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Abstract

This is the second part of [Gu1] on the existence of Kähler Einstein metrics
of the general type I almost homogeneous manifolds of cohomogeneity one. We
actually carry out all the results in [Gu3] to the type I cases. We also prove the
existence of smooth geodesic connecting any two given metrics on the Mabuchi
moduli space of Kähler metrics, which leads to the uniqueness of our Kähler
metrics with constant scalar curvatures if they exist. We obtain a lot of new
Kähler-Einstein manifolds as well as Fano manifolds without Kähler-Einstein
metrics. Furthermore, in this paper we also deal with the cases with a higher
codimensional end, then obtain more Kähler-Einstein manifolds as well as Fano
manifolds without Kähler-Einstein metric. As an offshot, we are able to classify
compact Kähler manifolds which are almost homogeneous of cohomogeneity one
with a higher codimensional end. With applying our results to the canonical
circle bundles we also obtain Sasakian manifolds with or without Sasakian-
Einstein metrics. That also give some open Calabi-Yau manifolds.
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1. Introduction

This paper is the second part of [Gu1]. In [Gu1], we prove that:

Main Theorem 1. For any simply connected type I compact Kähler complex
almost homogeneous manifolds of cohomogeneity one with a hypersurface end, there
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is an extremal metrics in a given Kähler class if and only if the condition (7) in
[Gu1] holds.

We shall finish the similar results for the higher condimensional end case and
the general case, in our sections 3 and 4. See also Theorem 15 in the last section
for the Kähler-Einstein case.

We can also say that the existence is equivalent to the positivity of the generalized
Futaki invariant, and is equivalent to the geodesic stability as we stated in [Gu3].
We shall prove the equivalence of the existence and the geodesic stability as well as
the strictly slope stability in the third part of theis paper by the request of some
earlier referees.

As an application, considering the canonical circle bundle, we also obtained
Sasakian manifolds with and without Sasaki-Einstein metrics (with the same Reeb
vector field and CR structure, see [BG Theorem 2.4 (iv)], also [Kb], [WZ]).

We shall prove the converse for the type II cases in [Gu4].
Therefore, we finished all the possible case in which the existence of the extremal

metrics could be reduced to an ordinary differential equation problem. We also give
many examples for both the stable and the unstable cases, as we promised in [Gu3].
It is difficult for us to find an example which is semistable but not stable. We note
that since the automorphism group is semisimple, the original Futaki invariants are
zero for the most manifolds we considered in this paper. Therefore, we give many
and more classical examples than the example in [Ti].

In [Gu5,6,8], we dealt with the affine cases and the type II cases. To finish the
program we dealt with the type I cases in [Gu1].

[PS] studied a few of the first case in [Gu1], i.e., the cases with F = F (OPn) in
which S = SO(4,C), SO(6,C), SO(8,C), SO(10,C), where S is the induced group
action on the fibers.

A classification which we refer to in this paper can be found in [Gu3 section 12].
We put these manifolds into three types there, type I, II and III.

In [Gu1] we use very explicit and elementary calculation to avoid the Cauchy-
Riemann structure and other very abstract tools in [Si] and [PS] which also cumu-
lating on results from other papers of Spiro. As we could not check the proofs of all
those papers here we feel that our approach is safer1.

We deal with the uniqueness in the second section where we prove the existence
of smooth geodesics in the Mabuchi moduli spaces of the Kähler metrics.

Main Theorem 2. For any two smooth Kähler metrics which are equivari-
ant under the maximal compact subgroup in a given Kähler class on a type I com-

1As they did make some mistakes or miss some major proofs. For example, as we shall see in
section 5 that the two manifolds in the number 4 item of their table in [PS] are either not Fano
or not Kähler Einstein. The integrals they had are also different from ours. When F = Q7 it is
just our M7 (that is, M7,1 in Theorem 3) in the last section and is one of the first compact almost
homogeneous manifolds of cohomogeneity one with vanished Futaki invariants but without Kähler
Einstein metrics. It is a Q7 bundle over Q8. When F = CP 7, it is just P(T ∗

Q8 ). It is a complex
contact manifold and by [LB Thereom 2.3] (1) it can not be Fano, also by [LB Theorem A] (2) if
it admits a Kähler Einstein metric it will be a twistor space of a quaternion-Kähler manifold with
positive Ricci curvature. Both (1) and (2) contradict to their results. Compare also [Ye Corollary
3] for the case of the CP 1 bundle over Q2.
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pact complex almost homogeneous manifold of cohomogeneity one, there is a smooth
geodesic connecting them in the Mabuchi moduli space of Kähler metrics.

The same result was proven for the toric manifolds and type III manifolds in
[Gu7] and for some type II manifolds in [Gu3], then for all type II manifolds in
[Gu4].

The equivalence between the existence and the geodesic stability follows as ex-
actly as what we did in [Gu3]. The proof is actually simpler than that in [Gu3] since
we apply the orthogonal basis. Although there are efforts of Donaldson, Mabuchi,
Chen and Tian on the uniqueness, we are not able to go through their proofs here.
Our proof is much simpler and earlier, also more explicit. Actually, I have obtained
this proof in 1999 (Cf. [Gu7] and [Gu3]) and showed both works to both Donaldson
and Mabuchi in 2000 before I left Princeton including the discussions of the geodesic
stability on the toric varieties.

We then treat the higher codimensional end cases and the general cases in the
third and fourth sections. In the third section, we obtain a necessary and sufficient
condition for the possible blow down of the hypersurface orbit. This enable us to
actually classify the cases of manifolds with a higher codimensional end. This is a
surprising bonus for us. We also obtain many new Kähler Einstein manifolds as well
as Fano manifolds without Kähler Einstein metric of this type in the fifth section.

We finally treat the Kähler Einstein cases in the fifth section. We obtain many
Kähler Einstein manifolds and Fano manifolds without Kähler Einstein metrics.
This also gives what we promised in [Gu3] of the examples of positive integrals. We
notice that all the Futaki invariants are zero in our case since the automorphism
groups are semisimple. It turns out that our method is easier than that in [KS]
for finding a Kähler-Einstein metrics since they depended on the zero of a Futaki
invariant which might be very rare. Therefore, their method is more suitable for
finding manifolds without Kähler Einstein metric. In our case, both the Kähler
Einstein manifolds and manifolds without Kähler Einstein metrics are dense in the
Zariski sense. It seems to me that I hardly see an example with vanishing generalized
Futaki invariant. Also, most of our manifolds are Fano, it is not that simple in [KS].
Moreover, it is very easy to check that [KS] can be a Corollary of [Na] and does not
involve much stability.

