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ON THE BETTI NUMBERS OF IRREDUCIBLE COMPACT
HYPERKÄHLER MANIFOLDS OF COMPLEX DIMENSION

FOUR

Daniel Guan

1. Introduction

The study of higher dimensional hyperkähler manifolds has attracted much
attention: we have [Wk], [Bg1,2,3,4], [Fj1,2], [Bv1], [Vb1,2], [Sl1,2], [HS], [Huy],
[Gu3,4,5] etc. It is evident that there are only a few known examples of these
manifolds and the obvious question is: can we classify them as in the case of
complex dimension 4?

The Riemann-Roch formula plays an important role in the surface case, which
yields K-3 surfaces as the only irreducible examples. However, for the higher di-
mensional case, the Riemann-Roch formula is not enough to give a picture of
both the Hodge diamond and the existence of holomorphic sections of line bun-
dles. In [Gu5], we combined the results of the Riemann-Roch formula in [Sl1,2]
(see also [LW]) and the representations generated by the Kähler classes (see
[Vb2], [LL], [Bg4]) to give a picture of the Hodge diamonds of irreducible com-
pact hyperkähler manifolds of complex dimension 4. Theorem 1 (reproduced
here) gives an upper bound b2 ≤ 23 for the second Betti number and was ob-
tained independently by Beauville [Bv2] (unpublished). He kindly let me publish
alone. The bound is obtained by applying Verbitsky’s work. In [HS] there is
also an upper bound for the Euler characteristic but there seems as yet no lower
bound, nor any bound for the Betti numbers.

However, the method in [HS] actually gives us a way to calculate what we call
generalized Chern numbers (which are only defined on hyperkähler manifolds)
by Rozansky-Witten invariants, some of which in turn can be calculated as
Chern numbers. Combining this approach with the method in [Bg4] we obtain
an inequality in the opposite direction to the one in [HS] and apply it to our
situation. Surprisingly, once we already have the bound on b2 this gives a more
natural and much stronger inequality than the one we manipulated from the
Riemann-Roch formula in [Gu5].

Therefore, we obtain our:
Main Theorem. If M is an irreducible compact hyperkähler manifold of

complex dimension 4, then 3 ≤ b2 ≤ 23. Moreover,
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1. if b2 = 23, then b3 = 0. The Hodge diamond of M is the same as that of
the Hilbert scheme of pairs of points on a K3 surface.

2. if b2 �= 23, then b2 ≤ 8, and when b2 = 8, b3 = 0.
3. in the case of b2 = 3, 4, 5, 6 then b3 = 4l with l ≤ 17 if b2 = 3, l ≤ 15 if

b2 = 4, l ≤ 9 if b2 = 5 and l ≤ 4 if b2 = 6.
4. in the case of b2 = 7, b3 = 0 or 8.
5. the second Chern class c2 lies in the algebra H(4) generated by H2(M) if

and only if (b2, b3) = (5, 36), (7, 8), (8, 0), (23, 0).

We may remark that (7, 8) and (23, 0) are the Betti numbers for the two
known examples in this dimension. We doubt the possibility of existence of the
case b2 = 3 although much more work should be done in this direction.

Although we apply some technical tools in this paper, we hope that it contains
ideas which will be useful for complex dimension ≥ 6 in the future.

To make the material easier for the reader, we first give an easy proof of the
bounds on b2 in Section 2. Then, we give a proof of the new inequality which
gives most information about the restrictions on both b2 and b3, except for the
case of b2 = 7 (which we dealt with in [Gu5]), in Section 3. Section 3 is the core
of this paper. We have given some examples of the possible Hodge algebras as
Jordan-Lefschetz modules (see [LL]) in [Gu5].

2. Bound on b2

Given a K3 surface K, Fujiki in [Fj1] constructed an irreducible compact
complex 4 dimensional hyperkähler manifold K[2] by blowing up the diagonal
of K(2) = K × K/S2 with S2 the symmetric group of two elements. This is in
Beauville’s language [Bv1] the Hilbert scheme of pairs of points. The second
Betti number of K[2] is 23 and the third Betti number is 0.

Theorem 1. If M is an irreducible compact hyperkähler manifold of complex
dimension 4, then b2 ≤ 23. The maximum of b2 is achieved by K[2]. And if
b2 = 23 the Hodge diamond is the same as that of K[2].

Proof. In [Sl2] (see also [Hz p.6], [Sl1 p.117] for complex dimension 4 and [LW]
for a formula of Hodge numbers) Salamon obtained a Riemann-Roch formula
for irreducible compact hyperkähler manifolds of complex dimension 2m:

2
2m∑
j=1

(−1)j(3j2 − m)b2m−j = mb2m.

