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1 Introduction

In every Kähler class of a compact almost homogeneous manifold with two ends, we found

a unique Calabi extremal metric in [15, 16]. Moreover, we found a unique extremal metric in a

given Kähler class on some completion of certain C∗ bundle if the function Φ there is positive.

In [19] we observed that this is equivalent to the geodesic stability of the Kähler class.

In this paper, we shall prove that for these kinds of manifolds, there is another natural

Kähler metric in the given Kähler class.

Definition For any given Kähler class, there is a Maxwell-Einstein metric conformally

related to the Kähler class if h = u−2g is a Hermitian metric with a constant scalar curvature

such that u is the Hamiltonian function of a holomorphic vector field related to a Kähler metric

g in the given Kähler class.

Theorem For any Kähler class on a compact almost homogeneous manifold with two

ends, there is at least one Maxwell-Einstein metric in the given Kähler class.

We notice that when the complex dimension of the manifold M is 2, some extremal metrics,

e.g., on CP 2 blowing up a point, are actually the same as the Maxwell-Einstein metrics. More-

over, in this case, the corresponding Hermitian metrics are, as Riemannian metrics, actually

Hermitian-Einstein.

Therefore, Maxwell-Einstein metrics should be as standard as Calabi extremal metrics, but

Maxwell-Einstein metrics are not, in general, Einstein metrics, just as quaternion Kähler are

not in general Kähler.

About twenty years ago, motivated by [20, 21] and [7], I developed this type of metric and

obtained some partial results for this Theorem. I told Professor Kobayashi about it. However,

∗Received May 5, 2021; revised June 29, 2022. This research was supported by NSFC (12171140).



364 ACTA MATHEMATICA SCIENTIA Vol.43 Ser.B

somehow, first we did not get the further Hermitian-Einstein metric in the Riemannian sense.

Also, by the proof of the Yamabe conjecture, every Kähler metric is conformally related to a

Hermitian metric with a constant scalar curvature, just as every Hermitian metric has a smooth

Riemannian scalar curvature, so we did not pay much attention to these metrics.

Recently, however, after the publication of two papers [28, 29] by LeBrun, it seems that

the Maxwell-Einstein metrics have become a hot topic.

It came to our attention when we were finishing the completion of this paper, that in [2],

the authors proved that on any admissible Kähler class there is an extremal-Maxwell-Einstein

metric with a given number a > 1; that is, the scalar curvature is a potential function of a

holomorphic vector field (see, for example, Theorem 1 therein). Our result is a more general

form of their conjecture 1 in 4.2, but their result is more like a soliton version of Maxwell-

Einstein metrics. Hence, their result does not imply our result. Also, the admissible metrics

are very restricted and do not include all of the compact almost homogeneous Kähler manifolds

with two ends.

In my original exchange with Professor Kobayashi, there was a conclusion that the Maxwell-

Einstein Hermitian metric is a Kähler metric if and only if the classical Futaki invariant is zero.

Although this could easily be seen to be true, the original simple argument, which came directly

out of our calculation, was not able to be recalled.

We also remark that these metrics are usually referred to as Einstein-Maxwell metrics.

These metrics originally came from physics, and some of them are actually Hermitian-Einstein

in the Riemannian sense. However, our metrics are generally quite different. To emphasise

this difference, we call them Maxwell-Einstein metrics instead; they are more like some kind of

pseudo-Einstein metric. The same method has been used for a cohomogeneity one version of a

Yau’s conjecture in [9]. which was also dealt with in [6] and the references mentioned therein.

2 Certain Completion of Line Bundles

Our results can be regarded as a continuation of those in [25–27] and [15, 16, 18, 19]; in

what follows, we state without detail proof lemmas similar to some that are found in those

papers. Readers can refer to [16, 18] for more details and most of the relevant Lemmas can be

actually found in [16].

Let p : L → M be a holomorphic line bundle over a compact complex Kähler manifold

M and let h be a hermitian metric of L. Denote by L0 the open subset L − {0-section} of

L and let s ∈ C∞(L0)R be defined by s(l) = log |l|h (l ∈ L0), where | |h is the norm defined

by h. Now we consider a function τ = τ(s) ∈ C∞(L0)R which is only dependant on s and is

monotone-increasing with respect to s.

