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Abstract: This paper is the continuation of [20] on the existence of
extremal metrics of the general affine and type II almost-homogeneous man-
ifolds of cohomogeneity one. In this paper, we deal with the general type II
cases with hypersurface ends. More precisely, we deal with manifolds with
certain CP n × (CP n)∗ or CP 2 bundle structures. These manifolds are the
direct generalization of the manifolds we dealt with in [12], [13]. In partic-
ular, we study the existence of Kähler-Einstein metrics on these manifolds
and obtain new Kähler-Einstein manifolds as well as Fano manifolds without
Kähler-Einstein metrics.

1 Introduction

The theory of simply connected compact Kähler homogeneous manifolds has
applications in many branches of mathematics and physics. These complex
manifolds possess significant properties: they are projective, Fano, Kähler-
Einstein, rational, etc..

One class of more general Kähler manifolds which would be useful is
the class of almost-homogeneous compact Kähler manifolds with two orbits,
especially those manifolds of cohomogeneity one.

If we assume that they are simply connected, then they are automatically
projective. Some of many interesting questions of them are when they are
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Fano, Kähler-Einstein, etc., see [20].
This paper is one of a series of papers in which we answer above ques-

tions and we finished the project of the existence of Calabi extremal metrics
in any Kähler class on any compact almost-homogeneous manifolds of co-
homogeneity one. That is, we dealt with all the compact Kähler manifolds
on which we could use ordinary differential equations instead of partial dif-
ferential equations for these geometric analysis problems.

There are three types of these kind of manifolds. We refer the readers
to [12] for the details. The type III compact complex almost homogeneous
manifolds of real cohomogeneity one were dealt with in [10] about twenty
years ago. There is no much stability involved there. However, see [13] for
the stability of the related constructions.

We shall deal with the type I case in [17] and the type II case in [20] and
this paper. This is the first class of manifolds for which the existence is com-
pletely understood and it is equivalent to the geodesic stability. Originally,
we had [20] and this paper as one paper. But it was too long to publish.
Therefore we separated it into two papers. We take this opportunity to
thank all the people and referees who helped.

In this paper, we finish the task of the proof that there is a Kähler metrics
of constant scalar curvature on the type II almost-homogeneous manifold
of cohomogeneity one if the generalized Futaki invariant is positive, see
Theorem 9, Theorem 9’ and Theorems 12, 13. We shall prove the converse
in [14]. In [8] and [12], [13], [16] we dealt with some examples, and in [20]
we dealt with two most conceptually difficult series of manifolds.

We should mention that our concept of generalized Futaki invariant
might not be the same as the one in [7] although it looks similar in our
case. The generalized Futaki invariant in this paper comes from some kind of
combination of the generalized Futaki invariants along the maximal geodesic
rays in the moduli space of Kähler metrics but does not necessarily come
directly from any one of them as we have described and observed in [13],
[16].

In this paper, we shall first treat the manifolds which are fiber bundles
with typical fibers of the first and fifth cases in [1] p.73 as one situation. Let
G be a complex Lie subgroup of the automorphism group of our manifold
M and G has an open orbit O on M . M is a fiber bundle over a compact
homogeneous space Q. We have that Q = G/P with P a parabolic subgroup
of G and P = SS1R with S, S1 semisimple factors of G and R the radical
of P . S1R acts on the fiber F trivially. In our case S = An acts on the
central fiber. The fiber is just CP n × (CP n)∗ that is isotropic and is the
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first manifold in the list of [1] p.67. It is also in the case of affine type and
therefore is of type II. Therefore, to finish the affine case and the type II
case we have to deal with this case. But this seems, as individual, easier
than those in [20]. However, we have more of them and it turns out that as
a group and analytically, they are technically more involved.

We should also notice the difference of the open orbits of the manifolds
with the S = An actions from those of the manifolds we treated in [12],
[13]. For example, the isotropic group U of the An action case is GL(n,C)
as that of the first manifold in the table 2 of [1] p.67, while the isotropic
groups of the manifolds in [12], [13] are not reductive at all. Another point
is that the manifolds in [1] p.67 are actually all homogeneous, that is not
true for the examples in [12], [13]. We shall come to some generalizations
of those examples from [12], [13] in the ninth section (see Theorems 10, 11).
See also some similar calculations in the third and fourth sections. However,
the manifolds we considered in [12], [13] are manifolds with S = A1 actions
on the fiber and are special cases of what are treating in this paper. It is
amazing that the first examples we treated in [8], [12], [13] are both type II
and isotropic (that has a similar complex structure as the type I case) that
they served as sample cases of both type I and type II manifolds which led
us to the breakthroughs for both cases.

What we have done in this paper also take care of the type II case (see
section 8). We only need to take care of manifolds with certain CP 2 bundle
structure, which have same structure as that of the cases with S = A1 at
the Lie algebra level and are a direct generalization of what we dealt with
in [13].

As in [16], [20], we take our original method in [12], [13]. From Lie group
point of view our method can be regarded as a nilpotent path method, i.e.,
we consider a path, starting from the singular real orbit, generated by the
action of a 1-parameter subgroup generated by a nilpotent element. One
could also consider the path as a path generated by a semisimple element
Hα, where α is the root which generates the sl(2) Lie algebra A (see section
2).

In this paper, we first look back to what we did in [8], [12], [13] from
a Lie group point of view in the second section. Then we apply the same
argument in the third section of [16], [20] to the affine An action case. We
found that the same method works for the complex structure of both the
affine and the type II cases. We deal with the An action case we mentioned
above. At the end of the second section, we use a similar method as in [12]
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to give a comparation of two different methods for the homogeneous case.
Similar comparations for the homogeneous case will be carried out also in
the third and fourth sections to give more confirmations to the readers that
our arguments are trustable.

In the third section, we found that the same argument works for the
Kähler structure. This is a section in which we deal with many different
possibilities of the pairs of groups (An, G). This also shows that the affine
and type II classes are very big and are not extraordinary at all (see also the
proof of the Lemma 6 for a huge amount of this kind of manifolds). A new
ingradient is that being different from [20] our B here can be either positive
or negative.

The fourth section is one of the major part of this paper. To calculate
the Ricci curvature we apply a modified Koszul’s trick which was motivated
by [25] p.567–570 as we did in [16], [20]. The formula we used from [5] 4.11
is due to Professor Dorfmeister.

We calculate the scalar curvature in the fifth section and setting up
the equations in the sixth section. The pattern of these equations make it
possible to reduce a fourth order ODE to a second order ODE as in [16],
[20].

We finally prove our Theorem 9 in the seventh section.
We then treat the type II case in the eighth section and the Kähler

Einstein case in the ninth section. We also generalize our results in [12],
[13]. At the end of the ninth section we give a very uniform description for
the generalized Futaki invariant, see Theorems 12 and 13. The result there
also confirmed our calculation in [16].

In all our calculations we also need to take care carefully of the change
of the invariant inner products when we restrict our calculation to a typical
subgroup S in G.

2 The complex structures of the isotropic affine

almost homogeneous manifolds

In this section we will deal with the complex structure of the isotropic affine
almost-homogeneous manifolds. Let us recall some basic notations of the
Lie groups and Lie algebras.

In general, as in [1] we let G be a semisimple complex Lie group, UG be
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the 1-subgroup. There is a parabolic subgroup

P = SS1R (1)

with S, S1 semisimple and R solvable such that

UG = US1R (2)

where U is a 1-subgroup of S. The manifold is a fibration over G/P with
the completion of

P/UG = S/U (3)

as the affine almost homogeneous fiber F . In this case, the root system of
S is a subsystem of the root system of G.

Let H be the corresponding Cartan subalgebra of G. The Lie algebra G of
G has a decomposition H+

∑

α∈∆ CEα with a Chevvalley lattice generated
by hα, Eα (cf. [23] p.147). Assume that a maximal compact Lie subalgebra
is generated by

Fα = Eα − E−α, Gα = i(Eα + Eα), Hα = i[Eα, E−α] = ihα. (4)

We have that

[Hα, Eα] = 2iEα. (5)

Let A = su(2) be the commutator of a generic compact isotropic sub-
group and pt be a curve generated by a nilpotent element in the complexi-
fication of A. In the Lie algebra of G, we have Fα, Gα for those roots of G
which are not in S. The tangent space of G/UG along pt is decomposed into
irreducible A representations. Fα, Gα are in the complement representation
of S. But JFα = −Gα(modS) as it is in the tangent space of G/P . There-
fore, we have JFα = −Gα for any α which is not in the root system of S.
This discussion is corresponding to the discussion in the last paragraph of
the second section of [16].

As it is stated in [24] p.38, we can always identify the Lie algebra as the
left invariant vector fields on the Lie group. For example, if G is GLn(C),
B(t) a curve on G with tangent vector X0 at B(0) = I. Then AB(t) is a
curve started at A and AX0 with A ∈ G is a left invariant vector field on G.
That is, the left invariant vector fields can be described as AX0 for some X0.
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Let X0 = (bij) and Y0 = (cij). Then the Lie bracket of two left invariant
vector fields AX0 and AY0 is

[AX0, AY0] = [aijbjl
∂

∂ail
, akscst

∂

∂akt
]

= aijbjlclt
∂

∂ait
− akscstbtl

∂

∂akl

= aij(bjlclt
∂

∂ait
− cjtbtl

∂

∂ail
)

= aij(bjlclt − cjlblt)
∂

∂ait

= A[X0, Y0],

which is comparable with the Lie bracket of the Lie algebra gln(C).

In our case we have S = An = SL(n + 1,C) action of [1] p.73, which
includes both the first case and the fifth case there.