In the case m = 2 and b1 = 0 we have

b3 + b4 = 46 + 10b2.

By the result in [Vb2] (see also [LL], [Bg4]) the second symmetric product of
H2(M) maps injectively by cup product into the cohomology group H4(M) so
we have

b4 ≥ b2(b2 + 1)
2

.
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Therefore,
b2
2 + b2 ≤ 92 + 20b2,

i.e., b2
2 − 19b2 − 23 × 4 ≤ 0. We obtain (b2 + 4)(b2 − 23) ≤ 0, i.e., b2 ≤ 23.

If b2 = 23, then b4 ≥ 23 × 12 = 276. Therefore, b3 + 276 ≤ 46 + 230, i.e.,
b3 = 0.

3. The Generalized Chern Numbers and Riemann-Roch Formula

Let M be a compact hyperkähler manifold, C be a polynomial in the (neces-
sarily even) Chern classes of degree 4r. A consequence of the results of Fujiki in
[Fj2] is:

Lemma 1. The number N(C) =
∫

M
Cu2n−2r/(

∫
M

u2n)
n−r

n is independent of
u ∈ H2(M) with v(u) =

∫
M

u2n �= 0.

Proof. By Theorem 4.7 and Lemma 4.11 in [Fj2] (see also [Gu3 Proposition 1],
[Gu4 Theorem 4] and [LL Theorem 4.7]), we have

c(u) =
∫

M

Cu2n−2r = aQn−r(u), v(u) = bQn(u)

with Q(u) the rational quadratic form on H2(M) defined in [Bg3,4], [Bv1] (see
also [Gu4 Theorem 4] and [Huy]) and b > 0. Therefore, N(C) = c(u)v−

n−r
n (u) =

ab−
n−r

n is a constant.

We call N(C) a generalized Chern number of degree r (see [BN] for a recent
discussion of these). When r = n, we have the ordinary Chern numbers. In [HS]
Hitchin and Sawon calculated the generalized Chern number with C = c2. By
the stability of the tangent bundle it is not difficult to see that N(c2) > 0; also
a standard formula in Riemannian geometry leads to an equality with the L2

norm of the curvature. It is not difficult to see that all of the generalized Chern
numbers can be interpreted as Rozansky-Witten invariants ([BN]). These can
sometimes be calculated as Chern numbers. This is certainly true for complex
dimension 4 and 6 because for n = 4 there are only three interesting trivalent
graphs with one nontrivial IHX relation and so there are only two independent
Rozansky-Witten invariants, the same as the number of independent degree 8
Chern polynomials. Similarly for n = 6 there are five interesting connected
degree three trivalent graphs with four nontrivial IHX relations. It is also very
interesting that each of these relations represents one graph as twice of another
graph. Therefore, these relations produce identities with powers of 2.

Here we state Hitchin and Sawon’s Theorem in our language.

Lemma 2. ((2n)!)n−1N(c2)
n

(24n(2n−2)!)n =
√

Â[M ].

This Riemann-Roch type formula from [HS] enable us to manipulate our
generalized Chern numbers. An inequality for N(c2) in the opposite direction
to N(c2) > 0 is given by the following (where we denote by H(∗) = ⊕mH(2m)

the subalgebra of H∗(M) generated by H2(M)).
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Lemma 3. If M is an irreducible compact hyperkähler manifold of complex
dimension 4, then

3b2N(c2)2 ≤ (b2 + 2)c2
2[M ]

with equality if and only if c2 lies in H(4).

Proof. Here we follow the argument in [Bg4]. Let Q = (Qij) be the Bogomolov-
Beauville quadratic form on H2(M) and q its dual (qij) = (Qij)−1. So q ∈
Sym2H2(M) and by exterior multiplication defines a class we still call q in
H4(M). Since c2 is a Pontryagin class and thus independent of any complex
structure it follows from [Bg4] that its projection (using the intersection form)
of c2 in H(4) is a multiple p = λq of q. We write c2 = p + p⊥. The orthogonal
complement to H(4) in H4(M) consists of primitive forms. Since c2 and q are
of type (2, 2), by the Hodge-Riemann bilinear relations (see [GH p.123]) the
intersection form is positive on p⊥ and so∫

M

c2
2 =

∫
M

p2 + (p⊥)2 ≥
∫

M

p2.

