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§1. Introduction

Let M =G/H be a complex manifold, with G a real finite dimensional Lie group, H a closed

Lie subgroup such that the complex structure on M is invariant under the action of G. We call

M a complex homogeneous space.

We have discussed this kind of spaces and their related topics extensively in our earlier

survey article [52]. It is clear that the Lie group actions play a critical role around this area.

Also, we see that the co-homogeneity one actions play a further interesting role in related

analysis and geometry. Therefore, we shall give a further survey related to applications of group

actions in complex geometry.

This is an extension of my talk on April 7, 2023 in the conference of geometry and physics

in Henan University.

In the Spring 1992, we proved in [33, 60] that on completions of certain C∗ bundle over

some compact Kähler manifolds, there exist Calabi extremal metrics. Later on, on the way of

searching for Hermitian-Einstein metrics, we found another kind of standard metrics on these

manifolds. Around the beginning of this century, LeBrun, in his study of Einstein-Maxwell
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equations on compact Riemannian four manifolds, introduced a concept of Einstein-Maxwell

metrics. It turns out that under the condition being strongly Hermitian, his definition and its

generalization to the higher dimension is equivalent to ours. This concept has been generalized

considerably in the mathematical society.

In this article, we first give some survey of the existence for the k generalized Maxwell-

Einstein metrics defined by Futaki and Ono conformally related to a metric in a given Kähler class

for any k≥2 and some related problems in Hermitian-Einstein metrics, including Kähler-Einstein

metrics.

In the same time we deal with the co-homogeneity one compact Kähler manifolds, which is

obviously related to the actions of Lie groups.

We then spent some pages on hyperkähler manifolds, which have caught great attention

recently. Then we deal with the existing problem of the complex structure on S6, related to

a SO(6) gauge. We shall touch the co-homogeneity one version of the Yau’s conjecture on

complete Kähler metrics with positive bisectional curvatures and the CP conjecture for the

projective manifolds with nef tangent bundles. This is an ongoing project I am working with

some students and faculties in Henan university. Here, we take this chance to thank Professors

Feng and Han for their supports, and Professor Z. J. Liu for the invitation to the conference of

geometry and physics in Henan University. We also thank Ms. J. Chen, X. Duan, S. Jing, N.

Li, Mr. M. Liang, and Ms. Tang as well as Professor Z. Wang for their cooperations.

Somehow, we leave out the co-homology group of the compact solvmanifolds that we dealt

with in [44] and the k-Calabi metrics, which is related to the convergence of a metrics flow

similar to the Calabi flow, for examples, in [45].

§2. Generalized Maxwell-Einstein metrices

A. Futaki and H. Ono discussed the existence of the Einstein-Maxwell metrics in [27–29],

they also gave a definition of the generalized Einstein-Maxwell metrics in [29].

In [54], we proved the existence of the Maxwell-Einstein metrics in every Kähler class on

certain completions of some C∗ Bundles. We also, earlier in a series of papers, solved the Kähler-

Einstein problem on compact co-homogeneity one manifolds. See [33, 34, 43, 46–49,51, 55, 58, 61],

for examples.

In last decade, C. LeBrun gave some non-Einstein Einstein-Maxwell metrics in [69–71] on

compact real four dimensional Riemannian manifolds.

In fact, LeBrun found many Maxwell-Einstein metrics on Hirzebruch surfaces in [71]. This

is a special case from [54] in which the base manifold is CP 1.

We notice that Futaki and LeBrun used Einstein-Maxwell while we use Maxwell-Einstein in

our papers. That is the difference from the Physics and the Mathematics. From [69] we see that

the original Einstein-Maxwell equations were quite different from ours. They were the equation

for the Faraday differential 2-form F coupling with the Einstein field equation on the real four
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dimensional Lorentz manifolds. The Faraday differential 2-form satisfies a couple equations

dF =0 and d*F =0. There was no necessary even a complex structure on it. Therefore, our

simple concept of Maxwell-Einstein metrics was only a very special case of their physic concept

of Einstein-Maxwell metrics. That was one of the reasons that I did not pay much attention to

LeBrun’s work earlier.

Actually, LeBrun’s definition [70,71] for a Einstein-Maxwell metric is following: Let (M,h) be

a connected, oriented Riemannian 4-manifold. We will say that h is an Einstein-Maxwell metric

if there is a 2-form F on M such that the pair (h,F ) satisfies the Einstein-Maxwell equations

dF =d∗F =0 and [r+F ◦F ]0 =0. Here r is the Ricci curvature of h and the subscript [ ]0

indicates the trace-free part with respect to h. In [70,71], LeBrun proved that: Einstein-Maxwell

+ strongly Hermitian = Maxwell-Einstein. For example, see [71] Proposition 5.

Question 1. Are there any Einstein-Maxwell metrics other than our Maxwell-Einstein metrics?

Since the classification of compact complex homogeneous spaces are almost fully understood

and they did not provide enough information for geometrical analysis on compact complex man-

ifolds, we study a bigger class of compact complex manifold called compact almost homogeneous

complex manifolds.

