with nonpositive scalar curvature, if we have

Kav − Kmin ≤ 1

2
[Kmax − Kmin]

at every point, then M is a compact quotient of either the complex two
dimensional unit ball or the complex two dimensional complex plane.

For important mathematics work, there is a common practice that people
gave different and (possibly) simpler proofs (to certain experts and readers).
For examples, see [Bo], [Hu], [CF], [Gu1], [Ti], [DW], [PS], [ACGT], etc..

This note is for the experts who are new in this direction. In the second
section, we shall review the basic material from [SY] with an emphasis on the
maximal holomorphic sectional direction instead of the minimal holomorphic
sectional direction in [SY], [HGY], [CHY], [Gu]. We shall prove the existence
of the ball-like points as we did in the second section in [Gu] by using a
different but similar function. In the third section, we again use the Hong-
Cang Yang’s function and a different but similar calculation with respect to
the maximal direction instead of the minimal direction. We put some detail
calculation the Appendix as the last section of this paper.

I thank Professors Poon, Wong and the Department of Mathematics,
University of California at Riverside for their supports. I thank Professor
Hong Cang Yang for showing me his work when I was a graduate student in
Berkeley. I also thank Professor Paul Yang for telling me the work [P1]. We
also thank Tommy Murphy for discussions, and the referees of [Gu] and this
paper for their useful comments. Finally, this paper was written up when I
visited Xiamen University. Here I take this chance to thank Professor Qiu
Chunhui and their department for their warm hospitality.
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2 Existence of Ball-like Points

Here, we repeat the argument in the proof of our Proposition 1 given in [Gu]
by using a different but similar argument:

Proposition 1(Cf. [HGY] p.597–599, [Gu] Proposition 1) Suppose that

Kav − Kmin ≤ 1

2
[Kmax − Kmin]

for every point on the compact Kähler Einstein surface with nonpositive
Ricci curvatures. There is at least one ball-like point.

Proof of Proposition 1: Throughout this section, as in [SY] and [CHY],
[Gu], we assume that {e1, e2} be an unitary basis at a given point P with

R11̄11̄ = R22̄22̄ = Kmin, R11̄12̄ = R22̄21̄ = 0

A = 2R11̄22̄ − R11̄11̄ ≥ 0, B = |R12̄12̄|
As in [SY], we always have that A ≥ |B| and we assume that B ≥ 0.
This also implies if the sectional curvatures have a 1/4 pinching, i.e., the
section curvature is inside an interval [− 1

4a(P ),−a(P )] at every point P for
a nonnegative function a(P ), then M is covered by a ball. This was pointed
out in [CHY]. This is because if we let a(P ) = −R11̄11̄, ei = Xi +

√
−1Yi,

then at least one of R(X1, X2, X1, X2) and R(X1, Y2, X1, Y2) is bigger or
equal to − 1

4a(P ). Same argument works for the higher dimension case. Our
PROPOSITION is a kind of the generalization of the 1/4 pinching.

If P is not a ball-like point, according to [SY], we can do as above for
a neighborhood U(P ) of P whenever A > B (Case 1 in [SY] page 475). In
[Gu] we took a lot of efforts in handling the case in which A = B. We write

α = e1 =
∑

ai∂i, β = e2 =
∑

bi∂i

and
S11̄11̄ = R(e1, ē1, e1, ē1) =

∑

Rij̄kl̄aiājakāl

and so on. In particular, we have

S11̄11̄ = S22̄22̄ = Kmin, S11̄12̄ = S22̄21̄ = 0

According to [SY], we have

Kmax = Kmin +
1

2
(A + B), Kav = Kmin +

1

3
A
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1

3
[Kmax − Kmin] ≤ Kav − Kmin ≤ 2

3
[Kmax − Kmin]

This also shows that A and B is independent of the choice of e1 and e2.
Also, our condition in Proposition 1 is therefore the same as A ≤ 3B.

In this section, we denote the maximal direction by e1∗ and use ∗ in the
notation of the corresponding terms minimal direction case. Assume that
P is not a ball-like point. Under our assumption, B > 0. According to [SY]
page 474 the e1∗ could be 1√

2
(e1 + e2). We could pick up e2∗ = i√

2
(e1 − e2).