Let us look at the case for n = 1 first. The action is

A

[

1
0

]

× [1, 0]A−1 (6)

where

[

1
0

]

, [1.0] represent the points in CP 1. We have

Eα1
=

[

0 1
0 0

]

, E−α1
= ET

α1
=

[

0 0
1 0

]

, H = Hα1
=

[

i 0
0 −i

]

. (7)

And

exp(tEα1
)

[

1
0

]

× [1.0] exp(−tEα1
) =

[

1 −t
0 0

]

= pt, (8)

p∞ =

[

0 1
0 0

]

=

[

1
0

]

× [0, 1]. (9)

We let

F = Fα1
=

[

0 1
−1 0

]

, G = Gα1
=

[

0 i
i 0

]

. (10)
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Using the coordinates [1, z]T × [1, w] we can check that along pt H acts as
vector (z, w) = (0,−2it). The tangent vector T of pt is (0,−1). F acts as
(−1,−1− t2) and G acts as (i,−i(1− t2)) along pt. F +(1+ t2)T is (−1, 0).
Therefore, we have that

JF = i(−1,−1 − t2) = −(i,−i(1 − t2) + 2i) = −G +
H

t
(11)

and

JH = i(0,−2it) = −2tT. (12)

In general, if S = SL(n + 1,C) = An, S has simple roots αi = ei − ei+1.
the affine fiber Cn is generated by the root vectors with the roots e1−ej, 1 <
j ≤ n + 1. The action is

A[1, 0, · · · , 0]T × [1, 0, · · · , 0]A−1. (13)

We can choose

Eei−ej
= Eij (14)

as a square metrix (akl)(n+1)×(n+1), that is, all the elements akl are zero
except aij = 1. We also let Hei−ej

= iEii − iEjj . [Eij , Ekl] = 0 if j 6= k,
i 6= l and

[Eij , Ejk] = EijEjk − EjkEij = Eik − 0 = Eik

if i 6= k. As above F = Fα1
, G = Gα1

and H = Hα1
.

pt = exp(tEα1
)[1, 0, · · · , 0]T × [1, 0, · · · , 0]exp(−tEα1

) (15)

= [1, 0, 0, · · · , 0]T × [1,−t, 0. · · · , 0]. (16)

JF = −G +
H

t
, JH = −2tT. (17)

JFe2−ej
= Ge2−ej

, JFe1−ej
= −Ge1−ej

− 2Ge2−ej

t
2 < j, (18)

Fek−ej
= Gek−ej

= 0 2 < k < j. (19)
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One also have that

J(Fe1−ej
+

Fe2−ej

t
) = −(Ge1−ej

+
Ge2−ej

t
). (20)

Actually, if we let [1, z1, · · · , zn]× [1, w1, · · · , wn] be the coordinate, then F1j

is the same as zk = wk = 0 k 6= j and zj = wj = −1. F2j has zk = wl =
0 l 6= j and wj = t. Therefore, F1j + t−1F2j has zk = wj = 0 k 6= j and
zj = −1. At p∞,

JFe1−ek
= −Ge1−ek

, JFe2−ek
= Ge2−ek

, (21)

Fei−ek
= Gei−ek

= 0 2 < i < k. (22)

Let

Fij = Eij − Eji, Gij = i(Eij + Eji), (23)

we have

[Fij , Gjk] = Gik (24)

if i 6= k.
In our case of S = An, the bigger complex Lie group G can be any

complex semisimple Lie group. That is quite different from that in [20].
This make our argument more involved in this paper starting from the next
section.

We can also use a similar method in [8], [12], [13] to understand the
complex structure. Let

[z, w] = ([z0, z1, · · · , zn]; [w0, w1, · · · , wn]) ∈ CP n × (CP n)∗.

We let

(z, w) = z0w0 + z1w1 + · · · + znwn (25)

be the complex bilinear form. This is different from the one in [8], [12], [13]
where (z, w) respresents the inner product. Then the hypersurface end is
just (z, w) = 0 and the singular SU(n + 1) orbit is w = z̄ or if we let

γ =
|(z, w)|2
|z|2|w|2 , (26)
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the singular orbit is just γ = 1. Notice that our γ here is different from θ
in [8], [12], [13]. Actually the θ there is similar to our 1 − γ, which we shall
call θ (compare our case with [16] section 3). θ is like the square of the
cosine and γ is like the square of sine. We might call θ the phase angle (or
the square phase angle), γ the dual phase angle (or the dual square phase
angle).

3 The Kähler structures

Now we should calculate the Kähler form by different methods. First, if
G = S = An, we let

ω = aω1 + bω2 + i∂∂̄F

with ω1 = ∂∂̄ log |z|2 and ω2 = ∂∂̄ log |w|2, F is a SU(n+1) invariant smooth
function. We see that F = F (γ).

Let f = γF ′ with the derivative respect to γ, then at pt we have γ = 1
1+t2

and
∂∂̄ log γ = −∂∂̄(log |z|2 + log |w|2),

∂ log γ = ∂(log(z, w) − log |z|2 − log |w|2) = −t(dz1 −
dw1

|w|2 ).

ω = aω1 + bω2 + γf ′∂ log γ ∧ ∂̄ log γ + f∂∂̄ log γ

= (a − f)dz ∧ dz̄ + (b − f)(
dw1 ∧ dw̄1

|w|4 + |w|−2
∑

j>1

dwj ∧ dw̄j)

+ γf ′|w1|2(dz1 − |w|−2dw1) ∧ (dz̄1 − |w|−2dw̄1).

The difference of our formula from that in [13] is that we do not have the
second term to the right since (z, w) here is holomorphic. We notice that
the subspaces W = { ∂

∂z1
, ∂

∂w1
} and C ∂

∂zj
, C ∂

∂wj
j > 1 are othogonal to

each other. Let us calculate the determinant τ of W .
We have

τ =

∣

∣

∣

∣

∣

a − f + (1 − γ)f ′ −(1 − γ)f ′|w|−2

−(1 − γ)f ′|w|−2 (b − f + (1 − γ)f ′)|w|−4

∣

∣

∣

∣

∣

=
1

|w|4 ((a − f)(b − f) + (1 − γ)(a + b − 2f)f ′),
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In the same way, we observe that for the standard metric a = b = n + 1,

f = 0 and τ0 = (n+1)2

|z|4|w|4
. Therefore,

τ = − 1

|z|4|w|4 D′ (27)

with

D = (a − f)(b − f)(1 − γ). (28)

The determinant of C ∂
∂zi i > 1 is |z|−2(a − f). The determinant of

C ∂
∂wi i > 1 is |w|−2(b − f). Therefore, the volume form is

V =
−Dn−1D′

(|z||w|)2n+2(1 − γ)n−1
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

∧ dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n. (29)

Second, by regarding the open An orbit as a homogeneous space, the
vector fields which corresponding to the Lie algebra are the pushdown of
the right invariant vector fields on the Lie group An. As we did in [16],
we study the corresponding left invariant vector fields on the Lie group.
To make the things simpler, we still use our original notation for the left
invariant vector fields. Since the Kähler form is (left)invariant under the
action of the maximal compact Lie subalgebra K of the complex Lie algebra
An, the pullback of this Kähler form is left K invariant form on An. We also
extend t to be K invariant, and so is T as the derivative of t. Therefore, we
have (cf. [24] p.36 and [21] p.283, here we use the convention in [21])

0 = dω(T,X, Y )

= T (ω(X,Y )) − X(ω(T, Y )) + Y (ω(T,X))

− ω([T,X], Y ) + ω([T, Y ], X) − ω([X,Y ], T )

= T (ω(X,Y )) − ω([X,Y ], T ).

T (ω(X,Y )) = −ω(T, [X,Y ]) for any two left invariant X,Y ∈ K.
Now,

T (ω(G, H)) = −2ω(T, F )

= −2ω(JT, JF )

= −ω(
H

t
, −G +

H

t
)

= −t−1ω(G, H),
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that is, ω(G, H) = Ct−1 for a constant C. Then C = 0, otherwise ω(G, H)
is infinite at p0. Therefore, ω(G, H) = ω(T, F ) = 0.

Similarly,

tT (ω(H, F )) − T (ω(F, G)) = 2ω(tT, −G +
H

t
)

= 2ω(tJT, J2F )

= −ω(H, F ),

i. e., T (tω(H, F ) − ω(F, G)) = 0. We have

ω(F, G) = tω(H, F ) + A.

Let ( , )A be an invariant metric on K such that (H,H)A = 1. If there
is no confusion we write ( , ) = ( , )A. Then H, G, F is an unitary basis
of the Lie algebra A. Therefore

[X,Y ] = ([X,Y ],H)H + [X,Y ], F )F + ([X,Y ], G)G

+ [X,Y ]l + [X,Y ](A+l)⊥ .

Therefore,

ω(T, [X,Y ]) = ([X,Y ],H)ω(T,H) + ([X,Y ], G)ω(T,G)

+ ω(T, [X,Y ](A+l)⊥).

But
ω(T, [X,Y ](A+l)⊥) = ω((2t)−1H,J([X,Y ](A+l)⊥)) = 0,

since JX ∈ (A + l)⊥ if X ∈ (A + l)⊥. We also have that

ω(X,Y ) = (g1H + g2F + g3G + I, [X,Y ])

with I in the center of l.

ω(G,H) = (g1H + g2F + g3G + I, [G,H]) = 2(g2F, F ) = g2 = 0,

i.e., g2 = 0. Therefore, using . for the derivative with respect to t, for left
invariant X,Y we have

T (ω(X,Y )) = (ġ1H + ġ3G + İ , [X,Y ])

= −ω(T, [X,Y ])

= −([X,Y ], ω(T,H)H + ω(T,G)G),

11



i.e., İ = 0 and ġ1 = −ω(T,H), ġ3 = −ω(T,G). The last two equalities are
actually already known to us. We actually obtained

ω(T,−G +
H

t
) = ċ − ȧ

t
= ω(JT, J2F )

= −ω(
H

2t
, F )

= −t−1(g1H + g3G,G)

= −g3t
−1,

that is, tġ3 + g3 = ġ1. Therefore, g1 = tg3 + C. That is,

ω(F,G) = 2g1 = 2tg3 + 2C = tω(H,F ) + 2C.

Therefore, we already have this equality with A = 2C. We also see that
g3(0) = 0 since H(0) = 0. The first equality I ′ = 0 means that I does not
depend on t, i. e., if we let I0 = n−1

n+1(e1 + e2) − 2
n+1

∑n+1
i=3 ei, then

I = BiI0

for some constant B. Denote g = g3. Then, g1 = tg + C and the Kähler
form is

ω(X,Y ) = ((tg(t) + C)H + g(t)G + BiI0, [X,Y ])

= (H(t), [X,Y ])

for left invariant X,Y , where H(t) = g1H + gG + I = (tg + C) + gH + H.
As an observation, we see that if

V1 = span(T, Fα),

V2 = span(H,Gα),

then
JV1 = V2

and
V ⊥

1 = V2

with respect to ω. Moreover,

[V1, V1], [V2, V2] ⊂ V1,
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[V1, V2] ⊂ V2.

The Kähler metric is a direct sum of its restriction on the subspaces

W = span(T,H, F,G), (30)

W1 = span(Eα|α = ei − ej, i 6= j, {i, j} ∩ {1, 2} 6= 0). (31)

On W the metric is
[

ω(T, JT ) ω(T, JF )
ω(F, JT ) ω(F, JF )

]

=

[

ω(T, H
2t ) ω(JT,−F )

ω(F, H
2t ) ω(F,−G + H

t )

]

=

[

− tġ+g
2t −g

t

−g
t −2(1+t2)g

t − 2C

]

.

The determinant is equal to

(2t)−1 det

[

ω(T,H) ω(T,−G)
ω(F,H) ω(F,−G)

]

= (2t)−1 det

[

−ġ1 ġ
−2g −2g1

]

= t−1(g1ġ1 + gġ)

=
U̇

2t
,

where

U = g2
1 + g2. (32)

We notice that U is the square norm (H(t),H(t)) up to a constant, i.e.,
the energy of H(t) up to a constant.

We also see that U is increasing. We also see that g(0) = 0,− ˙(tg) > 0
when t > 0, therefore, −g > 0 when t > 0 and −tg is increasing. We also
notice that g(−t)

−t = g(t)
t , that is, g(t) is an odd function.