A compact complex manifold M is called an almost homogeneous manifold if the

holomorphic automorphism group has an open orbit on M . First we consider a general

classification of compact almost homogeneous manifolds. Let M be a compact complex almost

homogeneous manifold and O be an open orbit, then M−O is a lower dimensional subvariety.

The following result was well-known, see, e. g., [1, 65].

Theorem 2.1. Let M be a projective almost homogeneous manifold under a complex Lie group

G and G has an open orbit, then M−O has at most two connected components. We call the

manifolds compact complex almost homogeneous manifold of one or two ends, according to the

number of the components of M−O being one or two. In particular, if M has two ends, then M

has three G orbits O, E0 and E∞, O is a C∗ bundle over a projective homogeneous space Q.

For example, if Q=CP 1 and M is a completion of a complex line bundle by adding the

infinity section. In this case, we call M a Hirzebruch surface.

Theorem 2.2. ( [54]) For any Kähler class on a compact almost homogeneous manifold with

two ends, there is at least one Maxwell-Einstein metrics in the given Kähler class.

Now, we give our definition of a Maxwell-Einstein metric:

Definition 2.1. For a given Kähler class, if there is an Hermitian h metric of a constant

scalar curvature conformally related to the Kähler metric g in this class such that h=u−2g

with a function u such that its gradient is a holomorphic vector field, then we say that h is a

Maxwell-Einstein metric related to this Kähler class.

Now, we give a simple definition of a special class of Futaki-Ono’s k-generalized Maxwell-

Einstein metrics. They are more geometric to us. And therefore, it is nature to ask the existence

of this kind of metrics in this class.
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Definition 2.2. For a given Kähler class, if there is an Hermitian metric h of a constant scalar

curvature conformally related to the Kähler metric g in this class such that h=u−kg with a

function u of which its gradient is a holomorphic vector field, then we say that h is a Futaki-Ono

k generalized Maxwell-Einstein metric related to this Kähler class.

Theorem 2.3. For any Kähler class on a compact almost homogeneous manifold with two ends,

there is at least one Futaki-Ono k generalized Maxwell-Einstein metrics in the given Kähler

class for any k≥2 being an integer.

The proof is much harder. Therefore, after the first effort we strategically withdrew from

the general case and finished the special cases in which the two ends are complex hyper-surfaces

in [13].

The difficulty for this first paper was the proving of the positivity of the solution, which we

called the positive Lemma in [54] and also earlier, e. g., in [62]. The original proof did not work

at all and we applied a complete new method. [13] was submitted.

When one of the ends is not a hyper-surface, the problem reduced to an inequality for

any complex dimension n of the base and k, as well as the the co-dimensions of the ends. We

eventually reduced the inequality to an inequality of polynomials. Then with a help of computer,

we are able to prove the existence for each positive integer k>2 in [11] for k≤11 one by one.

Then we were eventually able to solve the general cases first for k>11 and n>13 for k

being an even integer with some analysis and computer help, then for the cases in which n≤13

in [12]. The same worked for k being odd.

§3. Co-homogeneity one Kähler-Einstein metrics and equivariant

Mabuchi moduli spaces

It is very natural to classify almost homogeneous Fano manifold of complex dimension three

with a reductive Lie group to find possible Kähler-Einstein metrics as we explained in [53]

section 4. This was done in [37,39,40].

Even so, it is still quite difficult to find Kähler-Einstein metric for the almost homogeneous

manifolds. We call the projective almost homogeneous manifolds with two ends the type III

co-homogeneity one Kähler manifolds.

Recall that a Riemannian manifold is co-homogeneity one if its isometry group has a

real hyper-surface orbit.

Proposition 3.1. Any compact co-homogeneity one Kähler manifold is almost homogeneous.

Obviously, there are many non-type III compact co-homogeneity one Kähler manifolds,

see [1,65] for example. One could also consult with [58]. As professor Huckleberry once mentioned

later on, some people wanted to do it, but none knew how to do it.

Eventually, we found some simple series of examples Nn and Mn in [55]. They are compact

co-homogeneity one Kähler manifolds of type II but Nn behave as type I manifolds.

In the Kähler geometry, a Kähler metric gives a cohomology class. Given a Kähler metric
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ω0, any Kähler metric in the same cohomology class can be written as ω=ω0 +∂∂̄F. That is,

the Kähler metrics in the same cohomology class consist of an infinite dimension vector space,

with the smooth functions as the tangent vectors. Mabuchi gave a Riemannian metric

g(f,h) =

∫
M

fhωn.

An interesting question is: Are there smooth geodesics as in the finite dimensional case?

In 1987, Mabuchi [75] calculated the curvature for the moduli space of the Kähler metrics:

R(f,h,k,l) =−1

4
g(f,{h,{k,l}}),

where {f,h}=ω∗(df,dh).

In 1991, Semmes [83, 84] rediscovered this and noticed that the geodesics satisfy a homoge-

neous complex Monge-Ampére equation det∂∂̄F (t) = 0, where we regard t as the real part of a

complex coordinate z0.

In 1997, Donaldson [20] rediscovered this again and conjectured that it is a complete

symmetric space under certain group.

In [50] we proved that:

Theorem 3.1. Along any curve, the parallel transformation of a given vector always exists.