We have:

A∗ = 2R1∗1̄∗2∗2̄∗ − R1∗1̄∗1∗1̄∗ = −1

2
(A + 3B)

B∗ = R1∗2̄∗1∗2̄∗ =
1

2
(A − B)

In our case, we have A∗ + 3B∗ = A − 3B ≤ 0, i. e., −A∗ ≥ 3B∗. Moreover,
from both the arguments in [SY] page 474 and 475, the choices of the direc-
tions of e1∗ are isolated on the projective holomorphic tangent space. Those
two cases are: Case 1: A > B; and Case 2: A = B. In the case 1, there
is only one direction for the minimal holomorphic sectional curvature and
there is only one direction for maximal holomorphic sectional curvature since
by our assumption A ≤ 3B, that is, B is not zero at a nonball-like point.
The second statement also follows from the argument in [SY] by applying
it to the maximal direction instead of the minimal direction. In the case 2,
there is a circle for the minimal direction but there is an unique maximal
direction. That is, one could always have a smooth frame of e1∗ . This might
make the proof simpler. However, near the points with B∗ = A−B = 0, we
might still have a difficulty to get a smooth frame nearby such that B∗ ≥ 0.
Therefore, we only assume that B∗ ≥ 0 at P but not necessary true near by
if B∗(P ) = 0.

In [Gu] and [HGY], we let Φ1 = |B|2
A2 = τ2. Here, we let Φ∗

1 = |B∗|2
(A∗)2

=

(τ∗)2 and τ∗ = − |B∗|
A∗

≥ 0.
Our condition is same as τ ∗ ≤ 1/3. If there is no ball-like point, there is

a maximal point.
Now, τ∗ = A−B

A+3B = 1
3 (−1+ 4

1+3τ ). The maximal of τ ∗ is just the minimal
of τ .

The calculation of the Laplace of Φ1 at a minimal point, which is not a
ball-like point and A 6= B in [Gu] showed that B∗ = 0.

A similar calculation of the Laplacian of Φ∗
1 with B∗ 6= 0 shows that

∆Φ∗
1 = 6A∗(τ∗)2((τ∗)2 − 1) + h∗ (1)
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Here ∆Φ∗
1 has two general terms, just as the formula for the ∆Φ1 in

[Gu]. See the Appendix at the end of this paper. The first term is always
nonnegative since τ ∗ ≤ 1

3 ≤ 1. The second term is a hermitian form h∗ to y∗.
We can separate y∗ into two groups: y∗

2j in one group and y∗
1j in the other.

These two groups of variables are orthogonal to each other with respect to
this hermitian form. That is, h∗ = h∗

1 + h∗
2 with h∗

1 (or h∗
2) only depends on

the first (second) group of variables.
We need to check the nonnegativity for each of them.
For y∗11, y

∗
12, the corresponding matrix of h∗

2 is:

[

2(9(τ∗)2 − 1)((τ ∗)2 − 1) 0
0 0

]

And the matrix for h∗
1 of y∗21, y

∗
22 is:

[

0 0
0 2(9(τ ∗)2 − 1)((τ ∗)2 − 1)

]

When P is a critical point of Φ∗
1, the matrices on y∗ is clearly semi

positive. Therefore, if there is no ball-like point, then we have that at the
maximal point of Φ∗

1, τ∗ = 0 or A∗ = 0 since τ ∗ ≤ 1
3 .

If A∗ = 0, then we have a ball-like point. And we are done.
On the other hand, if τ ∗ = 0, we have B∗ = 0 at P . Since P is a maximal

point for τ ∗, this implies that B∗ = 0 on the whole manifold. In this case,
we could always assume that B∗ ≥ 0.