To understand better our examples Mn in our section 5, or Mn,1 in our Theorem
3, it is not difficult to see that Mn is a Qn bundle over

Qn+1 = {[z0, z1, · · · , zn, zn+1, zn+2] ∈ CP n+2|z2
0+···+z2

n+2=0}.

Let Nn = P(T ∗
Qn+1), then it is just our manifold with F = CP n. Therefore, Nn

is never Fano (see [Ye], [LB]). To construct Mn we notice that by [KO p.590–
593] there is a holomorphic conformal structure on Qn+1 with respect to the line
bundle N = O(2). Therefore, Nn = P(T ∗

Qn+1) = P(N ⊗ T ∗
Qn+1) = P(TQn+1).

The exceptional divisor comes from the zero set of the corresponding holomorphic
symmetric 2-tensor in Nn. Therefore, the vector bundle O(1) ⊕ TQn+1 also has a
conformal structure with respect to N . Mn is just the zero set of the corresponding
holomorphic symmetric 2-tensor in P(O(1) ⊕ TQn+1). The branch double covering
map Mn → Nn is just introduced by the projection O(1) ⊕ TQn+1 → TQn+1 .
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We only check some examples in the final section which also address and cover
the examples in [PS] such that there will be a comparison and it will be easier for
the readers. We also cover some of the cases in which S = Ck and most of the
major Spin(7,C) cases. For example, we find that for any Fano manifolds with this
Spin(7,C) action and F = CP 7, we call these manifolds the SpinP Fano manifolds,
there are always Kähler Einstein metrics. The picture in the case of Ck structure is
quite different from that in the case of SO(n + 1,C) or Spin(7,C) structures.

2. On Uniqueness

Now, we apply our arguments in [Gu3,7] to prove the uniqueness. We first consider
the case in which G = S = SO(n+1,C). The calcuatation in this section eventually
led us to the solution of the Kähler-Einstein problem for the cohomogeneity two Fano
manifolds in [Gu9]. We have a local coordinate

z = (1, z1, · · · , zn).

Let θ1 = |(z,z)|
(z,z̄) with the standard real inner product ( , ). As in [GC] and [Gu2,3],

the metric is

ω = mω0 + ∂∂̄F = m∂∂̄ log(z, z̄) + θ1fθ1∂ log θ1 ∧ ∂̄ log θ1 + f∂∂̄ log θ1

with f = θ1Fθ1 .

∂ log θ1 =
zidzi

(zi, zi)
− z̄idzi

(z, z̄)
.

At pt, we have that

θ1 =
1 − tanh2 s

1 + tanh2 s
=

1 − θ

1 + θ
, ∂ log θ1 =

2iθ
1
2 dz1

1 − θ2
,

∂∂̄ log θ1 = −dz1 ∧ dz̄1

(1 + θ)2
, θ1∂ log θ1 ∧ ∂̄ log θ1 =

4θdz1 ∧ dz̄1

(1 − θ)(1 + θ)3
.

θ′1 =

(

1 − tanh2 s

1 + tanh2 s

)′
= −4θ

1
2 (1 − θ)

(1 + θ)2
,

∂F = θ1Fθ1∂ log θ1 = −2θ
1
2 (1 − θ)

(1 + θ)2
Fθ1ds =

1

2
F ′ds

f∂∂̄ log θ1 = −Fθ1

(1 − θ)dz1 ∧ dz̄1

(1 + θ)3
=

F ′

4θ
1
2 (1 + θ)

dz1 ∧ dz̄1,

fθ1θ1∂ log θ1 ∧ ∂̄ log θ1 = −θ
1
2 (θ1Fθ1)

′dz1 ∧ dz̄1

(1 − θ2)(1 − θ)
=

tanh s
(

1+tanh2 s
4 tanh s

F ′
)′

(1 − θ2)(1 − θ)
dz1 ∧ dz̄1

=
1

4(1 − θ2)(1 − θ)

(

2 tanh s(1 − θ)F ′ − (1 + θ)(1 − θ)

tanh s
F ′ + (1 + θ)F ′′

)

dz1 ∧ dz̄1

=

[

F ′′

4(1 − θ)2
− F ′

4(1 + θ)θ
1
2

]

dz1 ∧ dz̄1.
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Therefore, the dz1dz̄1 term of ω is
[

m

(

1 − θ

1 + θ

)2

+
F ′′

4

]

(ds)2 = −a′(ds)2.

We have that

u′ = m
1

cosh2 2s
+ 4−1F ′′

and therefore
u = 4−1(F ′ + 2m tanh 2s)

by all u, F ′, tanh 2s being odd functions. Let Γ = F + m log(cosh 2s), then 4u = Γ′.
Similar to [Gu3 p.274], the geodesic equation is

Γ̈ = F̈ =
1

2
|dḞ |2 = (∂Ḟ , ∂̄Ḟ ) =

(Ḟ ′)2

4u′ =
(Ḟ ′)2

Γ′′ ,

that is,
Γ̈Γ′′ = (Γ̇′)2.

We obtain the smooth geodesics as in [Gu3,7] and so the uniqueness for G = S =
SO(n + 1,C). The situation of G bigger than S is the same since dF = F ′ds
lies only in the dual of T with respect to the Kähler metrics. The situation for
S = Spin(7,C) is similar.

If S = Ck, F = Gr(2k, 2). As in [Gu1] we let (z, w) be the local coordinate

with z1 = wk+1 = 1 and zk+1 = w1 = 0. We embed Gr(2k, 2) into CP
k(k−1)

2
−1 by

(z, w) → Z = z ∧ w, that is Zij = ziwj − zjwi i < j. Then, the symplectic form

β(z, w) =

k
∑

i=1

(ziwk+i − zk+iwi)

becomes the linear form

β(Z) =
∑

Zi(i+k) = βijZij.

One can actually check that the exceptional divisor is exactly the intersection of our
manifold Gr(2k, 2) with the hyperplane β = 0. We let

θ1 =
β(Z)β(Z̄)

(Z, Z̄)
.

As above, we have that

∂ log θ1 =
βijdZij

β(Z)
− Z̄ijdZij

(Z, Z̄)
.

At pt, we have that

θ1 =
4

e4s + e−4s + 2
= (cosh2 2s)−1, θ′1 = −4 sinh 2s

cosh3 2s
,
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4−1F ′′ +
2m

cosh2 2s
= u′.

Therefore, we have that
u = 4−1F ′ + m tanh 2s.

Let
Γ = F + 2m log cosh 2s,

and as above we obtain the uniqueness. So, the same argument also works for the
case S = Ck and G bigger than S.

Therefore, we have the uniqueness for type I case. The proof of the type II case
is more complicate and we need some new technic which will be done in [Gu4]. This
also leads to the equivalence of the existence and the geodesic stability. The proof
is a little bit tedious, we leave it to [Gu4] and the third part of this paper.