Theorem 3.2. We always have ∇R= 0.

In the case in which the metric is co-homogeneity one, we have that {f,h}= 0 for any two

functions which are invariant under the group action. Therefore,

Theorem 3.3. For a cohomgeneity one manifold, the equivariant Mabuchi moduli space is

flat.

Theorem 3.4. For a cohomgeneity one manifold, any vector at any point of the equivariant

Mabuchi moduli space can be extended to a global parallel vector.

In 1987, Mabuchi also gave the Mabuchi functional

M(ω1,ω2) =

∫ 1

0

∫
M

∂tF (t)(R−HR)ωnt .

And proved that it is independent of the choice of the path. It is convex up along the geodesic.

That is, the second derivative is positive. Given a smooth geodesic L : t∈ [0,T )→L(t), one can

define the generalized Futaki invariant

FL= lim
t→T

∂tM.

Theorem 3.5. On a cohomgeneity one manifold, for any two points in the equi-variant Mabuchi

moduli space there is a smooth geodesic connecting them. And for any vector at any point there

is a smooth geodesic starting at this point with this vector as the initial tangent vector. The

maximal geodesic ray is infinite if and only if this vector is geodesic convex.

This result gave a proof of the uniqueness for the Kähler-Einstein metrics and metrics

with constant scalar curvatures. This fact was pointed out by Donaldson. It also gave a negative

answer to the completeness and the symmetric-ness conjectures from Donaldson.



No. 3 GUAN Daniel: Some Applications of Group Actions in Complex Geometry 259

Theorem 3.6. On a cohomgeneity one manifold, the generalized Futaki invariant is independent

of the maximal geodesic but only depend on the global parallel vector field. And it is infinite if

the maximal geodesic ray is finite. There is a metric of constant scalar curvature if and only if

the Kähler class is uniformly stable.

A Kähler class is stable if Ff >0 unless f is a generating function of a holomorphic vector

field.

It is uniformly stable if Ff >C‖f‖s. Here ‖f‖s is a given semi-norm with C a constant.

Uniformly stable is equivalent to the negativity of a topological integral.

Kähler-Einstein case is the same to say that the Kähler class is a multiple of the Ricci class.

In the Calabi extremal metric case, we just replace the Mabuchi functional by the modified

Mabuchi functional.

Unfortunately, in general, it is not as fortunate as in [101] for the Kähler-Einstein metrics

with the first Chern class being zero or negative, the geodesic connecting two points could only

be C1,1 in the real sense [17]. See [18,19,79]. These made our results in [38,49,51,61] and the

co-homogeneity one case special. There was also some basically failed efforts for proving the

uniqueness, for example, in [16] according to [79].

Fortunately, the uniqueness was eventually solved in [5].

For the existence, Yau’s originally and Donaldson’s modified conjectures seemly are both

failed. Only Tian’s pseudo-original conjecture seems ok so far. It tends very technical. I mean,

with both the arguments and the statements.

§4. Compact complex cohomogeneity one manifolds

The type III case with the Einstein problem was done by Sakane and Koiso [68]. They gave

the first nonhomogeneous examples of compact Fano manifolds with Kähler-Einstein metrics.

Their results are seemly even earlier than the examples given by Siu, Tian-Yau on the Fano

surfaces. They used Kobayashi’s construction of the Riemannian metrics on the S1 bundles.

Theorem 4.1. A Fano almost homogeneous manifold with two ends admits a Kähler-Einstein

metric if and only if the Futaki invariant corresponding to the S1 action is zero.

Most works that took care of the compact almost homogeneous manifolds with two ends

were done on related metrics when I was a Ph. D. graduate student around 1992. See [52] for a

detail survey.

Recently, we apply the type III methods in [54] to the Maxwell-Einstein metrics; in [22,56,57]

to the calculation of the holomorphic bisectional curvatures; and in [14, 15] finally connecting to

the co-homogeneity one domains in complex Euclidean spaces.

Somehow, we did not get any new Kähler-Einstein metric at that time. Obviously, there

are many non-type III compact co-homogeneity one Kähler manifolds, see [1, 65] for example.

Let H be a real hypersurface orbit, then H=K/L, and assuming that A={k∈
K|kh=hk for any h∈L} be the centralizer of L in K, A is of real dimension either one or three. If
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A is one dimensional, we say that the compact co-homogeneity one Kähler manifold M is of

type I if it is not a type III manifold. If M is not of type I or type III, we say that M is of

type II. See [61].

Basically, we proved the following:

Theorem 4.2. For any Kähler class on a compact cohomogeneity one manifold with zero first

Betti number which is not of type III, there is a Kähler metric in the given Kähler class with a

constant scalar curvature if and only if certain topological integral is smaller than zero.

This integral is the negative of the generalized Futaki invariant related to the exceptional

closed orbit. We notice that since it is not of type III, the exceptional orbit is connected and

homogeneous.

In our case, the necessary condition here is stronger than the semi-stable property of the

closed orbit in the work of Professors Ross and Thomas [80].

The proof of Theorem 4.2 for the type I manifolds was published in [49]. The sufficient part

for the type II manifolds was published in [43,46, 47]. However, the necessary part for the type

II manifolds is more complicated and is to be published later on. See [51], for example.