Now we consider n = 2, then

W1 = span(Eα|α=±α2 ,±(α1+α2)).
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On W1 we have that:

[

ω(Fα2
, JFα2

) ω(Fα2
, JFα1+α2

)
ω(Fα1+α2

, JFα2
) ω(Fα1+α2

, JFα1+α2
)

]

=

[

−g1 + B g

g −g1 − B − 2g
t

]

.

The determinant is equal to
U − B2.

Since Fα2
(0) = 0, we have that g1(0) = C = B and U(0) = B2. By U

increasing, we have that U − B2 > 0.
When n > 2 we have 2-stings e2 − ej, e1 − ej of α1. The calculation is

exactly the same and the determinant is U − B2. Therefore, the volume
form is

U̇(2t)−1(U − B2)n−1. (33)

This fits well with our earlier volume formula (29).

Now we also have that along pt

ω(F23, JF23) = 2t2
b − f

|w|2 =
2t2(b − f)

1 + t2
, (34)

ω(F13 +
F23

t
, J(F13 +

F23

t
)) = 2(a − f). (35)

Then we have

−g =
2t(b − f)

1 + t2
, (36)

−t−1(1 + t2)g − 2B = 2(a − f). (37)

Therefore, 2(b − f) + 2B = (a − f), i. e.,

B = b − a. (38)

We also have
−t−1g = 2γ(b − f)
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and

−tg =
2t2

1 + t2
(b − f). (39)

Therefore, when t → 0 we get −ġ(0) = 2(b − f(1)) and limt→+∞ tg = −2b.
That is, −tg is nonnegative and increasing with a limit 2b. In particular,
both B and l = limt→+∞ tg = −2b are topological invariants of the given
Kähler class.

Moreover, we have

D = (1 − γ)(a − f)(b − f)

= 4−1(1 − γ)(tγ)−2g(g − 2Btγ) (40)

= 4−1g((1 + t2)g + 2tB) = 4−1(U − B2).

When n = 1 we have

ω(T, JT ) = (2t)−1ω(T,H)

= −(2t)−1ġ1

= 2
b − f + θf ′

(1 + t2)2
,

ω(T, J(F − (1 + t2)T )) = ω(T,−G +
H

t
− 1 + t2

2t
H)

= ġ +
t2 − 1

2t
ġ1

= −2θf ′(1 + t2)−2.

Therefore,

−(2t)−1ġ1 = 2
b − f

(1 + t2)2
− 2tġ + (t2 − 1)ġ1

2t(1 + t2)
.

We have

2
b − f

1 + t2
= ġ − t−1ġ1 = −t−1g

as above.
To get the formula for B, we similarly have

2(a − f + θf ′) = ω(F − (1 + t2)T, J(F − (1 + t2)T ))

15



= −2g1 +
t2 − 1

t
g − (1 + t2)ġ − t4 − 1

2t
ġ1

= −2g1 +
t2

t
g + 2θf ′

= − t2 − 2B + 1

t
g + 2θf ′.

That is,

2(a − f) = − t2 + 1

t
g − 2B = 2(b − f) − 2B

as before. Hence, again we get B = b − a.

As we notice in [20] that all the I and therefore the coefficients B depend
on the inner product ( . ) we choose. In general, G might be bigger than
S = An. And, we can write the volume formula as

MU̇t−1(U − B2)k−1
∏

(a2
i − U).

For each string, by change the sign of the eigenvalues we can exchange the
eigenvectors. This induces a mirror symmetry of the eigenvectors. Formally,
we can let c = 0 (and assume a 6= 0), then we have for each eigenvector βi

(aH + I, βi) = kβi
(ai ± a). Therefore, we can choose ai = −

∣

∣

∣

(I,βi)
(H,βi)

∣

∣

∣ if

(H,βi) 6= 0. And if βi1 , βi2 are mirror symmetry to each other, then we
have the same ai. We say that a mirror symmetry class is the set [i] of two
different roots which are mirror symmetry to each other and denote a[i] = ai

for i ∈ [i]. We also let I be the all mirror symmetry classes.
Similar to what we have in [16], [20] we have that:

Theorem 1. For the affine isotropic case, i. e., when S = An, the
volume is

V =
MU̇

t
(U − B2)n−1

∏

[i]∈I

(a2
i − U) (41)

for some positive numbers M and a2
i with

ai = −
∣

∣

∣

∣

(IG, βi)

(H,βi)

∣

∣

∣

∣

.

Moreover, U(0) = B2 and B2 ≤ U < a2
i . In particular, if G = S, we have

that V = Mt−1U̇(U − B2)n−1.

16



Proof: We need to take care of the case in which S = An, G 6= S.

If G = Am+n+k and S = An is generated by simple roots

em+1 − em+2, · · · , em+n − em+n+1,

then αm+1 has other 2-strings with determinants a2
j −U for some constants

aj .

As we see in the last section that in the general case of S = An, G can
be any semisimple Lie group. To see that the Theorem 1 still holds we have
to deal with pairs of roots. There is a classification in [23] p.44–45. We have
following three Lemmas:

Lemma 1. If α has a 1-string, then the 1-string and α generate an
A1 × A1 type of complex Lie subalgebra. In this case, the determinant is a
positive constant.

Proof: The Lie algebra is a rank 2 algebra. Since the action of α1 is
trivial on the 1-string β, the minimal Lie algebra including both triples
must be A1×A1. The restricted ω is (aH + cG+Mβ, [X,Y ]) for a constant
M . The positivity comes from the positivity of the metric.

Q. E. D.

Lemma 2. If α has a 3-string generated by β, then β has the twice length
as α and α, β generate an B2 type of complex Lie subalgebra, which has an
induced cohomogeneity one action. The determinant is −8M(M 2 − U) for
a real negative number M .

Proof: The Lie algebra has a rank 2. Since the representation of A has a
length 3, it can not be A1×A1, A2 nor G2. It must be a B2. The calculation
of the volume follows from a similar argument for 3-strings in [20].

Q. E. D.
Before we go further, we check that the other possible strings are 4-

strings and 2-strings. While the 4-strings can only occur in G2, the 2-stings
are more complicated comparing to what we considered above which only
involves Lie subalgebras of type A2.

We have basically dealt with the G2 case in [16]. The only possible case
for a 4-string is G = G2 and S = A1 is generated by the short root α = α1.
In this case, the 4-string is

α2, α1 + α2, 2α1 + α2, 3α1 + α2.

17



The restricted metric ω is (aH + cG + B1i(3α1 + 2α2), [X,Y ]). The deter-
minant is equal to

det(ω(Fαi
,−Gαj

)) = (B2
1 − U)(9B2

1 − U)

(cf. [16]). We let a1 = B1 and a2 = 3B1.

If a simple root α has a 2-string generated by β and the length of β is
the same of α, then they generate an A2. This case includes all the case for
G = An, Dn, Ek.

If a simple root α has a 2-string generated by β and the length of β is
half of that of α, then they generate a B2 type of complex Lie subalgebra.
Assuming that α = e1 − e2, β = e2 the 2-string is e2, e1. Then the restricted
metric ω is

(aH + cG + B1i(e1 + e2), [X,Y ]).

The determinant is B2
1−U . This includes the long simple roots in Bn, Cn, F4.

Together with above paragraph we dealt with all the possibilities except the
case in which G = G2.

If a simple root α has a 2-string generated by β and the length of β
is a third of that of α, then α and β generate a G2 type of complex Lie
algebra. This only occurs in G2. α = α2 is the long simple root. β could be
either α1 or 3α1 + α2. The last case can not occur, since 3α1 + α2 has the
same length as α2 and they generate an A2 type of complex Lie subalgebra.
Therefore, β = α1. We have that H = 1

3Hα2
and by (H,H)A = 1 we have

that (Hα2
,Hα2

)A = 9 and.

ω(X,Y ) = (g1H + gG + B1i(2α1 + α2), [X,Y ]).

The restricted metric is
[

ω(Fα1
, JFα1

) ω(Fα1
, JFα1+α2

)
ω(Fα1+α2

, JFα1
) ω(Fα1+α2

, JFα1+α2
)

]

=

[

ω(Fα1
,−Gα1

) ω(Fα1
,−Gα1+α2

)
ω(Fα1+α2

,−Gα1
) ω(Fα1+α2

,−Gα1+α2
)

]

=

[

3g1 − 3B1 −3g
−3g −3g1 − 3B1

]

.

Therefore, the determinant is 9(B2
1 − U).
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We have that:

Lemma 3. If α has a 2-string, the determinant is M(d − U) for some
numbers M and d > 0. If α has a 4-string, the determinant is (d−U)(9d−U)
for a positive number d.

By these three Lemmas, we obtain our Theorem 1.
Q. E. D.

4 Calculating the Ricci curvature

Now, we calculate the Ricci curvature. Let α1 be the root which generates
A and h = log V . Following Koszul [25] p.567, we have that

ρ(X, JY ) =
LJ [Xr,JYr](ω

n)(T, JT, F, JF, Fα, JFα)

2ωn(T, JT, F, JF, Fα, JFα)
, (42)

where Xr, Yr are the corresponding right invariant vector fields and here we
use Fα, JFα to represent

Fα2
, JFα2

, · · · , Fαl
, JFαl

the array of Fα with its conjugate for positive roots α other than α1 which
have nonzero Fα and Gα.

We can also use a similar method in [8], [12], [13] to calculate the Ricci
curvature for the case S = G = An. Let us do this first. Then we shall
compare the conclusion to Koszul’s method. By the volume formula (29),
or (33) (see also (41)) we have

aρ = n + 1 = bρ (43)

and Fρ = −(n − 1)(log D − log(1 − γ)) + log(−D′). Therefore,

fρ = γF ′
ρ = −γ[(n − 1)(D′D−1 + (1 − γ)−1) + D′′(D′)−1]

= −n − 1

t2
+ 2 +

1 + t2

2t
ḣ (44)

(45)

and by (36), (38) we have:

gρ = − 2t

1 + t2
(bρ − fρ) = ḣ − 2(n − 1)

t
, Bρ = 0. (46)
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To use Koszul’s method we need to consider X,Y for first H,G− H
t , and

then F, F . We have that

[H,J(G − H

t
)] = [H,F ] = 2G,

J [Hr, J(G − H

t
)r] = −2JG = −2J(G − H

t
+

H

t
) = 2(2T − F ).

[F, JF ] = [F,−G +
H

t
] = −2H − 2G

t
.

J [Fr, JFr] = J(2H +
2G

t
)

= 2J

(

−2tT +
F − 2T

t

)

= 2
F − 2(1 + t2)T

t
.