Let J̃ be the complex structure of L and let J be the complex structure of M . Now we

consider a Riemannian metric on L0 of the form

g̃ = dτ2 + (dτ ◦ J̃)2 + g, (2.1)

where g(l) = p∗gτ(s(l))(m) with m = p(l) ∈ M , and where gτ is a one parameter family of

Riemannian metrics on M . This form of the metrics is general, and is achieved by using the

function τ as the length of the geodesics perpendicular to the generic orbits. Define a function
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u on L0 depending only on τ by u(τ)2 = g̃(H, H), where H is the real vector field on L0

corresponding to the R∗ action on L0.

Lemma 2.1 (cf [26, 27], [16, p. 2257]) Suppose that the range of τ contains 0. Then g̃ is

Kähler if and only if g0 is Kähler and gτ = g0−UB, where B is the curvature of L with respect

to h, U =
∫ τ

0 u(τ)dτ .

Throughout this paper, we assume that

(1) L̂ is a compactification of L0 and that g̃ is the restriction of a Kähler metric of L̂ to L0;

(2) the range of τ contains 0;

(3) the eigenvalues of B with respect to gτ are constants on M ;

(4) the traces of the Ricci curvature r of g on each eigenvector space of B are constant.

The condition (4) here is much more general than that in [15, 16], in that we have

(4)’ the eigenvalues of r are constants.

Our results cover some others that have appeared in recent years. For example, for if g

has a constant scalar curvature and B has only one eigenvalue. This is the case of admissible

metrics mentioned in [2]. However, in general, for a rational homogeneous space, B only has

constant eigenvalues, but these might be distinct. Therefore, a general Kähler metric in this

paper is most likely not admissible at all.

By abuse of language, we call the constants in (4) trace eigenvalues.

Let (z1, · · · , zn) be a system of holomorphic local coordinates on M . n = dimC M . Using a

trivialization of L0, we take a system of holomorphic local coordinates (z0, · · · , zn) on L0 such

that ∂/∂z0 = H −
√
−1J̃H .

Remark 2.2 Here we notice that z0 corresponds to w1 in [18, p. 552]. s can be regarded

as Rez0 near the considered point, so s is the x1 in [18, p. 552]. As in [16], we let ϕ = u2 as a

function of U and we let F be the Kähler potential as in [18, p. 552]. Then by comparing [16,

Lemma 2] (or Lemma 2.4 below) with [18, p. 552], we immediately have

Lemma 2.3 4ϕ = ∂2F
∂s2 .

From (dτ
ds

)2 = ϕ, we obtain that dτ
ds

= u. U =
∫ τ

0 udτ =
∫ s

s(0) u2ds =
∫ s

s(0) 4−1 ∂2F
∂s2 ds is

∂F
∂s

= y1 up to a constant in [18, p. 552]; i.e., we have

Lemma 2.4 U is the Legendre transformation of s.

Here we use the Legendre transformation in [17] instead of the moment map in [16]. This

remark is only for readers who might be interested in deeper understanding of our construction,

and is not really needed in this paper.

Let X̂i, X̂ī (0 ≤ i ≤ n) be the partial differentiations ∂/∂zi, ∂/∂z̄i on L0 and let

Xi, Xī (1 ≤ i ≤ n) be the partial differentiations ∂/∂zi, ∂/∂z̄i on M .

Lemma 2.5 (cf [26, 27], [15, Lemma 2]) We have

g̃00̄ = 2u2, g̃0̄i = 2uX̂īτ, g̃ij̄ = gij̄ + 2X̂iτ · X̂j̄τ, (2.2)

where 1 ≤ i, j ≤ n. At the point where P ∈ L0 considered, we can choose a local coordinate

system around m = p(P ) ∈ M such that (∂/∂zi)τ = 0 at m, so X̂iτ = X̂j̄τ = 0 at the point

we are considering, and if f is a function on L0 depending only on τ , we have that

X̂0X̂0̄f = u
d

dτ

(

u
df

dτ

)

X̂iX̂0̄f = 0,
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X̂iX̂j̄f = −1

2
uBij̄

df

dτ
. (2.3)

The Ricci curvature at this point is

r̃00̄ = −u
d

dτ

(

u
d

dτ
log(u2Q)

)

r̃0̄i = 0,

r̃ij̄ = p∗r0 ij̄ +
1

2
u

d

dτ
log(u2Q) · Bij̄ , (2.4)

where Q = det(g−1
0 · gτ ). In particular, we have the scalar curvature

R̃ =
∆

Q
− 1

2Q

d

dU

(

d

dU
Qϕ

)

, (2.5)

where ϕ = u2 is regarding as a function of U and ∆(U) = Q
∑

i,j r0 ij̄g
ij̄

τ(U). We also have

ϕ′(minU) = 2, ϕ′(maxU) = −2.