Therefore, we obtained infinite many Kähler-Einstein manifolds as well as infinite many

Fano manifolds without any Kähler-Einstein metric.

Let us go into the details of these two orbits manifolds. First, consider the complexification of

the co-homogeneity one Lie group action K. That is, the Lie algebra of K consist of holomorphic

vector fields. We denote it by a real subspace K. Let V =CK. By a Theorem of Mongomery, V

is the Lie algebra of a complex Lie group G. And G is a subgroup of the automorphism group.

Theorem 4.3. If G is not semi-simple, then M is a completion of a C∗-bundle over a projective

rational homogeneous space.

That is, if G is not semi-simple, then M is of type III.

Therefore, we only need to take care of the case in which G is semi-simple.

There is a special case of the type II manifolds. If the open orbit is a Ck-bundle (might not

be a vector bundle) over a projective rational homogeneous manifold, we call M an affine type

manifold (not to be confused with the closed complex submanifolds of Cm).

Theorem 4.4. Let M be a compact complex almost-homogeneous manifold with one hypersurface

end and a complex semisimple Lie group G action, then M is a fiber bundle over a rational

projective homogeneous space Q such that the fiber is an S standard fiber. Here Q=G/P with

P a parabolic subgroup. S is the semi-simple part of P .

A list of the Standard fibers can be found in [1] page 67 and 68.

The list in page 67 are the standard fibers such that the open orbits are affine in the classical

algebraic geometry, which is the same that the isotropic subgroup is reductive. While the list

in page 68 are the standard fibers which are affine manifolds we defined above. All of these

standard fibers are homogeneous except the last one in the list in page 68.

In page 67, we have 1. O=An/(C
∗×An−1), F =CPn×(CPn)∗;
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2. O=SO(n,C)/SO(n−1,C), F =Qn−1;

3. O=SO(n,C)/S(O(1,C)×O(n−1,C)), F =CPn−1;

4. O=Cn/(C1×Cn−1), F =Gr(2n,2); 5. O=F4/B4, F =E6/P (ωα1
); 6. O=G2/A2, F =Q6;

7. O=G2/Norm(A2), F =CP 6; 8. O=B3/G2, F =Q7; 9. O=SO(7,C)/G2, F =CP 7.

We see that all these night standard manifolds are actually homogeneous themselves.

While in page 68, we have 1. O=Bn/U , U =PDn
(ωαn

); 2. O=Cn/U , U =BA1
×Cn−1;

3. O=G2/U , U contains the Cartan sublgebra and the root vectors ±α2, 2α1 +α2, 3α1 +

α2, 3α1 +2α2.

Somehow, the description in page 69 of the item 1. in page 68 is a little bit misleading. We

denote it by F (Bn). Then F (Bn) is not a fiber bundle over CP 2n but over Q2n. The reason is

that the set of the isotropic n dimensional subspaces in C2n with the standard rank 2n quadric

on C2n has two connected components according to the last chapter of [31].

We also denote the second standard manifold in this list F (Cn) and the third M(G2). We

notice that F (Bn) and F (Cn) are homogeneous and M(G2) is not.

Theorem 4.5. Let M be a compact complex almost-homogeneous manifold with one hypersurface

end and a complex semisimple Lie group G action, if G is strictly larger than S, then the identity

compnent of the automorphism group is G and M is not homogeneous. Consequently, all these

complex manifolds are bi-holomorphically different from each other.

§5. Compact complex cohomogeneity one manifolds and Fano

manifolds with nef holomorphic tangent bundles

After solving the co-homogeneous version of the existence of the Kähler-Einstein metrics,

it is very natural to apply these kind of manifolds to other hard elliptic problems in complex

geometry. There is a famous question called CP conjecture [9, 66]. It conjectured that every

Fano manifold with a nef tangent bundle is homogeneous.

Question 2. If a compact almost homogeneous manifold has a nef tangent bundle, is it

homogeneous?

To make the things simpler, we call a Fano manifold a CP manifold if it has a nef tangent

bundle.

First, we know that Fano manifold has a lower positive bound for the Ricci curvature. This

implies that the manifold is simply connected. As in the Kähler-Einstein case, we start with the

type III cases. Even so, one can not solve this immediately. Therefore, we pay attention to the

cases wth hyper-surface ends first. One can easily get

Theorem 5.1. Let M be a Fano co-homogeneity one CP manifold with two hyper-surface ends,

then it is a flat CP 1 bundle over a projective rational homogeneous space.

The proof is the following: Consider a rational curve on the base manifold Q generated by

an action of an sl(2,C), say C. First we claim that the fiber bundle over C is a product. A

vector bundle over a manifold is nef, then it is nef over any smooth curve on it. Therefore, the
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tangent bundle of M is nef over C on both the zero and the infinite sections. We denote these

two curves by Cs and Cn. But, also any quotient of a nef bundle is again nef. This implies that

the restriction of the normal bundle of these two sections on the curves are nef. We notice that

one is O(k) and the other is O(−k). Therefore, k=0. Let p be a point over C, then Q=G/P

with P a parabolic subgroup of G, and ps=πp be the corresponding point in the zero section.