Again as what happened in [25] p.567–570, usually it is not clear how to
find JX for a right invariant vector field X along pt and to deal with the left
invariant form with right invariant vector fields. Therefore, the argument
in [Si] does not work as we can see for our situation. We need something
similar to the Koszul’s trick in [25] p.567–570. It turns out that all the
arguments there still go through for our situation once both X, JY are in
the maximal compact Lie algebra K. Therefore, we have that:

ρ(H,J(G − H

t
)) = 2ḣ +

1

2ωn(T, JT, F, JF, Fα, JFα)
·

[ ωn([2(F − 2T ), T ] − J [2G,T ], JT, F, JF, Fα , JFα)

+ ωn(T, [2(F − 2T ), JT ] − J [2G, JT ], F, JF, Fα , JFα)

+ ωn(T, JT, [2(F − 2T ), F ] − J [2G,F ], JF, Fα , JFα)

+ ωn(T, JT, F, [2(F − 2T ), JF ] − J [G, JF ], Fα, JFα)

+ ωn(T, JT, F, JF, [2(F − 2T ), Fα] − J [2G,Fα], JFα)

+ ω5(T, JT, F, JF, Fα, [2(F − 2T ), JFα] − J [2G, JFα])]

= 2ḣ − 4(n − 1)

t
,

here we use the notation

ωn(· · · , [A,Fα] − J [B,Fα], JFα),
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to represent

ωn(· · · , [A,Fα2
] − J [B,Fα2

], JFα2
, · · · , Fαl

, JFαl
) + · · ·

+ ωn(· · · , Fα2
, JFα2

, · · · , [A,Fαl
] − J [B,Fαl

], JFαl
)

which is the sum of

ωn(· · · , Fα2
, JFα2

, · · · , [A,Fα] − J [B,Fα], JFα, · · · , Fαl
, JFαl

)

for all the positive roots α other than α1, and we use the notation

ωn(· · · , Fα, [A, JFα] − J [B, JFα])

to represent a similar sum.
Another way to understand the calculation is regarding the volume ten-

sor formally as a product of the two determinant tensors. When n = 2,
these determinants are τ , τ1 of the subspaces W , Wi. We have the formula

ρ(X, JY ) =
1

2
J [Xr, JYr](h) +

AX,Y (τ)

2τ
+

AX,Y (τ1)

2τ1
, (47)

where

AX,Y (τ) =
∑

i

τ(· · · , [J [X, JY ], Xi] − J [[X, JY ], Xi], · · ·). (48)

Applying this formula, we have the components which come from the
determinants τ and τ1:

AH,G−H
t
(τ)

2τ
= 0

since
[F − 2T, T ] = −J [G,T ] = 0,

[F − 2T, JT ] = [F − 2T,
H

2t
] = −G

t
+

H

t2
= t−1JF,

−J [G, JT ] = −J [G,
H

2t
] = −t−1JF,

[F − 2T, F ] = 0, −J [G,F ] = −2JH = 4tT,

[F−2T, JF ] = [F−2T,−G+t−1H] = −2H−2t−1G+2t−2H = 2t−1JF−2H,

−J [G, JF ] = −t−1J [G,H] = −2t−1JF ;
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and
AH,G−H

t
(τ1)

2τ1
= −4

t

since
[F − 2T, F23] = F13,

−J [G,F23] = −JG13 = −J(G13 + 2t−1G23 − 2t−1G23) = −2t−1F23 − F13,

[F − 2T, JF23] = [F − 2T,G23] = G13 = −JF13 − 2t−1JF23,

−J [G, JF23] = −J [G,G23] = JF13,

[F − 2T, F13] = −F23, −J [G,F13] = −JG23 = F23,

[F − 2T, JF13] = [F − 2T,−G13 − 2t−1G23]

= G23 − 2t−1G13 − 4t−2G23

= JF23 + 2t−1JF13,

−J [G, JF13] = −J [G,−G13 − 2t−1G23] = −JF23 − 2t−1JF13.

Similarly, we have

Theorem 2. If the fiber with S = An action is affine and isotropic,
then gρ = ḣ − 2(n−1)

t . Moreover, Bρ = 0. Other coefficients, i.e., other part
of Iρ, come from the Ricci curvature of G/P which is −(qG/P , [X,Y ])0 with
qG/P =

∑

α∈∆+−∆P
Hα with the standard inner product.

Proof: As above, we consider X,Y for H,G − H
t and F, F .

First,

[H,J(G − H

t
)] = 2G, J [Hr, J(G − H

t
)r] = 2(2T − F ).

As above, the contribution of T, JT, F, JF is zero. The contribution of
e2 − ej , e1 − ej is −4

t . When G 6= S, the contribution from the roots outside
S is zero. Therefore,

2gρ = ρ(H,F )

= ρ(H,−J2F )

= ρ(H,J(G − H

t
))

= 2(ḣ − 2(n − 1)

t
).
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That is, gρ = ḣ − 2(n−1)
t .

Second,

[F, JF ] = −2H − 2G

t
, J [Fr, JFr] =

2

t
(F − 2(1 + t2)T ).

The contribution of T, JT, F, JF is zero. The contribution of e2 − ej, e1 − ej

is 4(t + 1
t ). When G 6= S, the contribution from the roots outside S is zero.

Therefore, ρ(F, JF ) = −2(t + 1
t )(ḣ − 2(n−1)

t ), and Bρ = 0.
Other coefficients come from the qG/P as above.

Q. E. D.

5 Calculating the scalar curvature

To calculate the scalar curvature we separate our subspaces into five kind of
spaces. The first W is generated by T, JT, F, JF . The second , third, fourth
and fifth are the subspaces of 1, 2, 3 and 4-strings. The Ricci curvature is a
sum of its restriction to each subspaces

ρ =
∑

i

ρi. (49)

Similarly

ω =
∑

i

ωi. (50)

Then, by Theorem 1 we have that

V =
MU̇Q(U)

t
=

MU̇

t
(U − B2)k−1Q1(U), (51)

ρ ∧ ωn−1 =
∑

i

Ωi (52)

where

Ωi = ρi ∧ ωn−1. (53)

Let

Uρ = (g1H + gG, tgρH + gρG), (54)
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then

Uρ(0) = 0. (55)

ΩW = (n − 1)!KU̇ρQ(U)/t

if the determinant of W is KU̇/t. For 1-strings,

Ωi = KiU̇Q(U)/t.

For 2-strings,

Ωi = −2(n − 1)!(Uρ − aiaρ,i)
V

qi

where qi = a2
i −U is the linear factor of Q introduced from the given 2-string.

Similarly, we can see, by a direct calculation, that for a 3-string

Ωi = −(2Uρ − 2aiaρ,i +
aρ,i

ai
(U − a2

i ))
(n − 1)!V

qi
.

For the case of 4-strings, it only occurs when G = G2 and H correspond
to the short root. In this case, we have

Ω1 = ρ1 ∧ ωn−1

= −4(Uρ(5B
2
1 − U) + B1Bρ,1(5U − 9B2

1))
(n − 1)!V

(B2
1 − U)(9B2

1 − U)

= −2[Uρ[B
2
1 − U) + (9B2

1 − U)]

− B1Bρ,1[9(B
2
1 − U) + (9B2

1 − U)]]
(n − 1)!V

(B2
1 − U)(9B2

1 − U)

= −2(Uρ − 9B1Bρ,1)
(n − 1)!V

9B2
1 − U

− 2(Uρ − B1Bρ,1)
(n − 1)!V

B2
1 − U

.

Therefore,

ρ ∧ ωn−1 = (n − 1)!M
˙(UρQ(U)) + p0(U)U̇

t
. (56)

Theorem 3. The scalar curvature is 2 ˙(UρQ)+pU̇

U̇Q
with a polynomial p of

U . Moreover, p(U) = (U − B2)n−1P1(U), where P1(U) is a polynomial of
U and is a positive linear sum of (1) Q1 and (2) the products of deg Q1 − 1
linear factors of Q1. Only 1-strings and 3-strings have contributions to (1);
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the contribution of each 1-string and 3-string is
cρ,l

cl
for the Q1 term, where

ci = ω(Fαi
, JFαi

) for 1-strings and ci = ai for 3-strings. Only 2-strings,
3-strings and 4-strings have contributions to (2); the contribution of each
2-string and 4-string related to the products of deg Q1 − 1 linear factors of
Q1 is 2

aρ,iaiQ1

qi
. In particular, if G = S, we have that p(U) = 0.

6 Setting up the equations

Now, we shall set up the equations for the metrics with constant scalar
curvature. Before we do that, we shall understand more about the metrics.
We have that:

Theorem 4. If S = An, ω is a metric on the open orbit if and only if
B < − ġ(0)

2 and g is an odd function with ġ(0) < 0, t−1U̇ > 0 and U < a2
i .

Proof: from the metric formula for the metrics we need that

lim
t→0

tġ + g

t
= 2ġ(0) < 0,

lim
t→0

(

(1 + t2)g

t
+ B

)

= ġ(0) + B < 0,

lim
t→0

(tg + 2B + 2t−1g) = 2B + 2ġ(0) < 0,

lim
t→0

t−1g = ġ(0) < 0,

lim
t→0

t−1U̇ = 2ġ(0)B + (ġ(0))2 > 0

and
t−1U > 0.

Q. E. D.
This result is somehow quite different from those in [Gu8] and [Gu12].

Therefore, with also the property that Bρ = 0 in Theorem 2 we prefer to
call the manifolds in the case S = An the type IV manifolds.

To understand the metrics near the hypersurface orbit, we can let θ =
t2

1+t2 , and we see that θ̇ = 2t
1+t2 − 2t3

(1+t2)2 = 2t
(1+t2)2 . We can also see that

Uθ(1) = limt→+∞
(1+t2)2U̇

2t > 0 exists. In particular, U is bounded, so is tg.
This was done in the third section. Let l = limt→+∞ tg.

We also notice that the closure D of the orbit Ω of the complex Lie
group SL(2,C) generated by α1 is a cohomogeneity one fiber bundle with a
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CP 1 as the base and another CP 1 as the fiber. Since Ω is a C bundle over
CP 1, D is affine compact almost homogeneous manifold with the SL(2,C)
action. That is, D is exactly the S = A1 action manifold and is CP 1×CP 1.
A calculation in section 3 for the S = A1 action also gives the bounded
property of U and l. The restriction of the metric to D also gives us the
same topological invariants B and l.

Theorem 5. ω in Theorem 1 extends to a Kähler metric over the
exceptional divisor if and only if limt→+∞ tg = l > ai − B and Uθ(1) > 0.

Now, for any given pair B, l with 0 > l > ai − B we can check that
g(t) = lt

1+t2 satisfies Theorems 4 and 5. We shall see later on that this
actually gives us the solutions of our equations for the homogeneous cases,
i.e., when G = S. So we have that:

Theorem 6. The Kähler classes are in one to one correspondence with
the elements in the set Γ = {(B, l)|0>l>ai−B and B<− l

2

}.
To calculate the total volume, we notice that

T ∧ JT ∧ F ∧ JF
αl
∧

α=α2

(Fα ∧ JFα) = M
T ∧ H ∧ F ∧ G

∧αl
α=α2

(Fα ∧ Gα)

t
(57)

with a possitive number M .