But
∫

M
p2 = λ2

∫
M

q2 = λ
∫

M
c2q and so

∫
M

c2
2 ≥ (

∫
M

c2q)2/
∫

M
q2. Take an

orthonormal basis {ei} of H2(M) for the quadratic form Q over the complex
numbers, then q =

∑n
1 e2

i where n = b2. Since
∫

M
u4 = bQ(u)2 and Q(ei) = 1

we have for i �= j,
∫

M
(ei + ej)4 = 4b =

∫
M

(ei − ej)4 and since
∫

M
e4
i = b it

follows that
∫

M
e2
i e

2
j = b/3. Thus∫

M

q2 =
∫

M

(
∑

e2
i )

2 = n(n − 1)
b

3
+ nb =

n(n + 2)
3

b

and ∫
M

c2q =
∫

M

c2

∑
e2
i = nN(c2)b1/2.

Therefore, the inequality can be written

c2
2[M ] ≥ 3nN(c2)2/(n + 2) = 3b2N(c2)2/(b2 + 2)

Remark. For higher dimensions we can still apply N(c2
2) instead of c2

2[M ]
to obtain a generalization of this lemma and therefore obtain a generalization of
the next theorem. This can be done since N(c2

2) can be calculated, as functions
of Rozansky-Witten invariants, from the Chern numbers (we can see this above
for n = 6). For a general n, it is done in [Gu6].

Theorem 2. If M is an irreducible compact hyperkähler manifold of complex
dimension 4, then

b3 ≤ 4(23 − b2)(8 − b2)
b2 + 1

.

In particular since b2 ≤ 23, if b2 > 7, we have only the two cases: (b2, b3) =
(8, 0), (23, 0).
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Proof. Applying Lemmas 2 and 3 we obtain:

3b2
(24n(2n − 2)!)n

(2n)!

√
Â[M ] ≤ (b2 + 2)c2

2

with n = 2. Applying the Riemann-Roch formula as in [HS] we obtain:√
Â[M ] =

1
2
Â2[M ] − 1

8
Â2

1[M ],

Â1 =
1
12

c2,

Â2[M ] =
1

720
(3c2

2 − c4)[M ] = 3,

X 1 = h1,2 − 2h1,1 = 12 − c4[M ]
6

.

We have:
c4[M ] = 3(24 − b3 + 4(b2 − 2)) = 3(4b2 + 16 − b3),
c2
2[M ] = 720 + (4b2 − b3 + 16) = 736 + 4b2 − b3.

Therefore,

3b2
(24 × 4)2

24

√
Â[M ] = 2(24)2b2(

3
2
− c2

2[M ]
144 × 8

)

= b2(3(24)2 − c2
2[M ]) ≤ (b2 + 2)c2

2[M ].

Hence,
3(24)2b2 ≤ 2(b2 + 1)(736 + 4b2 − b3),

i.e.,

(b2 + 1)b3 ≤ 4((b2 + 184)(b2 + 1) − 216b2)
= 4(b2

2 − 31b2 + 23 × 8) = 4(23 − b2)(8 − b2)

as desired

By the results in [Wk] (see also [Fj2]) we have b3 = 4l. Therefore, we have:
Corollary 1. l ≤ 17 if b2 = 3 and l ≤ 15 if b2 = 4: l ≤ 9 if b2 = 5 and l ≤ 4

if b2 = 6. When b2 = 7, l is either 0 or 2. Moreover, C2 ∈ H(4) if and only if
(b2, b3) = (5, 36), (7, 8), (8, 0), (23, 0).

Proof. Applying the same argument as in the proof of Theorem 2, from

b3 + b4 = 46 + 10b2

we obtain

b3 +
b2(b2 + 1)

2
≤ 46 + 10b2.

Therefore, 2b3 ≤ 92 + 19b2 − b2
2, i. e.,

2b3 ≤ (23 − b2)(b2 + 4).

If b2 = 3, we have 8l ≤ 20 × 7, i.e., l ≤ 35
2 . But l is an integer, we obtain

l ≤ 17.
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If b2 = 4, we apply Theorem 2. Therefore,

l ≤ (23 − b2)(8 − b2)
b2 + 1

,

i.e., l ≤ 19×4
5 < 16 and l ≤ 15.

If b2 = 5, we have l ≤ 9.
If b2 = 6, we have l ≤ 17×2

7 < 5 and l ≤ 4.
If b2 = 7, we have l ≤ 2. We have already got rid of the possibility of l = 1

in [Gu5] with a method motivated from [Gu1,2]. This is also an important
statement, it means that if b2 = 7, then we have the Hodge diamond of the
Kummer variety or b3 = 0.

The equality holds only in those four cases in the Corollary as desired.
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