That is, P be the isotropic subgroup at ps. Let H be the isotropic subgroup at p. P/H acts on

π−1ps holomorphically, and is a subgroup of the automorphism group of π−1C. But, π−1C is a

product. This implies that H=P . Therefore, M is also a product.

Now, let M be a compact almost homogeneous manifold with an open orbit G/H with G a

complex Lie group and H a subgroup containing a maximal unipotent subgroup of G, then we

call M a horo-spherical manifold.

One has [72]:

Theorem 5.2. Any compact horo-spherical manifold CP manifold is homogeneous.

Actually, he proved that

Theorem 5.3. Any CP G-horo-spherical manifold is a product of a G-projective rational

homogeneous space with a product of a series of homogeneous G-type III manifolds of second

Betti number 1.

If M is of type III, then O is a C∗ bundle over a projective rational homogeneous space

Q=G/P . Apply P action through H, we get P/H=C∗. In particular, H contains a maximal

unipotent subgroup of P and therefore, contains a maximal unipotent subgroup of G. Therefore,

Theorem 5.4. Any type III co-homogeneity one CP manifold is homogeneous.

More precisely, by the co-homogeneity property, one has

Theorem 5.5. Any G-type III co-homogeneity one CP manifold is a product of a G-projective

rational homogeneous space with a homogeneous G-type III manifold of second Betti number 1.

In particular,

Theorem 5.6. In the type III case, if a CP manifold is a G-equi-variant fibration, then it is a

product.

A similar result for type II manifolds is not true. One has

Theorem 5.7. In the type I and the type II cases with a hyper-surface end, if a CP manifold

is a G-equi-variant fibration which is not a product and the second Betti number is 2, then it is

either F (Bk) or F (Ck).

§6. Compact complex manifolds with holomorphic symplectic or

hyper-kähler structures

It is very important to understand the classification of compact complex surface, that

is, compact complex manifold of complex dimension two. And it is also very important to

understand compact Riemannian manifold with a special holonomy group. In general, a real n

dimensional compact orientable Riemannian manifold might have a holonomy group SO(n).
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When it is a complex m dimensional compact Kähler manifold, the holonomy group reduced

to U(m). When the holonomy group is a subgroup of SU(m), the Kähler metric has a zero

Ricci curvature. In the later case, as we mentioned earlier that the interesting cases are the

Calabi-Yau manifolds and the hyperkähler manifolds. Hyperkähler manifolds have even complex

dimension since a nondegenerate 2-form can only have an even rank, and the manifolds have

holonomy group Sp(l).

One of the Kodaira’s conjectures was that (proven in [86])

Theorem 6.1. A compact complex surface S is Kähler if and only if the first Betti number of

S is even.

The proof finally reduced to the K3 surfaces, which are simply connected compact complex

surfaces with non-degenerate holomorphic volumes (or holomorphic symplectic forms). So,

the question is: Are all K3 surfaces Kähler surfaces? Professor Todorov published a paper

in Inventiones [91] and claimed the proof. But Professor Siu pointed out some defect in the

Mathematical Review and published another paper in Inventiones [86] proving the conjecture.

The question left: Are all simply connected compact complex manifolds with holomorphic

symplectic structures Kähler manifolds?

Professor Todorov wrote another long paper and claimed that all of them were also Kähler.

After a long time, none could say that he was correct or not. But most people believed that

this was true. It was similar to the situation for the Bogomolov-Todorov-Tian unobstructed

Theorem for the Calabi-Yau manifolds, for which Professor Tian eventually gave a clean solution

in [90].

When I was a Ph. D. student in University of California at Berkeley, Professor Todorov

gave a talk. Then I started producing compact complex homogeneous spaces with holomorphic

symplectic structures in [32]. That is, M =G/H. We constructed more examples of solvmanifolds

even without requiring that G to be complex. See [32]. Then we came to the simple examples

of Kodaira-Thurston surfaces. A Kodaira-Thurston surface is a compact complex nonkähler

surface with a holomorphic symplectic structure. By the solution of the Kodaira conjecture that

it has an odd first Betti number. And it is a quotient of a real nilponent Lie group. Actually,

its universal covering as a real Lie group has a right invariant complex structure on G.

Theorem 6.2. Let S be a compact complex surface with a holomorphic symplectic structure,

consider S(k) being the symmetric product of S. It consists of k points in S without order.

Then there is a smooth complex manifold S[k] over S(k) with induced holomorphic symplectic

structure.

Here we say that a complex manifold M is over N if there is a holomorphic map π :M→N

such that π−1(n) is a point for a dense open set of N . We call S[k] the k-th Hilbert scheme of S.

Basically, there are only three kind of such S: a complex two dimensional torus, a K3

surface, a Kodaira-Thurston surface.

S[k] are Kähler if S is either a complex torus or a K3 surface.
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S[k] is not simply connected when S is a Kodaira-Thurston surface and is not Kähler.