3. Higher Codimensional End Cases

Now, we consider the case of higher codimension of the end submanifold, i.e., the
case in which M = O ∪ A with an open orbit O and a closed orbit A such that
codim A > 1.

In that case, the only difference is that the factor ai − u in [Gu1] might be zero,
i.e., there are some ai = −l. The argument before the Theorem 3 there tell us
that we also have aρ,i = −lρ. We shall see later that this will also give a necessary
and sufficient criterion with which a manifold with a hypersurface exceptional divisor
can be blown down to an almost homogeneous manifold with a higher codimensional
end. Let m be the codimension, then as before we have

lρ = −(n + m + m2)c

if F = CP n or Gr(2k, 2) and
−(n − 1 + m)c

if F = Qn. The only thing which we need to take care of in the estimate in [Gu1] is
that we can use a function

V (u) =

∫ u

0
un−1(−l − u)mdu

in the place of V after (13) therein. Then every thing goes through except that we
let

Ui(1 − βi) = l2 − βi

to obtain the estimates for the global solutions.
We also have:

Theorem 1. If the codimension m of the closed orbit is bigger than 1 and the
second Betti number is 1, then the manifold M and the corresponding manifold M̃
with hypersurface end are both Fano. Moreover, if the corresponding manifold M̃
with hypersurface end has the fiber F = Qn, then the corresponding manifold N with
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hypersurface end which is a double branch quotient of M̃ (with F = CP n) is Fano
if m > 2 and has a nef anti-canonical line bundle but not Fano if m = 2.

This is also true if M is Fano. It is also true for the type II manifolds. In that
case, we have lρ = −2M(k + m) for the affine case and lρ = −2(2 + m) for the
case S = A1 which is type II but not affine. One very interesting series of examples
are the two series examples in [GC], [Gu2,3]. Since Mn there are the blowing ups
of CP n × CP n, therefore all Mn are Fano. We see that in those cases m = n,
Therefore, Nn is Fano if n > 2 and has a nef anti-canonical line bundle but not
Fano if n = 2. These manifolds appear as triads in many cases.

Now, by using [Nk] and [FN] we shall give a criterion with which a manifold with
a hypersurface end can be blown down to an almost homogeneous manifold with a
higher codimensional end.

From the proof of the Lemma 6 in [Gu1], we see that the eignvalues of the Ricci
curvature of the exceptional divisor in the direction other than the 1-strings of roots
with zero eigenvalues is represented as

Rics = n − 1 + m2, c
−1aρ,i ± (n − 1 + m2).

In the same way, the eignvalues of the restriction of the Ricci curvature of the whole
manifold in those direction is represented by

R̃ics = −lρ, c
−1aρ,i ∓ lρ.

The curvature of the normal bundle of the exceptional divisor is just represented by
their differences. Therefore, they are 2,±2 if F = CP n (or Gr(2k, 2)) and 1,±1 if
F = Qn. We denote the first number by D(F ), i.e.,

D(CP n) = D(Gr(2k, 2)) = 2

and
D(Qn) = 1.

By the Main Theorem of [Nk] and [FN] the manifold can be blown down if and only
if (1) the exceptional divisor is a C = CP m−1 bundle over a manifold N and (2)

mC1(N)|C = −C1(C)

. This means that at the directions of contractions we have that the eignvalue of
the Ricci curvature of the CP m−1 should be the −m multiple of that the curvature
of N .

Now, if the exceptional divisor is a CP m−1 bundle over a homogeneous space
G/P1,∞, then

P1,∞/P∞ = S1,∞/(S1,∞ ∩ P∞) = CP m−1.

The root corresponding to a direction in the fiber has its root eigenvector in P1,∞
but not in P∞. Therefore, the Ricci curvature of C comes from c−1aρ,i − Rics,
which is m + 1 for the case F = CP n and m for the case F = Qn. Therefore,
when F = Qn this is exactly the Fujiki-Nakano condition, we can always blow down
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if aρ,i = c(n + m − 1). If F = CP n (or Gr(2k, 2)), then we need 2m = m + 1,
i.e., m = 1. Therefore, the exceptional divisor can be blown down if and only if
F = Qn and aρ,i = c(n + m − 1). Similarly for the type II case. We have that the
exceptional divisor can be blown down if and only if the manifold is affine in [Gu8]
and aρ,s = 2M(k + m) − Bρ.

Therefore, we have:

Theorem 2. The hypersurface orbit can be contracted if and only if (1) F = Qn

(or the manifold is affine), (2) the divisor has a CP m−1 bundle structure over a
rational homogeneous space Q1, (3) the corresponding roots in the fiber has aρ,i =
c(n + m − 1) (or aρ,s = 2M(k + m) − Bρ). Moreover, if the manifold is Kähler
Einstein, so are the contraction and double branched quotient (if any of them exists).

One series of examples which we already knew are the product Pn of two copies
of CP n and Mn, Nn in [GC], [Gu2,3]. Since Mn are Kähler Einstein, so are Pn and
Nn.

In this way, we can also classify all the compact almost homogeneous manifolds
of cohomogeneity one with a higher codimensional end and a semisimple Lie group
action.

The process is: (1) Pick up a type of S with either type I or type II, actually
either with F = Qn or affine. (2) Pick up a G with a parabolic subgroup P such
that S is in the semisimple part. (3) Obtain the P∞, it might be related to a
system of root with a different order. (4) Find those P1,∞ containing P∞ such that
P1,∞/P∞ = CP m−1. (5) Check the aρ,s. Or we do: (3)’ Find those aρ,i = c(n+m−1)
(or 2M(k + m) − Bρ) with a positive integer m and multiplicity m − 1. (4)’ Check
the possible corresponding P1,∞. We might do this in a different paper.

According to [Ss p.427], for the manifold CP n the only posssible transitive group
actions are: (1) An with the parabolic subgroup generated by simple roots other
than α1. (2) If n = 2k + 1, then Ck+1 acts transitively with the parabolic subgroup
generated by simple roots other than α1.

Here, however, we shall deal with the case of G = S = G2 in [Gu5]. We have
Bρ = −4 and lρ = −2(k + 1) = −6 since k = 2. M = 1. We have Q(U) =
(U − B2

ρ)(9B2
ρ − U) and aρ,1 = −3Bρ = 12 = 2(k + 2) − Bρ. Therefore, there is a

contraction along the root α1 + α2. It has a Kähler Einstein metric. Actually, afier
we had found that the blow down variety is a manifold we found that it is actually
a homogeneous manifold in [Gu5]. This also give a solution to the equation in [Gu5]
(although it is not the one we need there).

It is also easy to check that the Mn,m and Nn,m in [Gu8 section 9] can be
contracted.