U(0) = B2, U(+∞) = (l + B)2. (58)

Therefore, the total volume is

VT =

∫ (l+B)2

B2

Q(U)dU. (59)

We also see that

gρ = ḣ − 2(n − 1)

t
=

Ü

U̇
+

Q′(U)U̇

Q(U)
− 2n − 1

t
. (60)

One can easily check that

(

Ü

U̇
− 1

t

)

(0) = 0,

(

U̇

U − B2
− 2

t

)

(0) = U̇(0) = 0
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by g being an odd function and therefore gρ(0) = 0.
Now, from

U = (tg + B)2 + g2

= (t2 + 1)g2 + 2Btg + B2

= (t2 + 1)

(

g +
Bt

t2 + 1

)2

+
B2

1 + t2

we have that
(

g +
Bt

t2 + 1

)2

=
1

(1 + t2)2
((1 + t2)U − B2).

We have that

−g − Bt

1 + t2
=

√

(1 + t2)U − B2

1 + t2
.

That is

g = −
√

(1 + t2)U − B2 + Bt

1 + t2
.

To make the things clearer, we replace t by θ = t2

1+t2
. We have that

tgρ = [[log[UθQ(U)(1 − θ)2]]θ2θ(1 − θ) − 2(n − 1)]

= [2θ(1 − θ)

[

Uθθ

Uθ
+

Q′(U)Uθ

Q(U)

]

− 4θ − 2(n − 1)],

which has a limit −2(n + 1) at θ = 1 so

lρ = −2(n + 1). (61)

Therefore, the Ricci class is (0,−2(n + 1)).
We also have that

Uρ(1) = lρ(B + l) = −2(n + 1)(B + l). (62)

Now, we have the Kähler Einstein equation

[2θ(1 − θ)

[

Uθθ

Uθ
+

Q′(U)Uθ

Q(U)

]

− 4θ − 2(n − 1)] = tg

= − t
√

(1 + t2)U

1 + t2
(63)

= −
√

θU.
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The total scalar curvature is

RT =

∫ +∞

0
[p(U)U̇ + 2 ˙(UρQ(U))]dt. (64)

And from this, we have the average scalar curvature

R0 =
RT

VT

=

∫ (B+l)2

B2 p(U)dU + 2(UρQ(U))|(B+l)2

B2

∫ (B+l)2

B2 Q(U)dU

=

∫ (B+l)2

B2 p(U)dU + 2lρ(B + l)Q((B + l)2)
∫ (B+l)2

B2 Q(U)dU
.

If G = S = An (we see in [20] that this is the same as the assumption
that the manifold being homogeneous), then Q = (U − B2)n−1 and p = 0.
Therefore,

R0 =
lρ(B + l)

n−1((B + l)2 − B2)
= 2n

Blρ + llρ
2Bl + l2

.

The equation of constant scalar curvature is R
V = R0. Therefore, we have

that

2UρQ(U) +

∫ U

B2

p(U)dU

= R0

∫ U

B2

Q(U)dU + A0 (65)

with A0 a constant.
Let θ = 0, we have that

0 = 2BBρQ(B2) = A0.

If we put θ = 1 in we get the same A0.
We have that

Uρ =
R0
∫ U
B2 QdU −

∫ U
B2 pdU

2Q(U)
(66)

where Q(U) = (U − B2)n−1Q1(U).
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Applying Theorem 3 and integration by parts, we have that

Uρ =
R0
∫ U
B2 QdU −

∫ U
B2(U − B2)n−1P1dU

2Q

=

∫ U
B2(R0Q − (U − B2)n−1P1)dU

2Q

=
R(U)

2Q1(U)
,

where R(U) is a polynomial of U . Therefore,

gρ((t
2 + 1)g + Bt) =

um(u)

Q1(u)

where we let R(U) = 2um(U).
If G = S = An, we have that

Uρ =
R0

2n
(U − B2).

And R(U) = R0

n (U − B2), m(u) = R0

2n .
Now, by

tg = −Bθ −
√

θ(u + B2θ)

we have that

(1 + t2)tg + Bt2 = −
√

θ(u + B2θ)

1 − θ
,

and therefore if we use ′ for the derivative with respect to θ we have that

θ(1 − θ)

[

u′′

u′
+

Q′(u)u′

Q(u)

]

− 2θ − n + 1

= −2−1

√

θ

u + B2θ
u

˙m(u)

Q1(u)
. (67)

Comparing with (63), we see that

m(u) = Q1(u)

if the Kähler metric is in the Ricci class.
If G = S = An, then we have that m(u)

Q1
is a constant. There is a solution

with u = cθ. Actually, if we use the g = lt
1+t2

in the proof of the Theorem 6
we obtain that u = (2B + l)lθ which solves our equation.
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From (67), we have that

[log[u′Q(u)]]′ =
P

θ(1 − θ)
.

We also have

2θ + n − 1 − AB,lθ
1

2 ≤ P ≤ 2θ + n − 1 + CB,lθ
1

2 .

for some positive constant AB,l, CB,l which only depend on B and l. Since
P (1) = n + 1 + 2−1lρ = 0, we have that AB,l ≥ n + 1.

By integration, we have that

an−1(1 − a
1

2 )AB,l−n−1(1 + θ
1

2 )AB,l+n+1

θn−1(1 − θ
1

2 )AB,l−n−1(1 + a
1

2 )AB,l+n+1
≤ u′(a)un−1(a)Q1(u(a))

u′(θ)un−1(θ)Q1(u(θ))
(68)

≤ an−1(1 − θ
1

2 )n+1+CB,l(1 + θ
1

2 )n+1−CB,l

θn−1(1 − a
1

2 )n+1+CB,l(1 + a
1

2 )n+1−CB,l

for 0 < θ ≤ a < 1. We let V = un and x = θn, and obtain the following
Harnack inequality:

(1 − a
1

2 )AB,l−n−1(1 + θ
1

2 )AB,l+n+1

(1 − θ
1

2 )AB,l−n−1(1 + a
1

2 )AB,l+n+1
≤ Vx(a)Q1(u(a))

Vx(θ)Q1(u(θ))
(69)

≤ (1 − θ
1

2 )n+1+CB,l(1 + θ
1

2 )n+1−CB,l

(1 − a
1

2 )n+1+CB,l(1 + a
1

2 )n+1−CB,l

.

Arguing as in [12], we have that

Theorem 7. If there is a solution 0 ≤ u ≤ l(l + 2B) of above equation
with u(0) = 0 and u(1) = l(l + 2B). Then there is a Kähler metric with
constant scalar curvature in the considered Kähler class.

Theorem 8. For any small positive number f , we have a solution u(0) =
0, u(1 − f) = l(l + 2B). This corresponds to a Kähler metric with constant
scalar curvature on the manifold with boundary θ ≤ 1 − f .

7 Global solutions

In this section, we shall extend our solutions to the hypersurface orbit. We
shall let f → 0. As we did in [12], we let τ = − log(1 − θ) and have that

[log[uτQ(u)]]τ =
P − θ

θ
.
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Therefore, we have that

[

log

[

nun−1uτ

θn−1
Q1(u)

]]

τ

=
P − θ

θ
− (n − 1)θτ

θ

=
P − θ

θ
− (n − 1)

(

1

θ
− 1

)

=
P − n + 1 + (n − 2)θ

θ
(70)

= n − 2−1u
√

θ(u + B2θ)

˙m(u)

Q1(u)

= T (u, θ)

→ n − um(u)

2Q1(u)
√

u + B2

= n − α,

when θ turns to 1 and it converges unformly for u ≥ u0 with any u0 > 0.
If ω is in the Ricci class, then m(u) = Q1(u) and

α = 2−1√u.

Let ui be a series of solutions corresponding to fi → 0. By P (1) = 0, for
any e0 ∈ (n, n + 1) there are two numbers A(e0) < l(l + 2B) and B(e0) > 0
such that if u > A(e0) and τ > B(e0) then α > e0 > n and T (u, θ(τ)) <
n − e0. Let τi be a point of τ such that ui(τi) = A(e0), and if we also have
τi > B(e0) then

[

log

[

nun−1
i ui,τ

θn−1
Q1(ui)

]]

τ

=
P − n + 1 + (n − 2)θ

θ
= T (u, θ) < n − e0

for τ ≥ τi.
Let w = nun−1u′

θn−1 Q1(u), then

wi ≤ e(n−e0)(τ−τi)wi(τi).

If there is no subsequence of τi which tends to +∞, then there is a
subsequence of τi which tends to a finite number τ0. By the left side of
the Harnack inequality (69), we see that Vi,x(θ(τ0)) must be bounded from
above, otherwise Vi,x will be bounded from below by a very large number
such that Vi will be bigger than l(l+2B) before x reaching the point 1. That
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is, there is a subsequence of ui converging to a solution u of our equation
with u(1) > A(e0).

We shall observe that there is no subsequence of τi which tends to +∞
under certain condition below.

If there is a subsequence of τi which tends to +∞, we might assume that

lim
i→+∞

τi = +∞,

and τi > B(e0). To make the things simpler, we should avoid the cases in
which G = S = An. In those cases, the second Betti numbers are 2 and the
manifolds are homogeneous. By Calabi’s result, all the extremal metrics are
homogeneous and therefore they are unique since there is only one invariant
metric in the the given Kähler class. As we see before in the last section in
the paragraph after (67), u = cθ will solve the equations.

Thus, we can assume that G 6= S, and therefore there is at least one ai.
From the equation (67), we observe that if

ui,τ (τi)u
n−1
i (τi) > 2(l(2B + l))n−1(a2

1 − B2)AB,l > 2un−1(a2
1 − U)AB,l,

then
ui,τ (τi)

a2
1 − U(τi)

> 2AB,l

and we have that vτ = un−1
i ui,τ is increasing for τ ≥ τi. This can not

happen. Therefore, ui,τ (τi) is bounded from above.
We shall see that in this circumstance there is a subsequence of

ũi(τ) = ui(τ + τi)

which converges in C1 norm to a nonconstant function ũ. We see that for
each τ ≥ 0, wi is decreasing and ũi,τ are uniformly bounded. For each
τ < 0, −AB,l < [log wi]τ < n + CB,l when i big enough, that is, Ṽi,τ are also
bounded uniformly on i over any closed intervals. Therefore, a subsequence
of Ṽi converges in the C1 norm to a function ũ. Thus, the same thing
happens for a subsequence of ũi.

To observe that ũ is not a constant, we notice that

nun−1
i ui,τ

θn−1
≤ Ci

nun−1
i (τi)ui,τ (τi)

θn−1(τi)
e(n−e0)(τ−τi)

for τ ≥ τi, where Ci does not depend on ui. That is,

nun−1
i ui,τ ≤ Cui,τ (τi)e

(n−e0)(τ−τi).
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By integrating both side we have that

(l(l + 2B))n − A(e0)
n ≤ − C

n − e0
ui,τ (τi),

i.e., ui,τ (τi) is bounded from below. Therefore, ũi,τ (0) are bounded from
below. We have that ũτ (0) > 0. This implies that ũ is not a constant.