A Kodaira-Thurston surface is a Lagrange torus fibration over a torus. Moreover, the center

of G acts on the fiber as a holomorphic complex torus action C. The C action lifted to an

action on S[k]. Let a : S→T be the fibering map. Then there is a map a :
∏
iSi→T , with

Si=S such that a(s1, ·· · ,sk) =a(s1)+ ·· ·+a(sk). This induces a map a : S(k)→T . Locally, we

can regard a as a holomorphic function on S[k]. Then da is a holomorphic 1-form. Using the

holomorphic symplectic structure ω we lift da to a holomorphic vector field Xa=ω∗( ,da). Then

Xa corresponds to the diagonal C action on S[k]. One naturally have a holomorphic symplectic

reduction Rk =a−1(0)//C. However, Rk usually is only an orbifold but not a manifold. To get

a manifold, a natural way is to get a covering π : R̃k→Rk such that R̃k is a smooth manifold.

This kind of covering is called a good covering and was studied by Thurston for real three

dimensional manifold. To find this kind of good coverings we have to choose the right Kodaira-

Thurston surface by adding a topological condition on the torsion part of the fundamental group

of S.

By calculating a topological bilinear form on the second cohomology of R̃k, we were able to

prove in [35] that

Theorem 6.3. For k>2, R̃k is a simply connected compact holomorphic symplectic manifold

which, as a topological differentiable manifold, does not admit any Kähler structure.

We actually proved in [35] that the Lefschets property for the Kähler manifold does not

hold for R̃k.

Theorem 6.4. For k>2, the Lefschetz Theorem does not hold for R̃k with any closed 2 form.

After we submitted the paper to Inventiones as Professor Todorov and Siu did earlier,

Professor Gromov introduced me to Professor Bogomolov. Professor Bogomolov realized that

one can just use a sub-manifold S in R̃k to prove the nonkählerness of our manifold. Since if

the ambient manifold is Kähler, then the sub-manifold is also Kähler. But S is nonkähler, as

Professor McDuff did in her construction [77] of a simply connected compact nonkähler real

dimension ten real symplectic manifold.

Professor Bogomolov obtained

Proposition 6.1. For k>2, R̃k, as a complex manifold, is not Kähler.

Therefore, he gave an alternative negative answer to Todorov’s question with a simpler

argument, to the nonkähler property.

After that, motivated by our construction, Professor Fernandez et al published a paper in

Annals [25] constructing a simply connected compact real eight dimensional real manifold with

a real symplectic structure which is not formal. Formality is a condition with which a compact

Kähler manifold should satisfy.

Theorem 6.5. There is a simply connected non-formal real eight dimensional manifold with a

real symplectic structure.

I was told about this result by Professor Fernandez and we proved that:
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Theorem 6.6. R̃3 is not formal.

The real dimension of R̃k is 4k−4. For k>3 we have:

Conjecture 1: R̃k is not formal for k>2.

Further more, in a third paper for the examples of the nonkählerian holomorphic symplectic

structure, we proved in [36] that

Theorem 6.7. For our manifolds M = R̃k, H2(M,C) =H0,2(M)+H1,1(M)+H2,0(M). More-

over, there is a bilinear form on H2(M,R) with one dimensional kernel.

Theorem 6.8. Let M be a simply connected compact holomorphic symplectic manifold, if

H2(M,C) =H2,0(M)+H1,1(M)+H0,2(M), then M is unobstructed.

We applied a symplectic geometry proof other than the earlier ones. Moreover, we proved:

Theorem 6.9. For all the known simply connected compact holomorphic symplectic manifolds,

it is deformation equivalent to a holomorphic symplectic manifold, which is a Lagrange complex

torus fibration over a complex projective space.

Therefore, one have:

Conjecture 2. Any simply connected holomorphic symplectic manifold is deformation equivalent

to a holomorphic symplectic manifold which is a holomorphic Lagrange torus fibration over a

complex projective space.

This was later on called as the SYZ conjecture for the holomorphic symplectic manifolds,

especially by Professor Todorov.

When we talked about [35] with Professor Gromov in University of Maryland in 1994, he

introduced me to Professors Bogomolov and Donaldson. He also showed me Salamon’s paper [81]

and asked me: Could you get bounds on the Betti numbers for compact hyperkähler manifolds?

The classification of compact hyperkähler manifolds was and is one of the central problems

in Riemannian and complex as well as algebraic geometry. Motivated by his successful work

on compact four manifolds, Professor K. S. Donaldson proposed in [21] with R. Thomas that

they might use a similar gauge theory method to classify the compact hyperkähler complex four

manifolds. Their program is seemly not very successful so far. However, we seemly accidently

had a breakthrough in this direction.

At the end of 1999, we obtained some results for compact complex 4 dimensional simply

connected hyper-kähler manifolds in [41]:

Theorem 6.10. For a compact complex 4 dimensional simply connected hyper-kähler manifold

M , we have 3≤ b2(M)≤23. Moreover, b3(M)≤ 1
2 (b2(M)+4)(23−b2(M)) and b4(M)=46+

10b2(M)−b3(M). In particular, we have that if b2(M) = 23, then b3(M) = 0. The Hodge diamond

of M is the same as that of Fujiki’s first example.