4. The General Situation

Now, by [HS Corollary 4.4] every compact almost homogeneous manifold of cohomo-
geneity one has a double unbranched covering which is a product of the product of a
torus T and an almost homogeneous manifold M with simply connected components
and M is connected only when F = Qn. Then, we can apply our arguments to the
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covering and reduce it to that on M . The double involution induces an involution on
T and Qn. It induces an involution on H1,1(T ) which is nontrivial and an involution
on H1,1(Qn) which is nontrivial only if n = 2 in which Q2 = CP 1 × CP 1 and the
involution just exchanges these two copies of CP 1. The induced Kähler class on
the covering is invariant under this involution. By the uniqueness of the extremal
metrics, which we proved in this paper for the type I case and it also works for Q2

with the invariant Kähler classes (see [Gu3], also for the cases with two ends there),
and is enough for this situation, we have that the extremal metrics are invariant
under this involution. Therefore, the extremal metrics on the covering come down
to be extremal metrics on the quotient.

5. Kähler-Einstein Metrics

If the Kähler class is the Ricci class, we have α = u
c
, l = lρ,

m(u) = 2Q1(u).

Therefore,

fl = [n − 1 + m2 − c−1
√

U ]U
n−2

2 Q1(U).

In this section, we shall check case by case on the type of the groups (S,G).

We say that a manifold is nef if the anti-canonical line bundle is nef. We say
that a manifold is Fano if the anti-canonical line bundle is positive.

First, if S = G = Bk k ≥ 2, we have n = 2k, Q1 is a constant, lρ = −(n + 1) if
F = CP n or −n if F = Qn. Then,

Cn =

∫ l2ρ

0
flρdU =

∫ (n+1)2

0
(n − 1 −

√
U)U

n−2
2 dU

=
2(n − 1)

n
(n + 1)n − 2(n + 1)n = −2(n + 1)n

n
< 0

for the case in which F = CP n and

C ′
n = − nn−1

n + 1
< 0

for the case in which F = Qn. Therefore, there is a Kähler Einstein metric. Again,
this is actually known since the manifolds are homogeneous. The same formula is
true for G = S = Dk, n = 2k − 1.

Now, we consider the situation in which G = Bk+1 and S = Bk. We have

aρ,1 = 1 + 2k = n + 1 = −lρ

if F = CP n or

aρ,l = n + 1 = −lρ + 1
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if F = Qn. The manifolds are nef but not Fano (or are Fano). The same thing
is true for G = Dk+1 and S = Dk. We only need to consider the case in which
F = Qn. The integral is

In =

∫ n

0
(n − 1 − v)vn−1((n + 1)2 − v2)dv

=
nn−1

(n + 2)(n + 3)
(−(n + 1)(n + 2)(n + 3) + 3n2)

=
nn−1

(n + 2)(n + 3)
(2n3 − 6n2 − 11n − 6) > 0

if n ≥ 5. Otherwise, In < 0. Therefore, the corresponding manifolds Mn are Kähler
Einstein for n ≤ 4. Others are non-Kähler Einstein Fano manifolds. Each Mn is a
Qn bundle over Qn+1.

Now, we notice that the semisimple part of P∞ is generated by ei ± ej (and
ei) 2 < i < j. Let P1,∞ generated by P∞ and the sl(2) generated by e1 − e2,
we have P1,∞/P∞ = CP 1. We can check that all the conditions in the Theorem
2 are satisfied. So, we can contract the exceptional divisor to a codimensional 2
submanfold (a codimensional 2 end). The corresponding integrals are:

I ′n =

∫ n+1

0
(n − 1 − v)vn−1((n + 1)2 − v2)dv

= C(n)(2(n − 1)(n + 3) − 2n(n + 2)) = −6C(n) < 0

with a positive number C(n). Therefore, the corresponding manifolds M ′
n are always

Kähler Einstein.
Now, we consider the general situation in which S = SO(n + 1,C) and G =

SO(2m + n + 1,C), P be the smallest parabolic subgroup of G containing S as a
simple factor. In this case,

Q1(v) =

m−1
∏

j=0

((n + 2j + 1)2 − v2).

They are nef but not Fano (or are Fano). We have the integrals:

In,m =

∫ n

0
(n − 1 − v)vn−1

m−1
∏

0

((n + 2j + 1)2 − v2)dv.

For m = 2 we can use Mathematica to check In,2 with

Integrate[(n-1-v)v^(n-1)((n + m)2 − v2)((n + m + 2)2 − v2), {v, 0, n}]

and have I4,2 > 0 but I3,2 < 0. In the same way, we can use Mathematica and check
that I3,m < 0 for m ≤ 7 but I3,8 > 0.

Similarly, we also notice that we can blow down the hypersurface orbit as before
by a P1,∞ which is generated by P∞ and the sl(2) corresponding to em − em+1.
Other aρ,s do not lead to any contraction. The integral is

I ′n,m =

∫ n+1

0
(n − 1 − v)vn−1Q1(v)dv.
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We have
I ′n,2 = C(n)(n4 − 2n3 − 49n2 − 14n − 135)

with a positive C(n). Therefore, I ′
n,2 < 0 if and only if n ≤ 8. We also

have I ′n,m > 0 for (n,m) = (8, 3), (7, 3), (6, 4), (5, 6), (4, 86) and < 0 for (n,m) =
(6, 3), (5, 5), (4, 85), (3, 800).

We therefore expect that I ′3,m < 0 always. To see this, we apply (24) in [Af
p.197]:

∞
∏

i=1

(1 − x2

i2
) =

sinπx

πx
.

Then, we let x = 2t and only need to check the integral:

∫ 2

0
(1 − t)t2 sinπt(πt(1 − t2))−1dt = (π)−1

∫ 2

0

t sinπt

1 + t
dt = −0.177175 < 0.

We denote the corresponding manifolds by Mn,m and M ′
n,m. Therefore, we have:

Theorem 3. Mn,0 are homogeneous Kähler Einstein manifolds.

M3,1,M4,1,M3,2,M3,3,M3,4,M3,5,M3,6,M3,7

are non homogeneous Kähler Einstein manifolds. Other Mn,m are Fano manifolds
without Kähler Einstein metric.

Theorem 4. M ′
3,m and M ′

n,1 are Kähler Einstein manifolds for all m and n.
And M ′

n,m are Kähler Einstein for (n,m) = (n, 2) with n ≤ 8 and 1 < m ≤ Nn for
n ≤ 6 with N6 = 3, N5 = 5, N4 = 85. Otherwise, M ′

n,m does not admit any Kähler
Einstein metric.