Then, ũ satisfies the equation

[log[xn−1xτQ1(x)]]τ = −α + n

on (−∞,+∞). Therefore,

[xn−1xτQ1(x)]τ = (−α + n)xn−1Q1(x)xτ .

Integrating as in [12], we have that

∫ x(+∞)

x(−∞)
fldx = 0,

where
fl = (−α + n)xn−1Q1(x).

As in [12], we see that x(+∞) = l(l + 2B).
As in [12], we shall prove:

Lemma 5. n − α has only one zero.

Proof: As in [12], we may expect that x is related to a Kähler metric of
constant scalar curvature on the normal line bundle over the hypersurface
orbit. Hence, we may apply the method of counting zeros in [10], [12] to
this circumstance. xn−1x′Q1(x) is proportional to “ϕQ” in [10]. Therefore,
the counting of zeros of n − α should be the same as counting the zeros of
the derivative of “ϕQ” to “U” there.

Let v =
√

u + B2, then u = v2 − B2 and a2
i − u = (−ai + v)(−ai − v).

We observe that gl = 2vfl is actually a polynomial of v and should be
proportional to the derivative of “ϕQ” in [10]. Therefore, we may expect
that

y =
2

l
(−B − v) − 1

corresponds to the “U” in [10]. We let

q = 2vQ(v),
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and observe that q is proportional to the “Q” in [10].
We see that

gl = nq − m(u)un (71)

= nq − R(U)

2
un−1

= nq − R0

2

∫

QdU +
1

2

∫

pdU.

Let g′l be the derivative of gl to v, we have that

g′l = nq′ − vR0Q + vp (72)

= nq′ + vP2 − vR0Q + vP3

= ∆ − mq,

where P3 = 2m1Q is the Q term in p and P2 = p − P3 is the positive linear
combination of Q

qi
,

∆ = nq′ + vP2,

m = R0

2 − m1. Therefore,

gl =

∫ v

0
(∆ − mq)dv.

Lemma 6. The coefficients of ∆ are always positive.

Proof of Lemma 6: From Theorem 3, we see that the 1-strings do not
have any contribution to ∆.

The contibution to P2 of each 2-string and 3-string, 4-string of the U−B2

factor is in the first term of the p(U) in the Theorem 3.
The contribution to P2 of each 2-string and 3-string, 4-string related to

the Q1 factors is
aρ,iai

qi
q.

For the first term of ∆, we have 2nQ (one might call it the term of v
factor since Q = q

2v ) with 2n > 0.
Then, we have the U − B2 term (or the term of q

U−B2 )

2(n − 1)v(2nv)(U − B2)n−2Q1

= (n − 1)v[2n(v − B) + 2n(v + B)](U − B2)n−2Q1

with both 2n positive.
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Similarly, we have qs factor of Q1 term (or the term of q
qs

)

2v[−2nv + asaρ,s]
Q

qs

= v[(2n − aρ,s)(as − v) − (2n + aρ,s)(as + v)]
Q

qs

with coefficients 2n − aρ,s > 0 and −2n − aρ,s.
So we need to check that the last coefficient is also positive. There are

two ways to prove this. First we notice that this actually is the same to
check that the coefficients

2n, 2n, 2n

and
2n − aρ,s,−2n − aρ,s

are all positive. We claim that these are the components of the Ricci curva-
ture of the exceptional divisor, then the positivity comes from the positivity
of the Ricci curvature of the compact rational homogeneous spaces. The
point is that v is corresponding to an H in the calculation of the metric and
the volume form, and we should prove that the contribution of H to the
Ricci curvature is exactly 2n, i.e.,

(qG/P∞
,H)0 = (qS/(S∩P∞),H)0 = 2n,

where P∞ is the isotropic group of the exceptional divisor at p∞. Notice
that P∞ is parabolic.

For S = An, the semisimple part of P∞,1 is generated by α3, · · · , αn with
an orientation e′1 = e1, e

′
i = ei+1 n + 1 > i > 1, e′n+1 = e2. Therefore,

(qS/P∞,1
,H)0 = n + n = 2n.

This gives a proof of our Lemma 5.

Secondly, we could also check the positivity of the last coefficient with a
case by case checking. That will also give all the aρ,s in concrete calculations.
This is extremally useful when we check the Fano property of the manifolds
and classify the manifolds with higher codimensional end (see [17]). For
example, we can check that

Proposition 1. In the affine isotropic case the manifold is Fano if and
only if

−2(n + 1) − aρ,s > 0
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holds.

We could give another proof that the last coefficient −2n − aρ,s > 0.

This is a little bit long, since there are so many cases. We shall check
the last inequality

2n + aρ,s < 0

for the cases of

G = Am+n+k, Bm+n+k+1, Cm+n+k+1, Dm+n+k+1

first, then G2. We will leave the cases of G = F4 and of E8 to another paper,
since the proof is too tedious. The cases of G = E6 and E7 will follow from
those of E8. If G = Am+n+k, we have that

ρG/P (Fel−em+1
, JFel−em+1

) = −(qG/P ,−2Hel−em+1
)

= 2(−l1 − l2 + 2m + n + 2).

We also have that −2Hel−em+1
= −2Hel

− H − Hem+1+em+2
, and therefore

aρ,l = −2(−l1 − l2 + 2m + n + 2) ≤ −2(n + 2).

The corresponding affine manifolds are Fano.
If G = Bm+n+k+1, we have that (1) (qG/P , el)0 = −l1−l2+2(m+n+k)+3

in the standard inner product, but we took an inner product such that
(el, el) = 1

2 , therefore, Bρ,l = 2(l1 + l2 − 2(m + n + k) − 3) if l1 ≤ l ≤ l2
and there is a S1 factor Al2−l1 or l is not in any S1 factor in which case we
let l1 = l = l2; or (2) Bρ,l = 0 if l is in a S1 factor of type B. We have
2-strings generated by el − em+1, el + em+2, em+2 with l ≤ m, em+2 + ei with
m + 2 < i ≤ m + n + 1 and em+2 ± ej with m + n + 1 < j ≤ m + n + k + 1.
The corresponding aρ,s are

−2(−l1 − l2 + 2(m + n + k) + 3 − 1 − n − 2k)

= −2(2m + 2 + n − l1 − l2) ≤ −2(n + 2),

−2(−l1 − l2 + 2(m + n + k) + 3 + 1 + n + 2k)

= −2(2(m + 2k + 2) + 3n − l1 − l2) ≤ −2(3n + 4),

−2(1 + n + 2k) ≤ −2(n + 1),

−2(2 + 2n + 4k) ≤ −4(n + 1),
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and

−2(1 + n + 2k − (l1 + l2 − 2(m + n + k) − 3))

≤ −2(1 + n + 2k + 1)

≤ −2(n + 4),

−2(1 + n + 2k + (l1 + l2 − 2(m + n + k) − 3))

≤ −2(1 + n + 2k − 2k + 1)

= −2(n + 2)

in the (1) case or
−2(1 + n + 2k) ≤ −2(n + 1)

in the (2) case. The corresponding manifolds are nef and Fano if and only
if k > 0.

If G = Bm+1 and S = A1 generated by em+1, H = 2Hem+1
. By

(H,H)A = 1, we get (em+1, em+1)A = 1
4 . We have 3-strings generated

by el − em+1, we have that

aρ,l =
Bρ,l

2
= −2(−l1 − l2 + 2m + 3) ≤ −6 = −2(n + 2).

The corresponding affine manifold is Fano.
If G = Cm+n+k+1, then (1) Bρ,l = −2(−l1 − l2 + 2(m + n + k + 2))

if l1 ≤ l2 and there is a S1 factor Al2−l1 or l is not in any S1 factor (in
this case l1 = l = l2); or (2) Bρ,l = 0 if l is an S1 factor of type C. We
have 2-strings generated by el − em+1, el − em+2 with l ≤ m, em+2 + ei with
m + 2 < i ≤ m + n + 1, em+2 ± el with m + n + 1 < l ≤ m + n + k + 1, and
3-string generated by 2em+2. The corresponding aρ,s are

−2(−l1 − l2 + 2(m + n + k + 2) − 2 − n − 2k)

= −2(−l1 − l2 + 2m + n + 2)

≤ −2(n + 2),

−2(−l1 − l2 + 2(m + n + k + 2) + 2 + n + 2k)

= −2(−l1 − l2 + 2(m + 2k + 3) + 3n)

≤ −6(n + 2),

−2(2n + 4 + 4k) ≤ −4(n + 2),
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−2(n + 2 + 2k − l1 − l2 + 2(m + n + k + 2)) ≤ −2(n + 4 + 2k) ≤ −2(n + 6)

(or − 2(n + 2 + 2k) ≤ −2(n + 2)),

−2(n+2+2k+ l1 + l2−2(m+n+k+2)) ≤ −2(n+2+2k−2k) = −2(n+2)

(or − 2(n + 2 + 2k) ≤ −2(n + 2)),

and
−2(2n + 4 + 4k) ≤ −4(n + 2).

The corresponding affine manifolds are Fano.
If S = A1 and G = Cm+1, then α = 2em+1. But by [H2em+1

, F2em+1
] =

4G2em+1
we have that H = 1

2H2em+1
, since [H,F ] = 2G. By (H,H)A = 1,

we have that (em+1, em+1)A = 1. The only strings we need to consider are
the 2-strings generated by el − em+1. We have that

ω(Fel−em+1
, JFel−em+1

) = (
a

2
H2em+1

+ iBlel,−2Hel−em+1
)A = 2a − 2Bl

and
aρ,l = Bρ,l = −(−l1 − l2 + 2(m + 2)) ≤ −4 = −2(n + 1).

The corresponding affine manifold is nef but not Fano.,
If S = An and G = Dm+n+k+1, then (1)

Bρ,l = −2(−l1 − l2 + 2(n + m + k + 1))

if l1 ≤ l ≤ l2 and there is an S1 factor Al2−l1 or l is not related to the Dynkin
graph of any S1 factor (l1 = l = l2 in this case); or (2) Bρ,l = 0 if l is in an
S1 factor of type D. There are 2-strings generated by el − em+1, el + em+2

with l ≤ m, em+2 + ei with m + 2 < i ≤ m + n + 1 (if n > 1) and em+2 ± ej

with m + n + 1 < j. The corresponding aρ,s are

−2(−l1 − l2 + 2(n + m + k + 1) − n − 2k)

= −2(−l1 − l2 + 2(m + 1) + n)

≤ −2(n + 2),

−2(−l1 − l2 + 2(m + n + k + 1) + n + 2k)

= −2(−l1 − l2 + 2(m + 2k + 1) + 3n)

≤ −2(3n + 2),

−2(2n + 4k) ≤ −4n ≤ −2(n + 2),
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and

−2(n + 2k − l1 − l2 + 2(m + n + k + 1)) ≤ −2(n + 2k) ≤ −2(n + 2)

(or − 2(n + 2k) ≤ −2(n + 2)),

−2(n + 2k + l1 + l2 − 2(m + n + k + 1))

≤ −2(n + 2k + 2 − 2k)

= −2(n + 2)

(or − 2(n + 2k) ≤ −2(n + 2)),

The corresponding affine manifolds are Fano.
If S = A3 is generated by em+1 − em+2, em+2 − em+3, em+2 + em+3 in

Dm+3, we let α = em+2−em+3. We have 2-strings generated by el−em+2, el+
em+3 l ≤ m and

aρ,l = Bρ,l = −2(−l1 − l2 + 2(m + 3)) ≤ −12 = −2(n + 3).