This was obtained by the Riemann-Roch formula from [81] and the representation of a Lie

algebra so(4,b2(M)−2) on the cohomology ring of M in [92,93]. That is one of the reasons that

this did not fit in our earlier survey [52] but this article. One might call this the First Theorem

of the Hodge diamond on compact complex four dimensional hyper-kähler manifolds.
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In the following, we simply use bi for bi(M).

Theorem 6.11. If b2 6=23, then 3≤ b2≤8, and when b2 =8, we have b3 =0. Moreover, if

3≤ b2≤7, then b3≤ 4(23−b2)(8−b2)
b2+1 .

This result was obtained after seeing [64] through the referee’s comments. This sharpers

our most earlier results through the representation theory. After this, I eventually met Salamon

and Hitchin in Durham in the summer of 2001.

Even though, our earlier representation argument produces following Third Theorem in [42]:

Theorem 6.12. If b2 = 7, then we have b3 = 0 or 8. Moreover, if b3 = 8, The Hodge diamond of

M is the same as that of Beauvilles second example.

We call Theorem 6.11 the Second Theorem, even it was actually proven after Theorem 6.12.

In Pisa in 2003, I gave two series of talks. One on cohomogeneity one Kähler-Einstein

metrics before [2]. The other was the possible bounds on the Betti numbers of compact simply

connected irreducible hyperkähler manifolds of complex six dimension. There was a difficulty of

the representation of so(4,b2−2) on the cohomology group H3(M,R). This difficulty is still

unsolved until today. In 2015, Professor Sawon posted a paper arXiv: 1511.09195 with a result

on the bounds of b2. He following the argument in [42,61] without knowingly he assume that

the representation on H3 is the spinor representation. Therefore, his original argument has a

flaw. I informed Salamon in a later email. Then, in the second version in 2021 he added this

assumption, possible after seeing [67]. See also his published version [82].

The conjecture in [67] was checked for the known examples in [30]. In [67], they also obtained

bounds for the Betti number b2 under the assumption of the representation of so(4,b2−2). This

is a very remarkable advance for the classification of compact hyperkähler manifolds.

Then in another preprint Sawon gave a ”conjectured sign” of a series of Rosansky-Witten

invariants, which was seemly known to us (that is, this was seemly true, and was possibly also

known by Herrera). However we did not get any thing new from these inequality for the Betti

numbers. From there he seemly was eventually able to prove a bound for b2 for the higher

dimensions. From the first glans, the proof of Theorem 8 there was basically from ours, while

Corollary 10 was a new input. Because we are so busy recently, we do not get time look into the

proof of the ”conjectured sign” when we write up this article. And we hope that we, or some

other people would be able to finish this in a near future.

Also, in a recent paper, Professor G. Tian with J. Streets in [87] proved that any symplectic

structure close to a given hyperkähler structure under some very uncheck-able restricted condition

is also Kähler with respect to another complex structure.

Actually, the restricted condition is unnecessary. First, if ω is close to ω0 which is hyperkähler,

by the continuity, ω2n>0. Therefore, ω is in a cohomology class which is the Kähler class of

some hyperkähler structure by the unobstructed Theorem. Now, by the Moser Theorem, we

know that ω is different from a hyperkähler structure by a diffeo-morphism.

Therefore, one get:
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Theorem 6.13. Any symplectic structure close to a given hyperkähler structure is also Kähler

with respect to possible another complex structure.

§7. Compact homogeneous spaces with complex structures

It was well-known that (cf. [94])

Theorem 7.1. Let G be an even dimensional compact Lie group, then on it, there is a G

invariant complex structure.

One could construct the complex structure through the complex-ification GC of G. Let T

be a Cartan subgroup of GC and P be a parabolic subgroup containing T . Since T ∩G is a real

compact torus in G. One can regard T as (C∗)k, where k is the rank of G. GC/P =G/(T ∩G) is

a projective rational homogeneous space. By our assumption k= 2l is even. Let π : Ck→ (C∗)k

be the natural universal covering. π−1(1) is generated by αj =(aj1, ·· · ,ajk), ajs=0 if s 6=
j; ajj =2πi, where 1≤ j≤k. One could choose a subspace Cl of Ck such that π(Cl) is closed

in (C∗)k and αj are not in (C∗)l. For example, Cl has points of (b1,ib1,b2,ib2, ·· · , bl, ibl).
Let P =TU with U the nil-radical of P and HC =π(ClU), then GC/HC =G has the natural

complex structure induced from GC.

The same arguments works for the compact even dimensional homogeneous spaces G/H

with G compact such that there is a subgroup J with G/J rational projective homogeneous and

J/H being a torus. For example, the Hopf manifolds, and S2n+1×S2m+1.

Question 3. When does a compact homogeneous space G/H, with G compact admit a complex

structure?

It was well-known that S2n does not admit any almost complex structure if n is not 1 or 3.

Conjecture 3. S6 does not exist any complex structure.

Around 1986, Professor C. C. Hsiong, the initiator of the Journal of Differential Geometry

gave a “proof”. When he was giving a talk in the Institute of Mathematics, Academia Sinica, I

was sitting there and I found his proof was wrong. Since Professor D. Z. Dong came late, I gave

my “note” to him and told him that the proof was wrong.