According to [SY] page 475 case 2, i. e., when A = B, we have a smooth
coordinates with Kmax = R11̄11̄ (this works fortunately when A = B always.
In general, the original argument might not always work since one might
not have A = B always nearby. However, as [SY] case 1 also works for the
maximal direction instead of the minimal direction, this implies that under
our condition the directions for Kmax are always isolated. Therefore, it
might be better one chose Kmax instead of Kmin from the very beginning).
Using this new coordinate, we can define the similar function A∗ and B∗.
In general, B∗ = 1

2(A − B) and A∗ = −1
2(A + 3B). In our case, B∗ = 0

and A∗ = −2A. Using this new coordinate, one can do the calculation for
any of the functions in [SY], [P1], [P2] (or [CHY], see the next section)
that the set of ball-like points is the whole manifold. If one does not like
Polombo’s function Φα ([P2] page 418) with α = − 8

7 (e.g., [P2] page 417
Lemma), then one might simply use the function with α = −1 (in [P1, P2],
not the vector we mentioned in this paper earlier), i.e., the new function is
proportional to Φ2 = (3B−A)A. In our case, this is just 2A2. We can apply
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Φ
1

3

2 . This is relatively easy that we just leave it to the readers (or see (4) in
the generalization). One can also use the function in [SY] page 477

3γ2 − γ2
1 =

1

2
(A2 + 3B2).

We can also still use the argument in [SY] case 1, in which the minimal
vectors are not isolated any more but they are points in a smooth circle
bundle over the manifold that we could just choose a smooth section instead.

Also, this paragraph is not needed in the following Corollary 1 and
Lemma 1 since in those two propositions, we already have A = 3B. With
A = B, one could readily get that A = B = 0.

If A = 0, Kmax = Kmin and P is a ball-like point. We have a contradic-
tion. Therefore, the set of ball-like points is not empty.

Q. E. D.
Observe that if A = 3B at P , then Φ1 achieves the minimal value at P

and A 6= B unless P is a ball-like point. That is the first part of the proof
of Proposition 1 goes through. That is, P must be a ball-like point.

Corollary 1. Assume the above, if Kav − Kmin = 1
2 [Kmax − Kmin] at

P , then P is a ball-like point.

Therefore, we have:

Lemma 1. If Kav − Kmin ≤ 1
2 [Kmax − Kmin] on M , then we have

Kav −Kmin < 1
2 [Kmax −Kmin] on M − N , where N is the subset of all the

ball-like points.

Therefore, we can apply the argument of [CHY]. To do that one need
following Proposition 4 in [SY]:

Propositon 2.(Cf. [SY], also [HGY Theorem 3]) If N 6= M , then N is
a real analytic subvariety and codimN ≥ 2.

As in [SY], Proposition 2 give us a way to the conjecture by finding
a superharmonic function on M which was obtained by Hong Cang Yang
around 1992. In [SY] and [HGY], the authors used Φ = 6B2 − A2. In [P2],
Polombo used (11A − 3B)(B − A) + 16AB, see [P2] page 417 Lemma. One
might ask why do we need another function but do not use our Φ1. The
answer is that by a power of Φ1, we can only correct the Laplace by |∇Φ1|2.
But that could only change the upper left coefficients of our matrices as it
only provides |x|2 terms. In the case of Φ1, it does not work since τ

A 6= 0
but the coefficients of |y12|2, |y21|2 are zeros.

2 The paragraph is not needed for the proofs of Corollary 1 and Lemma 1. Also, in
this special case, the original frame in [SY] actually work. So, one could simply apply [SY]
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Therefore, we need another function, which was provided by Hong Cang
Yang.

Remark 1. Whenever there is a bounded continuous nonnegative func-
tion f on M such that (1) f(N) = 0, (2) f is real analytic on M − N and
(3) ∆f ≤ 0 on M −N , then f = 0. Here N could be just a codimension two
subset . This is in general true for extending continuous superharmonic func-
tions over a codimensional two subset. See [SY], [HGY] and [CHY]. Here,
we would like to give our own reasons why this is true in these special cases.
If we define Ms = {x ∈ M |dist(x,N)≥s} and hs = ∂Ms, then the measure of
hs is smaller than O(s) when s tends to zero. Therefore,

0 ≥ ln 2

∫

M2δ

∆fωn ≥
∫ 2δ

δ
[

∫

Ms

∆fωn]s−1ds =

∫ 2δ

δ
[

∫

hs

∂f

∂n
dτ ]s−1ds.