Lemma 2.6 (cf. [11, 30], [16, Lemma 3]) We can also regard U as a moment map

corresponding to (g̃, J̃H), and gτ is just the symplectic reduction of g̃ at U(τ). g̃ is extremal

if and only if R̃ = aU + b for some a, b ∈ R.

Let M0 = U−1(minU) and let M∞ = U−1(max U). They are complex sub-manifolds, since

they are components of the fixed point set of H −
√
−1J̃H , which is semisimple. Let D0 be the

codimension of M0 in L̂, and let D∞ be the codimension of M∞ in L̂.

Lemma 2.7 (cf. [16, Lemma 4]) Suppose that there is another Kähler metric g̃∨ on

L̂ in the same Kähler class which is of form (1) on L0. Let τ∨, g∨, U∨, Q∨, ∆∨, ϕ∨, u∨

be the corresponding metric and the corresponding functions of s. Then there is a unique

corresponding τ∨ such that g∨0 = g0. In this case, minU∨ = min U (or maxU∨ = max U) and

Q∨ = Q, ∆∨ = ∆ hold. Thus we may write D = maxU and −d = min U . Then

Q(U) = (1 +
U

d
)D0−1Q−d

(or = (1 − U

D
)D∞−1QD), (2.6)

where Q−d (or QD) is a polynomial of U such that Q−d(−d) 6= 0 (or QD(D) 6= 0) and

∆(U) = D0(D0 − 1)
1

d
(1 +

U

d
)D0−2Q−d (mod (1 +

U

d
)D0−1)

(or = D∞(D∞ − 1)
1

D
(1 − U

D
)D∞−2QD (mod (1 − U

D
)D∞−1)). (2.7)

Proof Let g̃ − g̃∨ = ∂̂
¯̂
∂φ. Then

g̃∨ij̄ = g̃ij̄ +
1

2
u

dφ

dτ
Bij̄ = (g0)ij̄ − (U − 1

2
u

dφ

dτ
)Bij̄ (2.8)

for 1 ≤ i, j ≤ n, so at min U (or maxU) g̃ij̄ = g̃∨
ij̄

. There is a τ0 such that g∨τ∨(τ0)
= g0. By

choosing τ∨ such that τ∨(τ0) = 0, one sees that minU∨ = min U, maxU∨ = maxU , as desired.

The last statement follows from the fact that the scalar curvature R is finite on both M0

and M∞. �

We need normalization in this paper. By rescaling, we can choose U∨ = a2
1U + a2 for

any a1 > 0 and a2 ∈ R, allowing us to assume that maxU − min U = 2 and minU = −1, so

maxU = 1.
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3 Existence of Maxwell-Einstein Metrics

We recall our definition of the Maxwell-Einstein metrics: for any given Kähler class, there is

a Maxwell-Einstein metric conformally related to the Kähler class if h = u−2g is an Hermitian

metric with a constant scalar curvature such that u is the Hamiltonian function of a holomorphic

vector field related to a Kähler metric g in the given Kähler class.

From Lemma 2.6, it can be seen that if g̃ is a Maxwell-Einstein metric, then u = aU + b

for some a, b ∈ R.

The following formula is well-known for the conformal geometry. It can be found in [8,

p. 119, (6.1)], or [3, p. 126, (1)]:

Sh = −2
2n− 1

n − 1
v−

n+1

n−1 ∆v + Sv−
2

n−1 = 2(2n− 1)(u∆u − n|Du|2) + Su2. (3.1)

Here v = u−n+1 and S = R̃ for the scalar curvature of our Kähler metric in Lemma 2.5.

Notice that here we have a different sign for the Laplacian and that n is the complex dimension

of the big manifold, but not the one in the last section, i.e., n = dimC M + 1.