Next, we consider the case in which S = SO(n + 1,C), G = SO(2m + n + 1,C)
and S1 in the section 3 of [Gu1] is maximal. In this case, we have

Q1(v) = ((n + m)2 − v2)m

with m > 1. When m > 1, they are all Fano. The integral is

Jn,m =

∫ n+1

0
(n − 1 − v)vn−1((n + m)2 − v2)mdv

if F = CP n or

J ′
n,m =

∫ n

0
(n − 1 − v)vn−1((n + m)2 − v2)mdv

if F = Qn, and
m−2mJn,m → e2(n−1)Cn < 0

or

m−2mJ ′
n,m → e2(n−1)C ′

n.

Therefore, Jn.m < 0 (or J ′
n,m < 0) when m is big enough.

11



Also, we can compare the change rate of the factor

h(v) = ((n + m)2 − v2)m

for different m and n. We let

t(m) = (log h)′ = m(
1

n + m + v
− 1

n + m − v
) =

−2mv

(n + m)2 − v2
.

Then,

t(m + 1) − t(m) =
−2v[n2 − m(m + 1) − v2]

((n + m)2 − v2)((n + m + 1)2 − v2)
> 0

if m ≥ n. Therefore, if Jn,m ≤ 0 with m ≥ n then Jn,m+1 < 0. The same thing is
also true for J ′

n,m.
Now, we can use Mathematica to check J ′

n,n with

Integrate[(n-1-v) v^(n-1) ((2n)^2 -v^2 )^(n) , {v, 0, n}]

we get J ′
n,n < 0 when n = 3, 4 but J ′

5,5 > 0.
We then use Mathematica to check J ′

5,10 with

Integrate[(5-1-v)v^4 (225 -v^2 )^(10) , {v, 0, 5}]

and have J ′
5,10 > 0.

Similarly, by using Mathematica we have J ′
5,20 < 0 and J ′

5,m > 0 if 2 ≤ m ≤ 13
and J ′

5,14 < 0. Therefore, when m ≥ 14 J ′
5,m < 0, otherwise J ′

5,m > 0. We can also
check that J5,m < 0 for m > 1.

Similarly, we use Mathematica to check J ′
4,m for m = 2, 3 and J ′

3,m for m = 2.
We find that all of them < 0. Therefore, J ′

3,k, J
′
4,k < 0 if 2 ≤ k. So are J3,k, J4,k.

In general, we expect that if

m >
n2(n − 1)

e
,

then J ′
n,m < 0. For example, if n = 6 we expect J ′

6,60 < 0. We check it with
Mathematica and get

J ′
6,60, J

′
6,30, J

′
6,27 < 0, J ′

6,20, J
′
6,25, J

′
6,26 > 0.

In the same way, we find J ′
6,k > 0 for 2 ≤ k ≤ 5. Therefore, J ′

6,k > 0 if 2 ≤ 26,
otherwise J ′

6,k < 0. We can also check that J6,k < 0 for all k > 1. One might expect
that Jn,m < 0 always. However, we have Jn,n > 0 for n = 101, 51, 26, 25, Jn,n < 0
for n = 11, 21, 24. Then, one might expect that Jn,m < 0 for n ≤ 24. However, we
have Jn,m > 0 for (n,m) = (24, 12), (18, 9), (16, 8) etc.. One can check that Jn,m < 0
for n ≤ 15. And J16,m > 0 if 5 ≤ m ≤ 8, otherwise J16,m < 0. We can also check
that Jn,2 < 0. And

Jn,3 = C(n)(8n8 + 6n7 − 1534n6 − 16019n5

− 75163n4 − 194786n3 − 263486n2 − 216981n − 76545) < 0

12



if and only if n ≤ 17. We can check that J17,m < 0 if and only if m ≤ 3 or ≥ 11.
Similarly, we see that if F = Qn we can blow down the manifold at the hyper-

surface orbit and obtain a manifold with a m + 1 codimensional end. Let

Ki,j =

∫ n+m

0
vi((n + m)2 − v2)jdx,

then we have that our integral is

J ′′
n,m = (n − 1)Kn−1,m − Kn,m.

We also have that

Ki,j =

∫ n+m

0
vi((n + m)2 − v2)jdv

=
1

i + 1

∫

((n + m)2 − v2)jd(vi+1)|n+m
0 =

2j

i + 1
Ki+2,j−1.

Therefore,

Kn−1,m =
2mm!(n + m)n+2m

∏m
i=0(n + 2i)

, Kn,m =
2mm!(n + m)n+2m+1

∏m
i=0(n + 2i + 1)

.

Therefore, we only need to prove that

1 − an,m = 1 − (n + m)
∏m

i=0(n + 2i)
∏m+1

i=0 (n − 1 + 2i)
< 0,

i.e., an,m > 1. Now,

an,m+1

an,m
=

(n + m + 1)(n + 2m + 2)

(n + m)(n + 2m + 3)
> 1,

we have that

an,m > an,0 =
n2

n2 − 1
> 1

as desired. Therefore, we have J ′′
n,m < 0 always.

Therefore, we obtain that if we denote the corresponding manifolds by Nn,m (or
N ′

n.m, N ′′
n,m), then:

Theorem 5. Nn,m 3 ≤ n ≤ 15, and N ′
3,m, N ′

4,m, N ′′
n,m admit Kähler-Einstein

metric for all m > 1. N ′
5,m admit Kähler-Einstein metric if and only if m > 13.

N ′
6,m admit Kähler Einstein metric if and only if m > 26. N16,m admit Kähler

Einstein metric if and only if m > 8 or 2 ≤ m < 5. N17,m admit Kähler Einstein
metric if and only if m > 10 or 2 ≤ m < 4. Nn,2 admit Kähler Einstein metric
for any n. Nn,3 admit Kähler Einstein metric if and only if n ≤ 17. In general,
Nn,m (or N ′

n,m) admit Kähler-Einstein metric when m big enough, i.e., there is an
integer N(n) (or N ′(n)) such that if m > N(n) (or > N ′(n)) then Nn,m (or N ′

n,m)
admit Kähler-Einstein metric. Moreover, if m ≥ n and Nn,m (or N ′

n,m) admit a
Kähler-Einstein metric, so does Nn,m+1 (or so does N ′

n,m).

13



One more observation: If S = SO(n + 1,C) and G = SO(2m + n + 1,C), then
any this kind of manifold with a higher codimensional end is a G equivariant N ′′

n,m

bundle over a projective rational homogeneous manifold. One might conjecture that
this is in general true for the type I case. We shall see that this is true if S is simple.