But by applying an integration by parts to the single variable integral, the
last term is about (δ)−1

∫

h2δ
(f − g)dτ → 0 since f is bounded and f − g

tends to 0 near N , where g is the f value of the corresponding point on hδ.
For example, if f = ra with a > 0, then

∂f

∂n
= ara−1 = asa−1

and
∫

hs

∂f

∂n
dτ = O(sa) → 0.

Therefore, ∆f = 0 on M − N . Therefore f extends over N as a harmonic
function. This implies that f = 0 on M .

Now, let f = (3B − A)a, this is natural after the proof of Proposition
1, we will show in the next section that ∆f ≤ 0 for a ≤ 1

3 (see also a
proof in [CHY]). Therefore, A = 3B always. By the Corollary 1, we have
A = B = 0. This function is also related to the functions in [P2] page 417
with a1 = a3 = 0. In [P2] Polombo had to pick up functions with a1 = a2

to avoid a complication of the singularities. See [P2] page 406 and the first
paragraph in page 418 (see also [P1], the last paragraph of page 668). While
we shall completely resolve the difficulty in the next section.

3 Generalized Hong Cang Yang’s Function

Let Ψ = 3B − A = −A∗ − 3B∗. About 1992, Hong Cang Yang considered
f = Ψ

1

3 . In [CHY], they had a formula for the Laplacian of Ψ. To apply
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the method to the maximal direction, we notice that same formula holds.
Moreover, if we let Ψk = 3B + kA then Ψ = Ψ−1 and

Lemma 2. (Cf. [CHY] p.2630 (13)) We have: A = 3B∗−A∗

2 ,

B = −A∗ + B∗

2
,

∆(3B + kA) = 3[ΨkR11̄22̄ − B(3A + kB)]

+
3

B
|∇(ImR12̄12̄)|2 + 6[(B + kA)

∑

|y|2 + 2(A + kB)Re
∑

yi1ȳi2]

In particular, we have:

∆Ψ = 3[ΨR1∗1̄∗2∗2̄∗ + B∗(3A∗ + B∗)]

− 3

B∗ |∇(ImR1∗2̄∗1∗2̄∗)|2 − 6(A∗ + B∗)
∑

|y∗i1 + y∗i2|2.

It is obvious that in the case of the maximal direction, we have to assume
B∗ 6= 0. That is, we still need to deal with the case in which A = B. This
is because, in general, one could not calculate the second derivatives of B ∗

even if we could get a smooth frame near the considered point. Therefore,
we still need deal with the singularities as we did in our earlier paper.

To make everything easier for us, in the rest of this section and the next
section (except Remark 2), we use the notation without ∗ for the maximal
direction instead of the minimal direction if there is no confusion.

Let zi = ∇iΨ. Then

−z1 = ∇1(3B + A) =
3

2
∇1(R12̄12̄ + R21̄21̄ − 2R11̄11̄)

√
−1∇1(ImR12̄12̄) =

1

2
∇1(R12̄12̄ − R21̄21̄)

= −1

3
z1 −∇1R21̄21̄ + ∇1R11̄11̄

= −1

3
z1 −∇2R̄11̄12̄ −∇2R11̄12̄

= −1

3
z1 + (A + B)y22 + (B + A)y21

−z2 = ∇2(3B + A) =
3

2
∇2(R21̄21̄ + R12̄12̄ − 2R11̄11̄)
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√
−1∇2(ImR12̄12̄) =

1

2
∇2(R12̄12̄ − R21̄21̄)

=
1

3
z2 −∇2R11̄11̄ + ∇2R12̄12̄

=
1

3
z2 −∇1R21̄11̄ −∇1R11̄12̄

=
1

3
z2 + (B + A)y12 + (A + B)y11

we can write the formula in the Lemma 2 as:

∆Ψ = 3[ΨR11̄22̄ + B(B + 3A)] (2)

+ 3
A + B

B
Ψ

∑

|yi1 + yi2|2

− 2
A + B

B
Re[(y12 + y11)z̄2 − (y22 + y21)z̄1] −

∑ 1

3B
|z|2

Similar to what we have in the last section, we have two general terms,
the first is negative as the constant term of z and y. The second is a
hermitian form on z and y. We can actually let wi = yi∗1 − yi∗2 with i∗ 6= i.
Then the second term is a sum of two hermitian forms. One of them is
on w1, z1 and the other is on w2, z2. We notice that the second term is
also nonpositive on y (or nonpositive on w, if we assume that z = 0). We
can modify the coefficient of |z|2 (only) by taking the power of Ψ. More
precisely, if we let g = Ψa, to make sure that ∆g < 0, after taking out a
factor 3A+B

B we need

∣

∣

∣

∣

∣

Ψ 1/3

1/3 −1+3Ψ−1(1−a)B
9(A+B)

∣

∣

∣

∣

∣

≥ 0

That is,
A + 3B − 3(1 − a)B − A − B = (3a − 1)B ≤ 0.