Letting f be a function of U , by Lemma 2.5, we have that

∆̃f = g̃ᾱβX̂ᾱX̂βf

= g̃0̄0X̂0̄X̂0f + g̃ā0X̂āX̂0f + g̃0̄aX̂0̄X̂af + g̃ābX̂āX̂bf

=
1

2u2
(X̂0̄X̂0f) + 0 + 0 + g̃āb(X̂āX̂bf)

=
1

2u2
u

d

dτ
(u

d

dτ
f) + gāb

τ (−2−1u
df

dτ
Bbā)

= 2−1 d

dU
(ϕ(U)

d

dU
f) − 2−1ϕ(U)(

d

dU
f)gāb

t Bbā

= 2−1 d

dU
(ϕ

d

dU
f) + 2−1ϕ(

d

dU
f)

1

Q

d

dU
Q

=
1

2Q

d

dU
(ϕQ

d

dU
f). (3.2)

We then have that ∆u = a
2Q

(ϕQ)′,

d

dU
((aU + b)−2n+1Qϕ) = −2

∫ U

−1

c(ax + b)−2n−1Q(x)dx

+2

∫ U

−1

(ax + b)−2n+1∆(x)dx + 2(b − a)−2n+1Q(−1). (3.3)

Notice that it is easy to check that this is consistent, even if Q(−1) = 0 or Q(1) = 0, with our

Lemma 2.7.

We also have that

c

∫ 1

−1

(ax + b)−2n−1Q(x)dx

= (a + b)−2n+1Q(1) + (b − a)−2n+1Q(−1) +

∫ 1

−1

(ax + b)−2n+1∆(x)dx. (3.4)

Then

(aU + b)−2n+1Qϕ = −2

∫ U

−1

[
∫ y

−1

[c(ax + b)−2n−1Q(x) − (ax + b)−2n+1∆(x)]dx
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−(b − a)−2n+1Q(−1)

]

dy

= −2

[
∫ U

−1

(U − x)[c(ax + b)−2n−1Q(x) − (ax + b)−2n+1∆(x)]dx

−(b − a)−2n+1(U + 1)Q(−1)

]

.

We denote the right side by Φ(U).

We also have that

c

∫ 1

−1

x(ax + b)−2n−1Q(x)dx

=

∫ 1

−1

x(ax + b)−2n+1∆(x)dx + (a + b)−2n+1Q(1) − (b − a)−2n+1Q(−1). (3.5)

Now, we have that aU + b > 0. In particular, b > 0. We might assume that b = 1, so

−1 < a < 1.

(3.4) and (3.5) imply that

∫ 1

−1

(ax + 1)−2n−1Q(x)dx

[
∫ 1

−1

(ax + 1)−2n+2∆(x)dx

+(a + 1)−2n+2Q(1) + (1 − a)−2n+2Q(−1)

]

=

∫ 1

−1

(ax + 1)−2nQ(x)dx

[
∫ 1

−1

(ax + 1)−2n+1∆(x)dx

+(a + 1)−2n+1Q(1) + (1 − a)−2n+1Q(−1)

]

. (3.6)

This actually comes from (3.4) and a(3.4) + (3.5). If we write (3.4) as cA = B and (3.5)

as cD = E, then, by A > 0, we have that c = B/A. We get that (B/A)D = E, i.e., that

BD = AE. What we have in (3.6) is actually that aBD = aAE. Note that there is a trivial

solution of a = 0 in (3.6), which does not come from (3.4) and (3.5).

Lemma 3.1 When a is near 1, the right side of (3.6) is bigger than the left side. When

a is near −1, the right side (after dividing a) is smaller than the left side (after dividing a).

Proof When a → 1, the major part of
∫ 1

−1
(ax + 1)−kQ(x)dx comes from

∫ 1

−1
(ax +

1)−kQ(−1)dx, which is 1
(−k+1)a [(1 + a)−k+1 − (1 − a)−k+1]Q(−1) if Q(−1) 6= 0. Further, the

major part of the left side is 1
2n

(1 − a)−4n+2Q2(−1), if Q(−1) 6= 0. Similarly, in this case, the

major part of the right side is 1
2n−1 (1 − a)−4n+2Q2(−1). More work is needed on the case in

which Q(−1) = 0.

On the other hand, when a → −1, the major part
∫ 1

−1(ax + 1)−kQ(x)dx comes from
∫ 1

−1
(ax + 1)−kQ(1)dx, which is 1

(−k+1)a [(1 + a)−k+1 − (1 − a)−k+1]Q(1) if Q(1) 6= 0. Similarly

to the above, the major part of the left side is 1
2n

(1 + a)−4n+2Q2(1) if Q(1) 6= 0. In this case,

the major part of the right side is 1
2n−1 (1 + a)−4n+2Q2(1), similarly to the above. Also, more

work is needed for the case in which Q(1) = 0.