We also observe that all the Kähler Einstein manifolds N ′′
n,m are actually homo-

geneous with the group G1 = SO(2m + n + 2,C). It is the rational homogeneous
manifold G1/P1 where P1 is the parabolic subgroup generated by all the simple
roots other than αm+1. It is the orbit of G1 on

B =









1 i 0 0 · · · 0 0 0 · · · 0 0
0 0 1 i · · · 0 0 0 · · · 0 0

· · · · · ·
0 0 0 0 · · · 1 i 0 · · · 0 0









T

(m+1)×(2m+2+n)

which represents the complex m + 1 dimensional space generated by the column
vectors of B. The G action comes from the classical G action on the first 2m+n+1
rows and the trivial action on the last row. The close orbit is just GB and the open
orbit is GB1 where

B1 =









1 i 0 0 · · · 0 0 0 · · · 0 0
0 0 1 i · · · 0 0 0 · · · 0 0

· · · · · ·
0 0 0 0 · · · 1 0 0 · · · 0 i









T

(m+1)×(2m+2+n)

.

Now, we consider the cases in which S = Dk 5 ≤ k ≤ 7 and G = Ek+1. And
we denote the corresponding manifolds by EQk+1 with F = Q2k−1 or EPk+1 for
F = CP 2k−1. We consider the case G = E8 first. We have the simple roots:

αi = ei+1 − ei+2, i ≤ 6;α7 = e7 + e8, α8 =
1

2
(e1 + e8 −

∑

2≤i≤7

ei).

The subgroups Ds is generated by αi, 7−s < i ≤ 7 and Er is generated by αi 8−r <
i ≤ 8. E8 has roots of the form (A) ±ei ± ej and (B)

1

2

8
∑

i=1

(−1)viei

with
∑

vi even. In all of these cases, we have H = ie9−s. We can write E8 as Em+s

with m + s = 8. Then

Bρ,1 = 14 + 32 = 46, Bρ,i = 16 − l1 − l2 1 < i ≤ m, Bρ,l = 0 m < l

where l1, l2 determinate the Al2−l1 factor in S1 which contains i, i.e., l1 ≤ i ≤ l2. If
s < 7, we let P0 be the proper parabolic subgroup containning D7. Then for any
parabolic subgroup P , P0/H is a manifold with G = D7 and S = Ds. Therefore,
the manifold can be contracted and the contracted manifold is an E8 equivariant

14



N ′′
2s−1,m bundle over a projective rational homogeneous manifold. Since P0 is the

maximal parabolic subgroup, every possible contraction is inside P0.
In the case of s = 7, we have that

Q1(x) = ((46)2 − x2)33.

Then, we have the integral

Q8 =

∫ 13

0
(12 − x)x12Q1(x)dx > 0

for the case F = Q13 and

P8 =

∫ 14

0
(12 − x)x12Q1(x)dx < 0

for the case F = CP 13. We also see that the hypersurface orbit can not be blown
down, otherwise P1,∞ should have all the type (B) root vectors.

If G = E7, we write it as Em+s with m + s = 7. It is a subgroup generated by
αi with 2 ≤ i ≤ 8. Then, E7 has positive roots ei ± ej with 3 ≤ i < j, e1 − e2 and

1

2
(e1 − e2 +

∑

3≤i≤8

(−1)viei)

with
∑

3≤i≤8 vi odd. If s < 6, we can also see as above that the manifold can
be contracted to an E7 equivariant N ′′

2s−1,m bundle over a rational homogeneous
manifold.

If S = D6, then

Bρ,1 = 1 + 16 = 17, Bρ,2 = −17, Bρ,l = 0 2 < l.

Therefore,
Q1(x) = ((34)2 − x2)16.

We have that

Q7 =

∫ 11

0
(10 − x)x10((34)2 − x2)16dx > 0

if F = Q11,

P7 =

∫ 12

0
(10 − x)x10((34)2 − x2)16dx < 0

if F = CP 11. The hypersurface orbit does not contract.

If G = E6, we write E6 = Em+s with m+s = 6. E6 has positive roots ei±ej, 4 ≤
i ≤ j and

1

2
(e1 − e2 − e3 +

∑

4≤i≤8

(−1)viei)

with
∑

4≤i≤8 even. If s < 5, the manifold can be contracted to a N ′′
2s−1,m fibration.
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If S = D5, we have that

Bρ,1 = 8, Bρ,2 = Bρ,3 = −8, Bρ,l = 0 4 ≤ l.

Therefore,
Q1(x) = ((24)2 − x2)8.

We have that

Q6 =

∫ 9

0
(8 − x)x8((24)2 − x2)8dx > 0

for the case with F = Q9, and

P6 =

∫ 10

0
(8 − x)x8((24)2 − x2)8dx < 0

if F = CP 9. The hypersurface orbit does not contract.

Theorem 6. EPm admit Kähler Einstein metrics but EQm are Fano manifolds
without Kähler-Einstein metric.

Now, we consider the case in which S = D3, then S = A3. If G = Am+3+k

and S is generated by em+1 − em+2, em+2 − em+3, em+3 − em+4, we have that these
three roots should correspond to f2 + f3, f1 − f2, f2 − f3 in the root system of D3.
Therefore,

2f2 = em+1 − em+2 + em+3 − em+4

and

f1 = em+2 − em+3 +
1

2
(em+1 − em+2 + em+3 − em+4)

=
1

2
(em+1 + em+2 − em+3 − em+4) = −iH.

If the parabolic subgroup P is maximal, we have that

Q1(u) = ((2(4 + m)2 − v2)2m((2(4 + k))2 − v2)2k.

The corresponding integral is

Cm,k =

∫ 6

0
(4 − v)v4((2(4 + m))2 − v2)2m((2(4 + k))2 − v2)2kdv

if F = CP 5 or

C ′
m,k =

∫ 5

0
(4 − v)v4((2(4 + m))2 − v2)2m((2(4 + k))2 − v2)2kdv

if F = Q5. We also see that if k ≥ 4, then Cm,k < 0 (or C ′
m,k < 0) implies

Cm,k+1 < 0 (or C ′
m,k+1 < 0). Using Mathematica we check that C ′

0,k < 0 for k ≤ 4.
Therefore, C ′

0,k < 0 for all k. So are C0,k.

C ′
4,4 > 0, C ′

8,8 > 0, C ′
16,16 < 0.
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In the same way we check that C ′
m,m > 0 if 1 ≤ m ≤ 15. We also check that

C ′
16,15, C

′
4,3, C

′
4,2, C

′
4,1, C

′
3,2, C

′
3,1, C

′
2,1 > 0.

Therefore, C ′
m,k > 0 if 1 ≤ m, k ≤ 15. Now, we also check that

C ′
15,17 < 0, C ′

14,17 > 0, C ′
14,18 < 0, C ′

13,18 > 0, C ′
13,19 < 0.

Then, we have that

C ′
12,19, C

′
12,20 > 0, C ′

12,21 < 0.

We then check that

C ′
1,40, C

′
1,25, C

′
1,22 < 0, C ′

1,20 > 0, C ′
1,21 < 0.