We have 1 − 3a ≥ 0. So, a ≤ 1/3.
Therefore, we have:

Lemma 3. ∆g < 0 for a ≤ 1/3 on M − N .

This is exactly the same as what they had in [CHY]. Actually, the number
1/6 was already in [SY], [HGY], [P1, 2] for those quadratic functions.

So, finally we have:

Theorem 1. If Kav −Kmin ≤ 1
2 [Kmax −Kmin], then M has a constant

holomorphic sectional curvature.
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Remark 2. The reason we did not get this earlier was that there was a
difficulty when A = B. In that case, the argument in [SY] page 475 case 2
seems not working. Polombo resolved the problem by using a function which
is symmetric to λ1 = −A

3 and λ2 = A−3B
6 (see [P2] page 418 first paragraph

and the end of page 397). However, Hong Cang Yang’s function Ψ is only
−6λ2 and therefore is not symmetric after all. To overcome the difficulty,
we let Ω = {x ∈ M |A=B}. Then according to [SY], all our calculation are
good on M − Ω since N ⊂ Ω. In [CHY] page 2632, there was a suggestion
to prove that codim Ω ≤ 2, although it was not very well explained. Then
everything went through. The relation was that if we use the argument
in [SY] page 475 case 2, using the maximal instead of the minimal, we let
B1 = |R12̄12̄| then 2B1 = A−B. That is Ω = {x ∈ M |B1=0}. The argument
goes as follows:

Case 1: If Ω is a closed region, we have:

0 ≥
∫

M−Ω
∆g

= a

∫

−∂Ω
Ψa−1 ∂(−A1 − 3B1)

∂n

≥ a

∫

−∂Ω
(2A)a−1 ∂(−A1)

∂n

= −
∫

Ω
∆F1 ≥ 0

where F1 can be chosen from one of the functions in [P2] which satisfies the
symmetric condition on M , e.g., a power of Φ2 in the proof of Proposition 1,
or one of our functions with a calculation using the new smooth coordinate
in [SY] page 475 with R11̄11̄ = Kmax (e.g., see (4) in the next section).
Actually, A1 itself is proportional to the λ2 in [P2] and is symmetric in the
sense of Polombo. On Ω, F1 is just our g since B1 = 0. We notice that
there is a sign difference for the Laplace operator in [P2]. Again, on Ω, since
A = B on a neighborhood, the set of minimal directions is a S1 bundle
over Ω, therefore, one might choose a smooth section of it locally that the
calculation of [SY] still works in our case. That is, one could simply choose
F1 to be g.

Case 2: If Ω is a hypersurface. Same argument went through except that
∫

∂(M−Ω)(A)a−1 ∂A
∂n = 0 since A 6= 0 outside a codimension one subset and on

Ω1 = {x ∈ Ω|A6=0} the integral is integrated from both sides.
Therefore, Ω is a subset of codimension two and we can apply Remark

1. By the calculation in Remark 1, we see that g is harmonic on M − Ω.
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Now, by Lemma 2, that implies that B(B − 3A) = 0 and hence A = B = 0
by our assumptions.

4 The Generalization

Actually, in the first section of [SY], the authors did not require any neg-
ativity. We also see that in our second section, we do not really need any
negativity except when we applied the formula in the Lemma 2 in the third
section.

In the first section of [SY], they also considered the coordinate in which
R11̄11̄ achieves the maximal instead of the minimal. With using the maximal
direction, it is much easier to see that the constant term in the Laplacian is
negative. We only need to check:

C = R11̄22̄

= k − R11̄11̄ (3)

= k/2 − (Kmax − k/2)

= k/2 − (Kmax − Kmin)

= k/2 + A/3 ≤ 0.