All of this implies that, both when a → 1 or −1, the right side is bigger than the left side.

However, after dividing by a, which is an extra factor, when a → 1 (or −1), the left side is
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smaller (or bigger) than the right side. Therefore, there is actually at least one a ∈ (−1, 1) such

that both identities (3.4) and (3.5) hold with a corresponding number c.

When Q(−1) = 0, a similar result holds.

Let Lk,l =
∫ 1

−1(ax + 1)−k(1 + x)ldx with k > l + 1. Then

Lk,l+1 =

∫ 1

−1

(ax + 1)−k(1 + x)l+1dx

=

∫ 1

−1

(ax + 1)−ka−1((ax + 1) − (1 − a))(1 + x)ldx

= a−1[Lk−1,l − (1 − a)Lk,l].

Now, Lk,0 = 1
(k−1)a [(1− a)−k+1 − (1 + a)−k+1] with k > 1, which is equivalent to 1

(k−1)(1−a)k−1

when a turns to 1. We have that

Lk,1 = a−1[Lk−1,0 − (1 − a)Lk,0],

which is equivalent to 1!(k−1−2)!
(k−1)!(1−a)k−1−1 when a turns to 1.

Therefore, by our induction formula, we can prove that Lk,l is equivalent to

l!(k − l − 2)!

(k − 1)!(1 − a)k−l−1
(3.7)

when a turns to 1.

The major part of the difference between the two sides of equation (3.6) comes from
∫ 1

−1

(ax + 1)−2n−1Qdx

∫ 1

−1

(ax + 1)−2n+2∆dx

−
∫ 1

−1

(ax + 1)−2nQdx

∫ 1

−1

(ax + 1)−2n+1∆dx.

By the formula of ∆ near −1 in (2.7) of Lemma 2.7, we only need to check that

L2n+1,D0−1L2n−2,D0−2 − L2n,D0−1L2n−1,D0−2 (3.8)

has a negative major part. By (3.7) it is proportional to

(D0 − 1)!(D0 − 2)!

(1 − a)4n−2D0

[

(2n + 1 − D0 + 1 − 2)!(2n − 2 − D0 + 2 − 2)!

(2n)!(2n − 3)!
− (2n − D0 + 1 − 2)!(2n − 1 − D0 + 2 − 2)!

(2n − 1)!(2n − 2)!

]

,

and is determined by the sign of

1

2n(2n − D0 − 1)
− 1

(2n − D0)(2n − 2)
;

this is the sign of D0 − n, which is negative if n > D0.

This takes care of the cases with D0 6= n.

When D0 = n, then Q = (1 + x)n−1, and ∆ is a proportion of (1 +x)n−2. In this case, one

might easily see that M is CPn−1, by blowing up, and L0 is a line bundle over CPn−1. The

line bundle over CPn−1 can be classified by the Chern class. There is only one line bundle over

CPn−1 such that the zero section can be contracted, and the contracted line bundle is just Cn.

Therefore, the big manifold is just CPn. Our Lemma holds.
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Here, we give an elementary proof. We only need to take care of the major part of

L2n+1,n−1[L2n−2,n−2 + A] − L2n,n−1[L2n−1,n−2 + B],

here, A and B are the constants from the Q(1) terms.

As above, we know that the power of 1 − a, which comes from the major part of Lk,l,

cancels out. Therefore, we also need to take care of the second major part of those Lk,l’s.

From the induction formula, we see that

Lk,l = a−l

l
∑

s=0

Cs
l (−1)s(1 − a)sLk−l+s,0.

This can also be obtained by expanding (1 + x)l as a function of ax + 1.

Each Lk−l+s,0 term contributes an (1 − a)s term other than the major term. Therefore,

the second major term only comes from the constant term in the first term Lk−l,0.

Therefore, the second major term in Lk,l is the second term of

a−lLk−l,0 =
1

(k − l − 1)al+1
[(1 − a)−k+l+1 − (1 + a)−k+l+1].

Now, we see that the second major part of the difference of the two sides of (3.6) actually

comes from the major part of L2n+1,n−1, and the sign only depends on the sign of the constant

term in
∫ 1

−1

(ax + 1)−2n+2∆dx + (1 + a)−2n+2Q(1).