Therefore, C ′
1,k > 0 if k ≤ 20, otherwise C ′

1,k < 0. Then, we check that C ′
2,k > 0

for k = 21, 41 and C ′
2,k < 0 if k = 42. Now, we check C ′

7,k < 0 for k = 41, 38, 37
and > 0 if k = 31, 36. Next, we check that C ′

4,k > 0 if k = 40, 50, 55 and < 0 if
k = 80, 60, 57, 56. And

C ′
3,56, C

′
5,50, C

′
6,43 < 0, C ′

3,55, C
′
5,49, C

′
6,42 > 0.

Then,

C ′
10,25, C

′
11,23, C

′
9,28, C

′
8,32 < 0, C ′

10,24, C
′
11,22, C

′
9,27, C

′
8,31 > 0.

This is quite complicate. However, we can check that Cm,k < 0 for 1 ≤ m, k ≤ 4,
so Cm,k < 0 for all k.

Therefore, if we denote the corresponding manifolds by CMm,k or CM ′
m,k and

we always assume that m ≤ k. Then, we have:

Theorem 7. CMm,k are always Kähler Einstein. CM ′
m,k are Kähler Einstein

if and only if m, k ≥ 16 or m < 16, k ≥ km, where

km = 0, 21, 42, 56.56, 50, 43, 37, 32, 28, 25, 23, 21, 19, 18, 17

for m = 0, 1, · · · , 15.

We also notice that the manifold C ′
m,k can not be contracted. Actually, by

some argument in [Gu6], we can prove that if S = D3 and the manifold can be
contracted then the contracted manifold is a N ′′

3,m bundle over a projective rational
homogeneous space.

Now, we consider the case in which S = D2, then S = A1 × A1. If

G = Am1+1+k1 × Am2+1+k1

and S is generated by em1+1−em1+2 and e′m2+1−e′m2+2, then these two roots should
correspond to f1 + f2 and f1 − f2 in the root system of D2. Therefore,

f1 =
1

2
(em1+1 − em1+2 + e′m2+1 − e′m2+2) = −iH.
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If the parabolic subgroup P is maximal, we have that

Q1(u) = ((2(2 + m1))
2 − v2)m1((2(2 + k1))

2 − v2)k1

· ((2(2 + m2))
2 − v2)m2((2(2 + k2))

2 − v2)k2 .

The integrals are:

Cm1,k1,m2,k2 =

∫ 4

0
(2 − v)v2Q1(v)dv or C ′

m1,k1,m2,k2
=

∫ 3

0
(2 − v)v2Q1(v)dv.

We also have that if m1 ≥ 2, then Cm1,k1,m2,k2 < 0 (or C ′
m1,k1,m2,k2

< 0) implies
Cm1+1,k1,m2,k2 < 0 (or Cm1+1,k1,m2,k2 < 0). We can use Mathematica and check that

C ′
2,2,2,2, C

′
2,2,2,1, C

′
2,2,1,1, C

′
2,1,1,1, C

′
1,1,1,1 < 0.

Therefore, by comparison we have that

Cm1,k1,m2,k2 < 0 and C ′
m1,k1,m2,k2

< 0.

If we denote the corresponding manifolds by CMi,j;k,l or CM ′
i,j;k,l. We notice

that the hypersurface orbit of CM ′
m1,k1,m2,k2

can not be contracted.
We then have:

Theorem 8. All CMi,j;k,l and CM ′
i,j;k,l admit Kähler-Einstein metrics.

We now leave other examples for the case in which S = SO(n + 1,C) to the
readers since Theorems 4, 5, 5, 7, 8 give us enough new Kähler-Einstein manifolds
and Theorems 3, 4 give us a large class of Fano manifolds which do not admit any
Kähler-Einstein metric.

Now, we consider the cases in which S = Ck, we have that

n = 2(2k) − 4 = 4(k − 1),

lρ = −(n + 1 + m2) = −(4k − 4 + 1 + 3) = −4k.

If G = Ck also, then the integral is

∫ 4k

0
(n − 1 + m2 − x)xn−1dx =

∫ 4k

0
(4k − 2 − x)x4k−5dx

= −2(2k − 3)(4k)4(k−1)

4(k − 1)(4k − 3)
< 0

for k > 1. Again, this is known since it is homogeneous.
If G = Ck+1, we have H = i(e2 − e3) and

Bρ,1 = −(2 + 2k) = −2(k + 1), Bρ,l = 0 2 ≤ l.

There are four positive roots which will produce ai. They are e1 ± ei i = 2, 3. We
have, for example,

e1 + e2 = e1 +
1

2
(e2 − e3) +

1

2
(e2 + e3).
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They come in 2 pairs. Therefore,

Q1 = ((4(k + 1))2 − x2)2.

The integral is

∫ 4k

0
(4k − 2 − x)x4k−5((4(k + 1))2 − x2)2dx

= C(k)(−112k5 + 108k4 + 61k3 + 52k2 − 22k − 5) < 0

with a positive constant C(k) for k > 1. Therefore, the corresponding manifolds
GrPk are Kähler Einstein.

Theorem 9. The Fano manifolds GrPk are all Kähler Einstein with k > 1.

One might wonder what happens when G = Cm+k. We have that

Bρ,i = −(2 − l1 − l2 + 2(m + k)) i ≤ m;Bρ,l = 0 m < l.

If P is minimal, we have the integral

Gk,m =

∫ 4k

0
(4k − 2 − x)x4k−5

m
∏

1

((4(k + m))2 − x2)2mdx.

We have Gk,2 < 0 for k = 1000, 100, 10, 5, 4 and Gk,2 > 0 for k = 2, 3. Similarly, if
P is maximal we have integral

Hk,m =

∫ 4k

0
(4k − 2 − x)x4k−5((2(m + 1 + 2k))2 − x2)2mdx.

We have Hk,2k−1 > 0 for k = 100, 10, 5, 3, 2. In both cases we have quite different
picture from those in the case of S = SO(n + 1,C).

Now, we consider the cases in which S = Spin(7,C). When G = S we have
the manifold CP 7 or Q7 and the integrals are proportional to those of G = S =
SO(8,C).

If G = Spin(9,C), the Lie algebra is B4. H is proportional to e2 + e3 + e4. The
numbers ai come from the positive roots e1 ± ei. They come in 3 pairs. We have,
for example,

He1+e2 = ie1 +
i

3
(e2 + e3 + e4) +

i

3
(2e2 − e3 − e4) = ie1 +

1√
3
H +

1

2
(2e2 − e3 − e4).

Therefore,

Q1(u) = ((
√

3 · 7)2 − u2)3.

By replaceing u with cx we have the integral

∫ 7

0
(6 − x)x6((14)2 − x2)3dx > 0
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if F = Q7, and
∫ 8

0
(6 − x)x6((14)2 − x2)3dx < 0

if F = CP 7.
If G = Spin(2m + 7), we have that

Bρ,i = −l1 − l2 + 2m + 7 i ≤ m,Bρ,l = 0 m < l.