One might compare this with [Gu] to see the advantage of this new method.
Now, with C ≤ 0, we could also easily cover the arguments in both at

the end of the proof of Proposition 1 and in Remark 2 in the case of B = 0
(using the maximal direction). Similar to the calculation in section 2 we
obtain:

∆R11̄11̄ = −AC + B2 = −AC ≤ 0.

See also [MZ] page 27 for a good calculation for this Laplacian at a maximal
direction for any complex dimension.

We also have:

∇R11̄12̄ = −A∇a2 − B∇ā2 = −A∇a2,

∆S11̄11̄ = −2A
∑

|y|2 − AC.

∇1A = −3∇S11̄11̄ = −3Ay21,

∇2A = 3Ay12.

∇1̄R12̄12̄ = −Aȳ22 = 0,

∇2R12̄12̄ = Ay11 = 0.
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∆(|A|a) = 3a|A|a−1∆S11̄11̄ + a(a − 1)|A|a−2|∇A|2

= 3a × (−A)a−1(−2A
∑

|y|2 − AC)

+ 9a(a − 1)(−A)a
∑

|y|2 (4)

= 3a(−A)a[(2 − 3(a − 1))
∑

|y|2 + C]

is nonpositive when a ≤ 1/3. This is same as in the Lemma 3 and that in
[CHY].

Therefore, we concluded the general case. One might conjecture that
our Theorem is also true in the higher dimensional cases.

Remark 3. Notice that this generalization basically covers the results in
[P1] and [P2] for the Kähler-Einstein case (see [P2] page 398 Corollary). See
also [De] page 415 Proposition 2 for the W + for a Kähler surface. One might
ask whether our result could be generalized to the Riemannian manifolds
with closed half Weyl curvature tensors. This is out of the scope of this
paper although a similar result is true, i.e., if λ2 ≤ 0 at every point. To
make the relation between this paper and [P1], [P2] clearer to the readers,
we just mention that any one of the half Weyl tensors is harmonic if and only
if it is closed since the tensor is dual to either itself or the negative of itself.
The Remark (i) in [P2] page 397 says that if M is Riemannian-Einstein, the
second Bianchi identity says that the half Weyl tensors are closed (see also
[De] page 408 formula (9) and page 411 remark 1).

5 Appendix

Here, we repeat the argument in the proof of the Proposition 1 in [Gu] by
using a different but similar argument:

Throughout this Appendix, as in [SY] and [CHY], [Gu], we assume that
{e1, e2} be an unitary basis at a given point P with

R11̄11̄ = R22̄22̄ = Kmin,

or Kmax.
R11̄12̄ = R22̄21̄ = 0

A = 2R11̄22̄ − R11̄11̄ ≥ 0,

or ≤ 0 in the maximal direction case.

B = |R12̄12̄|

12



As in [SY], we always have that A ≥ |B| or −A ≥ |B|. And we assume that
B ≥ 0.

If P is not a ball like point, We write

α = e1 =
∑

ai∂i, β = e2 =
∑

bi∂i

and
S11̄11̄ = R(e1, ē1, e1, ē1) =

∑

Rij̄kl̄aiājakāl

and so on.
In particular, we have

S11̄11̄ = S22̄22̄, S11̄12̄ = S22̄21̄ = 0

We calculate the Laplace of Φ1 = τ2 = |B|2
A2 at a critical point.

We let
xi = ∇iΦ1 = 2

τ

A
[Re∇iS12̄12̄ + 3τ∇iS11̄11̄]

As in [SY]. [HGY], [CHY], we have:

∆R11̄11̄ = −AR11̄22̄ + B2

∆R12̄12̄ = 3(R11̄22̄ − A)B.

At P we have a1 = b2 = 1 and a2 = b1 = 0, ∇a1 = ∇b2 = 0, ∇a2 +∇b̄1 = 0.
Therefore, we write yi1 = ∇ia2 and yi2 = ∇iā2. We also have:

∆(a1 + ā1) = −|∇a2|2,∆(a2 + b̄2) = 0

∇iR11̄12̄ = −Ayi1 − Byi2

since

0 = ∇S11̄12̄ = ∇R11̄12̄ + 2R21̄12̄∇a2 + B∇ā2 + R11̄11̄∇b̄1,

i.e.,
∇R11̄12̄ = −A∇a2 − B∇ā2.