Now, Q = (1+x)n−1. By Lemma 6, ∆ = n(n−1)(1+x)n−2. Therefore, the constant term

from
∫ 1

−1
(ax + 1)−2n+2∆dx is

−a−n+2n(n − 1)(1 + a)−2n+2+n−2+1/(n − 1) = −a−n+2n(1 + a)−n+1.

However, (1 + a)−2n+2Q(1) = (1 + a)−2n+22n−1. Therefore, the sign of the major part is the

sign of −n2−n+1 + 2−n+1, which is the sign of −n + 1 < 0, since n > 1, otherwise, the C∗

bundle is trivial and M is homogeneous.

The same argument also works for a → −1 by the symmetric argument. �

We then have

Lemma 3.2 There is a nontrivial solution a for equation (3.6).

Let

L(U) =

∫ U

−1

2(ax + 1)−2n−1[(ax + 1)2∆(x) − cQ(x)]dx + 2(1 − a)−2n+1Q(−1), (3.9)

so (aU + 1)−2n+1Qϕ =
∫ U

−1
L(y)dy.

Theorem 3.3 ([cf. [26], [16, Lemma 6]) There is a Maxwell-Einstein metric in the same

Kähler class of g̃ if φ0 = Φ/Q is positive on (−1, 1).

Lemma 3.4 (cf. [15–17]) If r has nonnegative trace eigenvalues, then for a given a, Φ as

above is always positive on (−1, 1).

Proof Since the derivative of Qϕ(aU + 1)−2n+1 is L(U) and is p(U)(aU + 1)−2n with

p(U) being a polynomial, we have that

(aU + 1)2n+1 d

dU
(

d

dU
(Qϕ(aU + 1)−2n+1)) = 2[(aU + 1)2∆(U) − cQ(U)]. (3.10)
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Diagonalizing B, we see that Q is a product of polynomials of degree 1. Letting

−a−1
1 < · · · < −a−1

p < b−1
1 < · · · < b−1

q ,

denote the distinct roots of Q for which some corresponding Ricci curvature rīi is nonzero,

where ai and bj are positive. When Ric(g0) ≥ 0, ∆(x) ≥ 0 on [−1, 1]. By (3.4), c > 0. Let

S(U) = U

p
∏

i=1

(1 + aiU)

q
∏

j=1

(1 − bjU),

P (U) = UQ(U)/S(U)

and

Ψ(U) =

(

(aU + 1)2n+1 d

dU
(

d

dU
[(Qϕ)(U)(aU + 1)−2n+1])

)

/P (U).

Then Ψ is a polynomial of degree p + q + 1, and Ψ(w) = −kwS′(w) for w being a root of

S(U)/U if there is no a root w such that 1 + aw = 0 (that is, −1/a is one of the roots), where

kw ∈ R+, since r is nonnegative. We can see that S′(w) 6= 0 and that > 0 (or < 0) if and

only if S′ < 0 (or > 0) for the root before w and after w (if such exists). Even if w = −1/a

for a w above, we then have that Ψ(w) = 0. In that case, Ψ(U) either has a value opposite

to the values of those two other roots next to it at a point near w and therefore has two zeros

between those two roots, or w is a double root for Ψ. Our proof still works. Because S′(0) > 0,

we have that S′(−a−1
p ) < 0 and that S′(b−1

1 ) < 0; that is, Ψ(−a−1
p ) > 0 and Ψ(b−1

1 ) > 0. Now

there are p− 1 (or q − 1) zero points of Ψ in (−a−1
1 ,−a−1

p ) (or in (b−1
1 , b−1

q )) if p and q are not

zero (one may also check the case where q = 0 or p = 0). If ϕ has some non-positive points

in (−1, 1), then in (−1, 1), Qϕ has at least two maximal points and one minimal point since

ϕ(−1) = ϕ(1) = 0, ϕ(−1 + ǫ) > 0, ϕ(1 − ǫ) > 0 for ǫ small enough. Thus, we get that there

are at least 4 zero points of Ψ in (−a−1
p , b−1

1 ). Ψ has at least (p − 1) + (q − 1) + 4 = p + q + 2

zero points, i.e., Ψ(U) = 0, Qϕ = (c1 + c2U)(aU + 1)2n−1. However, ϕ(−1) = ϕ(1) = 0, so we

have that Qϕ = 0, which is a contradiction. Thus we have the Lemma. �

This, in particular, concludes our Theorem.
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