If P is minimal,

Q1(x) =

m−1
∏

0

((2(7 + 2i))2 − x2)3.

All of them are Fano. When F = Q7, they are not Kähler Einstein and the hy-
persurface orbit can not be contracted. If F = CP 7, we denote the manifolds by
SpinMm. The integrals are

∫ 8

0
(6 − x)x6Q1(x)dx.

It is < 0 if m ≤ 100. One might expect that it is < 0 always. Therefore, we need to
check the integral

∫ 8

0
(6 − x)x6

∞
∏

0

(1 − x2

(2(7 + 2i))2
)3dx ≤ 0.

To do this, we need understand the infinite product. By the formula (24) in [Af
p.197], we have that

2 cos
πx

2
=

sinπx

sin πx
2

= 2

∞
∏

0

(1 − x2

(1 + 2i)2
).

Therefore,

∞
∏

0

(1 − x2

(2(7 + 2i))2
)3 =

(

4 · 36 · 100 cos πx
4

(4 − x2)(36 − x2)(100 − x2)

)3

.

We only need to prove that

∫ 8

0
(6 − x)x6 cos3 πx

4 dx

(4 − x2)3(36 − x2)3(100 − x2)3
≤ 0.

Again, we can check with a computer that this integral is

−1.90429 × 10−10 < 0.

Let me explain how I got this number. One might go to the website and find
a numerical integrator engine. Type in the function and use different rules. To
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avoid the singularity one might choose a step (or terms) 9998. We can also use
Mathematica to find three integrals of type

NIntegrate[(6-x)x^6 (Cos[Pi x/4])^3 (4-x^2 )^(-3)

(36-x^2 )^(-3) (100-x^2 )^(-3) , {x, a, b}]

for

(a, b) = (0, 1.999), (2.001, 5.999), (6.001, 8)

and we get

2.145 × 10−11, 2.654−9,−2.866 × 10−9.

By summing them together we obtain a similar negative number. We intentionally
avoid the number 2 and 6 since the integrand has two removable singularities there
and the computer does not know how to handle it.

Now, it is very easy to check that (log(m2 − x2))′ is a concave (down) function
of m. If G = Bm+3 and F = CP 7 then for any possible parabolic subgroup P
containing S, we have that

Q1(x) =

k
∏

i=1

((2(6 +

i
∑

j=1

mj))
2 − x2)3mi .

Therefore, by comparing the change rate we see that the manifolds are Kähler
Einstein.

Theorem 10. SpinMm is Kähler Einstein for all m. Moreover, whenever
G = Dm+3 and F = CP 7 the Spin(7) manifolds are Kähler Einstein.

If P is maximal,

Q1(x) = ((2(m + 6))2 − x2)3m.

We can check that for the case F = CP 7

∫ 8

0
(6 − x)x6Q1(x)dx < 0

for 2 ≤ m ≤ 6. Therefore, all of them are Kähler Einstein for m > 1. We denote
the corresponding manifolds by SpinPm. We can also check that

∫ 7

0
(6 − x)x6Q1(x)dx < 0

if m > 30. We denote the corresponding manifolds by SpinQm. We also notice
that the hypersurface orbit can not be contracted if m 6= 4. Even if m = 4, the
hypersurface can not be contracted. And this is also true for any parabolic subgroup
P .

Theorem 11. SpinPm are all Kähler Einstein. SpinQm is Kähler Einstein if
and only if m > 30.

The first part of Theorem 11 also follows from the second part of Theorem 10.
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If G = F4, then G has roots ±ei i ≤ 4, ±ei ± ej and

1

2
(

∑

1≤i≤4

(−1)viei).

F4 has simple roots

e2 − e3, e3 − e4, e4, α4 =
1

2
(e1 − e2 − e3 − e4).

S has simple roots e2 − e3, e3 − e4, e4. H = i√
3
(e2 + e3 + e4). We have that

B1 = −11, Bi = 0 i > 1.

ai come from e1 ± ei i > 1 and

1

2
(e1 +

∑

2≤i≤4

(−1)viei).

Q1(x) = ((22)2 − x2)6((22)2 − 9x2).

Therefore, if F = CP 7, it is not Fano. We denote it by FSpinP . If F = Q7, it
is Kähler Einstein. We denote it by FSpinQ. The hypersurface orbit can not be
contracted.

When G = F4, we can also consider the case of S = B3 (or B2, in this case the
manifold can be contracted to an N ′′

4,1 bundle). In this case the difference comes
from H = ie2. And therefore,

Q1(x) = ((22)2 − x2)5.

The hypersurface orbit does not contract.

Theorem 12. FSpinP is not Fano, while FSpinQ is Kähler Einstein.

In particular, all the Spin(7,C) Fano manifolds with F = CP 7 admit Kähler
Einstein metrics. We call them the SpinP Fano manifolds. All the Spin(7,C)
manifolds are Fano except the FSpinP in the Theorem 12.

Therefore, we have many more Kähler Einstein manifolds in Theorems 9, 10, 11,
12. By our methods the reader could get many more.

We also see that if S = Spin(7,C) the hypersurface orbit can not be contracted.
We have

Theorem 13. The type I manifold can be contracted only if S = SO(n + 1,C)
and F = Qn.

One can also check easily that if S = B2 and G = Cn the manifold does not
contract. Therefore, if the manifold can be contracted for S = SO(n + 1,C) with
n > 3 then the contracted manifold is a N ′′

n,m fiber bundle over a projective ratio-
nal homogeneous manifold. One can actually see that N ′′

n,m are just the so called
isotropic Grassmannian manifolds. Therefore, we have:
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Theorem 14. Whenever S is simple, any type I manifold which can be con-
tracted is a blow up of an isotropic grassmannian fiber bundle over a projective
rational homogeneous manifold.

We have one more observation: As in section 3, we see that lρ is related to
the canonical class of the fiber F , we denote it by K(F ). Then K(CP n) = −n −
1,K(Gr(2k, 2)) = −4k,K(Qn) = −n and they are negative. We have:

Theorem 15. A type I cohomogeneity one Fano manifold with an exceptional
orbit of codimension m admits a Kähler-Einstein metric if and only if the integral

∫ −K(F )+m−1

0
(−K(F ) − D(F ) − x)Q(x)dx

is negative, where D(F ) is defined in the section 3.

This also makes more precise for the last statement in the Theorem 2.
Also, as an application, by considering the canonical circle bundle we obtain

Sasakian manifolds with and without Sasakian-Einstein metrics (see [BG Theorem
2.4 (iv)], also [Kb], [WZ]).
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