This also gives a similar formula for ∇īR11̄12̄. Similarly,

∇S11̄11̄ = ∇R11̄11̄

∇S12̄12̄ = ∇R12̄12̄

∆S11̄11̄ = −2A
∑

|y|2 − 4BRe
∑

yi1ȳi2 − AR11̄22̄ + B2

13



Re∆S12̄12̄ = 4A
∑

Reyi1ȳi2 + 2B
∑

|y|2 + 3(R11̄22̄ − A)B.

∇1̄S12̄12̄ = −Aȳ22 − Bȳ21

∇2S12̄12̄ = Ay11 + By12

∇1S12̄12̄ = −A(6τ 2 − 1)y22 − 5Aτy21 + x1

∇2̄S12̄12̄ = 5Aτȳ12 + A(6τ2 − 1)ȳ11 + x̄2

As in [HGY] p. 598, at P we have:

∆Φ1 =
2τ∆B

A
+

6τ2

A
∆S11̄11̄

+
1

A2

∑

(|∇S12̄12̄|2 + |∇̄S12̄12̄|2) +
54τ2

A2

∑

|∇S11̄1̄|2

+
12τ

A2

∑

Re(∇iS11̄11̄(∇ī(S12̄12̄ + S21̄21̄)) (5)

= 2τ [3Aτ(τ 2 − 1) − 4τ
∑

|y|2 + 4(1 − 3τ 2)
∑

Re(yi1ȳi2)]

+ |y22 + τy21|2 + |y11 + τy12|2

+
1

A2
[|x1 + A[(1 − 6τ 2)y22 − 5τy21]|2 + |x2 + A[(6τ 2 − 1)y11 + 5τy12]|2

− 18τ2[y12 + τy11|2 + |y21 + τy22|2]

+
12τ

A
[Re[(y21 + τy22)x̄1] − Re[(y21 + τy11)x̄2]]

Here we notice that ∆Φ1 has two general terms. The first term has
nothing to do with x and y, and therefore can be regarded as constant term
to them. That term is always nonpositive since 1

3 ≤ τ ≤ 1.
The second term can be regarded as a hermitian form h to x and y. We

can separate x and y into two groups: x1, y2j in one group and x2, y1j in
the other. These two groups of variables are orthogonal to each other with
respect to this hermitian form. That is, h = h1 + h2 with h1 (or h2) only
depends on the first (second) group of variables.

We need to check the nonpositivity for each of them.
For x2, y11, y12, the corresponding matrix of h2 is:





1
A2 − 1

A − τ
A

− 1
A 2(9τ2 − 1)(τ2 − 1) 0

− τ
A 0 0





And the matrix for h1 of x1, y21, y22 is:




1
A2

τ
A

1
A

τ
A 0 0
1
A 0 2(9τ2 − 1)(τ2 − 1)





14



When P is a critical point of Φ1, then x1 = x2 = 0. The matrices on y
is clearly semi definite.
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Norm. Sup., 4* Serie 25 (1992), 393–428.

[PS] F. Podesta & A. Spiro: Kähler manifolds with large isometry group,
Osaka J. Math. 36(1999), 805–833.

[SY] Y. T. Siu & P. Yang: Compact Kähler-Einstein surfaces of nonpos-
itive bisectional curvature, Invent. Math. 64 (1981), 471–487.

[Ti] G. Tian: Smoothness of the Universal Deformations Space of Com-
pact Calabi-Yau Manifolds and Its Peterson-Well Metric. Math. Aspect of
String Theory, ed. S. T. Yau, World Scientific 1987, 629–646.

[DW] A. Dancer & M. Wang: Kähler Einstein Metrics of Cohomogeneity
One and Bundle Construction for Einstein Hermitian Metrics, Math. Ann.

15



312(1998), 503–526.

Author’s Addresses:
Zhuang-Dan Guan
Department of Mathematics
The University of California at Riverside
Riverside, CA 92521 U. S. A.

16