The corresponding affine manifold is Fano.
If G = G2 and α = α1, then a1 = B1, a2 = 3B1.

(aH + cG + B1i(3α1 + 2α2),−2H3α1+2α2
) = −6B1.

And,

(
∑

α∈∆+−{α1}

α, 2(3α1 + 2α2))0 = (3(α1 + 2α2), 2(3α1 + 2α1)) = 36,

we have that Bρ,1 = −6 = −2(n + 2). The corresponding affine manifold is
Fano.

If G = G2 and α = α2, H = 1
3Hα2

. By (H,H)A = 1, we get that
(Hα2

,Hα2
)A = 9, then

ω(X,Y ) = (aH + cG + B1i(2α1 + α2), [X,Y ]).

ω(F2α1+α2
, JF2α1+α2

) = −6B1.

There are two 2-strings generated by α1 and 3α1+α2. We have that a1 = B1

and a2 = 3B1. But we also have that

∑

α∈∆+−{α2}

α(2(2α1 + α2)) = 5(2α1 + α2)(2(2α1 + α2)) = 20 = −6Bρ,1.
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Therefore, we have that Bρ,1 = −10
3 and

aρ,1 = −10

3
, aρ,2 = −10 < −3 = −2n − 1.

But the corresponding manifold is not even nef.
Before we go further, we shall make an observation. If G′ ⊂ G is a

subgroup of G such that the Dynkin graph of G′ is a subgraph of that of
G and S ⊂ G′ fits with the Dynkin graph of G′, then, if the last inequality
holds for G,S, so does it for G′, S. Actually, let β be a positive root in G′

which generates a nontrivial string (i.e., either 2, 3 or 4-string), then

(qG/P , β) = (qG/P1
, β) + (qG′/P2

, β) = (qG′/P2
, β)

where P1 is the minimal parabolic subgroup of G containning G′ and P2 =
P ∩ G′, since (qG/P1

, ) is trivial on G′. Therefore, once the last inequality
is true for E8, it is also true for both E6 and E7. Similarly, the inequality
aρ,s ≤ −2(n+2) holds for G = Ek 6 ≤ k ≤ 8. Therefore, the last inequality
holds for the left cases of G = F4, E6, E7, E8 by a further calculation with
F4 and E8.

Q. E. D.
Therefore, as we argued in [12, p. 73], if n−α has two zeros, then ∆−mq

has deg q−3+4 = deg q+1 zeros. That will be a contradiction to the degree
of this polynomial which is 2 deg Q + 1. Thus, we obtain our Lemma 5.

Q. E. D.
Now, we have that fl has a unique zero. Therefore, if

∫ l(l+2B)

0
fldx < 0, (73)

we can not have that

0 =

∫ l(1+2B)

x(−∞)
fldx ≤

∫ l(l+2B)

0
fldx.

Otherwise, we have a contradiction.
By choosing A(e0) close to l(l + 2B) we have that u(1) = l(l + 2B).

Arguing as in [12], we have that u′(1) exists and is finite. Similarly, u′′(0)
and u′′(1) exist and are finite.

Also, we already see that if G = S = An, the manifold is homogeneous
and admits unique extremal metric in any given Kähler class. Therefore, we
have that:
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Theorem 9. There is a Kähler metric of constant scalar curvature in
a given Kähler class if the condition (73) is satisfied.

We shall prove the converse in [14].

Corollary 1. If G = Ak or Dk, then aρ,s ≤ −2(n+2) and therefore the
manifolds are Fano.

We could easily argue as in [13] p.273–274 and [12] that the right side of
(73) is the Ding-Tian generalized Futaki invariant for a (possibly singular)
completion of the normal line bundle of the exceptional divisor, although
we do not really know that there is an actually analytic degeneration with
this completion as the central fiber. Our condition here is stronger than the
Ross-Thomas version of Donaldson’s version of K-stability (cf. [17]).

8 Type II cases

Now, we consider the case of type II, i.e., the case in which the centralizer
of the isotropic group containing a three dimensional simple Lie algebra A.
Since most cases are affine and other cases are actually homogeneous, we
actually only need to consider the case in which S = A1. We denote the
manifold by N .

In that case, the involution induces an involution in A and d = 1. The
argument after the Theorem 4 and [13] Theorem 3.1 tell us that Uθ(1) =

limt→+∞
(1+t2)2U ′

2t = 0. We actually have that Uθ = (1− θ)h(θ) with h(1) >
0. We also have that Bρ = 0 = B, k = 1 and lρ = −4 − 2 = −6.

The Kähler-Einstein equation is

(1 − θ)(
u′′

u′
+

Q′(u)u′

Q(u)
) = 2 − 2−1(

u

θ
)

1

2 .

The constant scalar curvature equation is

(1 − θ)(
u′′

u′
+

Q′(u)u′

Q(u)
) = 2 − 2−1(

u

θ
)

1

2
m(u)

Q(u)
= Pθ−1,

where m(u) =
R0

∫

Qdu−
∫

pdu

u . We also notice that our Pθ−1 here is the P
in [13].

If G = S = A1, we have R0 =
2lρ
l = −12l−1, Q = Q1 = 1, m(u) =

lρ
l =

−6l−1. The equation is

(1 − θ)u′′ = (2 +
3

l
(
u

θ
)

1

2 )u.
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We have that
2(1 − Alθ

− 1

2 ) ≤ Pθ−1 ≤ 2

with a constant Al ≥ 3
2 since P (1) = −1 as in [13].

The difference of this case from those in section 6 before can be summa-
rized in following two theorems:

Theorem 5’. ω in Theorem 1 extends to a Kähler metric over the
exceptional divisor of N if and only if limt→+∞ tf = l > ai and Uθ(1) = 0.

Let f(t) = 2lt
1+2t2 , then U = 4l2θ(1 + θ)2 satisfies the assumption of

Theorem 4 and 5’. Actually, one can check that this U is the solution of the
equation when G = S = A1.

Therefore, we have that:

Theorem 6’. The Kähler classes on N are in one to one correspondence
with the elements in the set Γ = {l|0>l>ai

}.
We also have that fl = (1 − α)Q with α = 2−1u

1

2
m(u)
Q(u) .

If G = S = A1, fl = 1 + 3l−1u
1

2 . The integral is

∫ l2

0
(1 + 3l−1u

1

2 )du = l2 − 2l2 = −l2 < 0

always.
In general, we have:

Theorem 9’. For a nonaffine type II cohomogeneity one manifold there
is a Kähler-Einstein metrics if M is Fano and

∫ 36

0
(1 − 2−1u

1

2 )Qdu < 0.

There is a Kähler metric of constant scalar curvature if

∫ l2

0
fldu < 0

holds.

We shall prove the converse in [14].
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9 Kähler-Einstein metrics, Fano properties and fur-

ther comments

If the Kähler class is the Ricci class, we have that

B = Bρ = 0, l = lρ = −2(n + 1), (74)

m(u) = Q1(u),

α = 2−1√u. (75)

Therefore,

fl = [n − 2−1√u]un−1Q1(u). (76)

In this section, we show how we can check the Kähler-Einstein property
case by case on the pairs of groups (S,G).

We also notice in [20] that if S = Bn or Cn the manifolds are always
Fano.

Now, we consider the case in which S = An and G = Am+n+k such that
S is generated by ei+1 − ei with m + 1 ≤ i ≤ m + n. We shall see that the
manifolds are Fano for the compact affine almost-homogeneous manifolds
of cohomogeneity one. For the case of type II manifolds other than the
affine case, we shall see that they have numerical effective anticanonical line
bundle and are Fano if every ei which is not in An is in some Al factor in
S1, here we say that ei is in an Al if ei − ej ∈ Al for some ej.

By our formula, we have

ρG/P (Fel−em+1
, JFel−em+1

) = 2(−l1 − l2 + 2m + n + 2)

if l1 ≤ l ≤ l2 ≤ m induces an Al2−l1 in S1. We also have that

[Fel−em+1
, JFel−em+1

] = [Fel−em+1
,−Gel−em+1

]

= −2Hel−em+1
= −2Hel

− H − Hem+1+em+2

and the coefficient of H is −1. Therefore, we have that

aρ,l = −2(−l1 − l2 + 2m + n + 2) < lρ = −2(n + 1)

if the manifold is affine. If the manifold is of type II but not affine, then
n = 1 and

−2(−l1 − l2 + n + 2) = −2(−l1 − l2 + 2m + 3) ≤ lρ = −6
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with a equality only when l2 = l1 = m. Similarly for l > m + n.
We have our claim.

When k = m = 0, we have the product of two projective spaces. There-
fore, there are Kähler-Einstein metrics. Indeed, one can easily check that

Kn
0,0 =

∫ 2(n+1)

0
(2n − v)v2n−1dv = (v2n − v2n+1

2n + 1
)|2(n+1)

0

= (1 − 2(n + 1)

2n + 1
)(2(n + 1))2n

≤ 0.

When k = 0 and n = 1 with a maximal parabolic subgroup P , we have
the examples Mm+1 and Nm+1 in [12], [13].

Similarly, we can consider the general case with the maximal parabolic
subgroup, in which S1 = AmAk, then we have the integral

Kn
m,k =

∫ 2(n+1)

0
v(2n−v)v2(n−1)(4(m+n+1)2−v2)m(4(k+n+1)2 −v2)kdv

for the affine case and

K ′
m,k =

∫ 6

0
v(2 − v)(4(m + 2)2 − v2)m(4(k + 2)2 − v2)kdv

for the nonaffine case in which n = 1 and m, k 6= 1.
For the case of k = 0 and n = 1, if we let v = 4x, we have that

K1
m,0 =

∫ 1

0
42x · 2(1 − 2x) · 2m((m + 2)2 − 4x2)mdx,

similarly for K ′
m,0, which is exactly the integrals in [8] and [13] up to a

multiplication of a constant 2m+5.
We first have that:

Lemma 7. K1
i,j < 0 for i, j = 0, 1, 2.

Proof: By the method in [8] or by using Mathematica. We actually only
need to check the case with i = j = 2, i = j = 1 and i = 1, j = 2.

For example, with Mathematica we use

Integrate[v(2-v)(64-v^2 )^4 , {v, 0, 4}]

Integrate[v(2-v)(36-v^2 )^2 , {v, 0, 4}]
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and

Integrate[v(2-v)(64-v^2 )^2 (36-v^2 ), {v, 0, 4}].

Q. E. D.
We could call the related manifolds Mn

m,k and Nm,k (not to be confused
with the similar notations in last section). We have that:

Theorem 10. M 1
m,k and Nm,k are nef. M 1

m,k are Kähler-Einstein for
all m, k. Nm,k are Fano if and only if m, k 6= 1, in which case Nm,k are
Kähler-Einstein.

Proof: We have that
K1

m,k ≤ CK1
2,k

if m ≥ 2 by applying the comparasion method we used in [17], [20], and as
follows:

We can compare the change rate of the factor h(v) = (4(n + m + 1)2 −
v2)m. We let

t(m) = (log h)′

= m(
1

2n + 2m + 1 + v
− 1

2n + 2m + 1 − v
).

Then,

t(m + 1) − t(m) =
−2v[4(n + 1)2 − 4m(m + 1) − v2]

(4(n + m + 1)−v2)(4(n + m + 2)2 − v2)
> 0

if m > n. Therefore, if Kn
m,k ≤ 0 with m > n, then Kn

m+1,k < 0.
And, we have that

K ′
m,k < K1

m,k < 0.

Q. E. D.
We also notice that

lim
m→+∞

(2m)−2mKn
m,k = e4(n+1)Kn

0,k.

We shall prove that Kn
0,k < 0. This would imply that (1) Mn

0,k admits
Kähler-Einstein metrics, which also generalizes our results in [8]; and (2) for
any given n, k there is a integer N(n, k) such that if m > N(n, k) then M n

m,k

admit Kähler-Einstein metrics.
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Lemma 8. Let m = l(n + 1), k = sm, then

Kn
m,k = −CIn,l,s,

With

In,l,s =

∫ 1

0
x2n(1 − x)((1 + l)2 − x2)m−1((1 + sl)2 − x2)k−1

[ (1 − x2)[(1 + l + sl)(1 − x2)

+ l2(s(2 + l + sl) + (1 + s)2) + l(1 + s)(1 − x)]

+ sl3(1 + s)(1 − x) + sl2(sl2 − 4x)]dx

and a constant C > 0. In particular, (1) Kn
0,k < 0 and (2) Kn

m,k < 0 if

mk ≥ 4(n + 1)2. Therefore, (3) Kn
m,k < 0 if m ≥ 4(n + 1)2.

Proof: We let n = l−1m − 1, k = sm and v = 2l−1m we have that

Kn
m,k = C1

∫ 1

0
x2l−1m−3(l−1m(1 − x) − 1)((1 + l)2 − x2)m((1 + sl)2 − x2)smdx

= C1[l
−1m

∫ 1

0
x2n−1(1 − x)(((1 + l)2 − x2)((1 + sl)2 − x2)s)mdx

−
∫ 1

0
x−3m

∫ x

0
(y2l−1

((1 + l)2 − y2)((1 + sl)2 − y2)s)m−1

[ 2l−1y2l−1−1((1 + l)2 − y2)((1 + sl)2 − y2)s − 2y2l−1+1((1 + sl)2 − y2)s

− 2sy2l−1+1((1 + l)2 − y2)((1 + sl)2 − y2)s−1]dydx]

= C2[

∫ 1

0
x2n−1(1 − x)((1 + l)2 − x2)m((1 + sl)2 − x2)kdx

− 2

∫ 1

0
y2n+1((1 + l)2 − y2)m−1((1 + sl)2 − y2)k−1[(1 + l)2(1 + sl)2

− (1 + l)(1 + sl)(2 + l + sl)y2 + (1 + l + sl)y4]

∫ 1

y
x−3dxdy].

This is exactly what we need.
Q. E. D.

This lemma also shows that if l, s are constants and 0 < sl2 < 4, then
In,l,s are increasing with limn→+∞ In,l,s > 0. In particular, Kn

n+1,n+1 > 0
when n big enough.

Actually, using Mathematica with:

Integrate[v^(2m-3)(m(1-v)-1)(4-v^2 )^(2m) , {v, 0, 1}]
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we obtain that:

Lemma 9. Kn
n+1,n+1 > 0 if n ≥ 10. Otherwise, Kn

n+1,n+1 < 0.

Similarly, we can use Mathematica to calculate K 11
12,13, K11

12+k,12−k 1 ≤
k ≤ 7, K11

13+k,12−k 1 ≤ k ≤ 5, K11
19,k k ≤ 4 and obtain that:

Lemma 10. K11
12+k,13−k < 0, K11

19,k < 0 always and K11
12+k,12−k > 0 if

0 ≤ k ≤ 6.

Therefore, we can check that K11
m,k < 0 m ≤ 18 if m = 1 and if k ≤ nm

or k ≥ Nm m > 1 with n2 = 2, nk = 1 3 ≤ k ≤ 11, nl = 2 12 ≤ l ≤ 15, n16 =
n17 = 3, n18 = 4; N2 = 12, N3 = 16, N4 = 18, N5 = 19, N6+k = 19 − k 0 ≤
k ≤ 12. One might conjecture that the open set Kn

m,k > 0 is a convex set

with an asymptotic cone mk ≤ 4(n + 1)2.
Similarly, we check that Kn

m,k < 0 if n = 5, 7 and K8
m,k < 0 if m ≤ 2

or m ≥ 7. K8
m,k < 0 if k ≤ nm or k ≥ Nm for 3 ≤ m ≤ 6 with n3 = 3 =

n6, n4 = 2 = n5 and N3 = 6, N4 = 7 = N5 = N6.
Furthermore, we have K9

m,k < 0 if m ≤ 2 or m ≥ 11. K9
m,k < 0 when

3 ≤ m ≤ 10 for k ≤ nm or k ≥ Nm with nk = 2 3 ≤ k ≤ 9, n10 = 3;
N3 = 10 = N7, N4 = N5 = N6 = 11, N8 = 9, N9 = 8, N10 = 7.

We can also check that Kn
2,2 < 0 if n ≤ 13 and K14

2,2 > 0. Kn
1,n+1 < 0 if

n ≤ 33 and K34
1,35 > 0, K34

1,36 < 0. Therefore, Kn
1,k < 0 if n ≤ 33 k ≥ n + 1,

K34
1,k < 0 if k ≥ 36.

Kn
1,1,K

n
1,2 < 0 always and Kn

1,3 > 0 25 ≤ n ≤ 34. K15
1,k < 0 always.

K10
m,k < 0 for k ≤ nm or k ≥ Nm with n2 = 2 = ni 9 ≤ i ≤ 12, ni = 1 3 ≤

i ≤ 8, n13 = n14 = 3 and N2 = 9, N3 = 13 = N8, Ni = 15 for i = 4, 5, 6,
N6+i = 15 − i for 1 ≤ i ≤ 8.

We finally check that Kn
k,m < 0 for n = 6, 4, 3, 2:

Theorem 11. Mn
k,m are nonhomogeneous with Kähler-Einstein man-

ifolds for n ≤ 7. Mn
k,m admit Kähler-Einstein metric for 8 ≤ n ≤ 11 if

k ≤ kn or k ≥ Kn with k8 = 2 = k9, k10 = 1 = k11; Kn = 7 + 4(n − 8).
For kn < k < Kn, there are two numbers mn

k > kn and Mn
k < Kn such

that Mn
k,m are Kähler-Einstein for m ≤ mn

k or m ≥ Mn
k ; and Mn

k,m are
non-Kähler Einstein Fano manifolds for mn

k < m < Mn
k .

So far, I could not find any manifold such that the integral is zero.
Otherwise, it might provid a counter example for being weakly K-Stable
and Mumford stable but not Kähler-Einstein.

Our manifolds might not always be Fano in general. For example, if
S = An and G = Bm+n+k+1 such that S is determined by ei,m + 1 ≤ i ≤
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m + n + 1, with the minimal parabolic subgroup P , the manifolds are not
Fano when k = 0. For example, aρ,s for the 2-string generated by em+2 is
−2(1 + n + 2k) = −2(n + 1) and lρ = −2(n + 1), therefore, a2

ρ,s − v2 = 0
at v = −2(n + 1). The manifold is not Fano. That is, affine type does not
imply Fano in general in the case of S = An. However, from the proof of
the Lemma 6 we have that

lρ − 2 + aρ,s < 0,

that is, the manifolds are not far from being Fano.

When the manifold is Fano, we notice that in the affine case, the manifold
is a CP n bundle over a rational projective homogeneous manifold. Let D
be the hypersurface line bundle of CP n, then KF = −(n + 1)D is just the
canonical line bundle of CP n. We denote KF = −(n + 1) and D = 1, let
x = 1

2v and we still denote Q(v) by Q(x), our integral is proportional to

∫ −KF

0
(−KF − D − x)Q(x)dx.

For the nonaffine Type II case, F = CP 2 as a double branched quotient
of CP 1 × (CP 1)∗, the exceptional divisor D is a quardraic. Let H be the
hypersurface divisor, then KF = −3H, D = 2H. As above we denote
KF = −3 and D = 2, then the integral is proportional to

∫ −KF

0
(−KF − D − x)Q(x)dx

again. Moreover, by adjunct formula we have KD = KF + D on D and we
write KD = KF + D also as numbers.

Combinning with [16], [20] we have:

Theorem 12. If a type II manifold M is Fano, then it admits a Kähler-
Einstein metric if and only if

∫ −KF

0
(KF + D + x)Q(x)dx =

∫ −KF

0
(KD + x)Q(x)dx > 0

holds, where Q(x)dx is the volume element.

Proof: Let us deal with the integral in [16] page 166 first. If we let
v =

√
u + 1 − 1, the integral is proportional to

∫ 3

2

0
(1 − v)Q(v)dv.
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The open orbit is a C2 bundle. The manifold is a CP 2 bundle and KF =
−3, D = 1. Let v = x

2 , then the integral is

∫ 3

0
(2 − x)Q(x)dx =

∫ −KF

0
(−KF − D − x)Q(x)dx

as desired. This also give us another confirmation that our calculation in
[16] is correct.

The cases in [20] can be found in the Theorem 10.2 there.
Q. E. D.

Combinning with [17] we have:

Theorem 13. A cohonogeneity one two orbits Fano manifold with an
codimension m close orbit and a semisimple group action is Kähler-Einstein
if and only if

∫ −KF +m−1

0
(KF + D + x)Q(x)dx =

∫ −KF +m−1

0
(KD + x)Q(x)dx > 0

holds, where Q(x)dx is the volume element.

Here, we can understand the F to be as the fiber in [22] but not the one
in [1]. Then KF is exactly the correspondence of the canonical divisor and
D the exceptional divisor.

Combinning with Corollary 1 with some further calculations with excep-
tional Lie algebras, we have:

Corollary 2. If the roots of G has the same length, then aρ,s ≤ −2(n +
2). Therefore, the affine manifolds are Fano and the nonaffine type II man-
ifolds are nef.

This also provide more Kähler Einstein metrics.
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