Around 2003, Professor S. S. Chern had another effort before he passed away. Therefore,

someone called it the Chern’s Last Theorem [76]. See also [78]. We understood that the problem

was still open.

Around 2005, Professor Etesi posted another negative “proof” in the arXiv saying that

there was a complex structure on S6, but quickly withdrew. Around 2011, he posted another

“proof” of his claim in the same place, which was eventually published in 2015. See [23].

Two developments occurred right after that: 1. Professor Etesi wrote another paper and

claimed that there is a conjugated G2 orbit in G2, which is diffeomorphic to S6, and it is a

complex three dimensional sub-manifold of G2 with the same complex structure he published

earlier [24]; 2. Professor Atiyah posted a “proof” of the conjecture in arXiv in 2016 [3], possibly

with an effort of trying to disprove Professor Etesi’s conclusion.
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It seems that there is no general agreement in the mathematical society.

By using the homogeneous space theory, we were able to prove in [53] that Professor Etesi’s

second claim in [24] does not hold.

Theorem 7.2. The conjugated G2 orbit in G2 mentioned by Professor Etesi is not a complex

sub-manifold of G2.

With a proof of that the algebraic dimension of any complex structure on S6 is zero (cf [7,8]),

our result implies that the following conjecture is true:

Conjecture 4. There is no compact complex threefold of S6 type in G2.

Since our proof of Theorem 7.2 depends a lot on the abstract theory of compact homogeneous

spaces and it did not describe any picture for the image of S6 type orbit under the map

π :G2→S6, in [59] we prove that:

Theorem 7.3. The restriction of the map on the conjugated G2 orbit in G2 mentioned by

Professor Etesi is a generically two to one map onto a closure of an open set in S6.

Therefore, if it is a complex sub-manifold, there is a holomorphic map from G2 to a projective

space, such that the image it is a sub set of complex 3 dimension. That is, the pull-back of the

Kähler form of the projective space induces a nonzero H2 class on S6. This is impossible.

This gives a simpler proof for Theorem 7.2.

With Professor Z. H. Wang, we also checked the gauge used in [23] to construct his almost

complex structure is SO(6). This is comparable to the standard metric and therefore, the almost

complex structure can not be integrable. We, with Professor Z. H. Wang and Dr. N. Li, also

prove that there is no weakly Kähler complex structure on S6.

Recently, Professor Tang, Z. Z. with W. J. Yan prove in [88]:

Theorem 7.4. There is a complex structure on S1×S7×S6.

This is an interesting result.

One have:

Question 4. Find (almost) complex structures on product of spheres?

Of course, this is a special case of Question 3.

§8. Characteristic properties of complex Euclidean spaces as

complex manifolds

For a Riemann surface, i. e., a complex manifold of complex dimension one, its universal

covering is one of the three complex one dimensional homogeneous spaces: the Riemann sphere

CP 1 =C∪{∞}=S2; C and the unit ball B={z∈C||z|<1}.
In the higher dimension case, we also have three special homogeneous spaces: CPn; Cn

and the unit ball Bn={z∈Cn||z|<1}.
There are also Hermitian symmetric spaces [63]; projective rational homogeneous spaces

[6, 89]; the Wolf compact homogeneous quaternion spaces and complex homogeneous contact

spaces [95]; the quotient of the complex ball. We already discussed these in [52].
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In this article, we emphasis on the complex plain Cn.

There is a characteristic conjecture for Cn (cf. [10]).

Conjecture 5. Any complete but noncompact Kähler manifold with positive bisectional curvature

is bi-holomorphic to Cn.

Considerably works have been done, for example, see [73]. The U(n) co-homogeneity one

examples of Cn have been classified in [96]. See also, for example, [97, 98].

Question 5. Does this Yau’s conjecture (conjecture 5) holds for co-homogeneity one Kähler

metrics?

The simplest examples came from a compact co-homogeneity one Kähler manifolds by

deleting one of the ends.

In [96], Professors H. H. Wu and F. Y. Zheng classified these kind of metrics on Cn and

showed that the metrics in the special case in [73] is a very small subset in the set of these kind

of metrics.

Next examples are the line bundles On(k) over CPn. It was known that on On(k), there is no

U(n+1) co-homogeneity one complete Kähler metrics with nonnegative bisectional holomorphic

curvatures. Professor B. Chen asked, in January 2020, whether there is any co-homogeneity one

complete Kähler metrics with positive sectional holomorphic curvatures on On(k)?

This question is not completely trivial. Therefore, it took us sometime to get some interesting

examples. We found some examples in the summer 2020 and gave a series talks in Henan

University in that Fall. Later on we found example 3.25 in [99] on On(−1). It was quite different

from ours. Our examples have more smoothness at least. Therefore, we invited Professor B.

Yang at the end of 2020. Then in the Spring 2021, we constructed more examples, see [22]. We

visited Xiamen University in the summer 2021. In a talk in March 2022, Professor B. Yang

mentioned that, with Professor F. Y. Zheng, he obtained many more examples at the end of

2021, though it seems that they used a mildly different method; see [100]. Again, their examples

are very different from ours. At least, ours have more smoothness.

Now, let us go into a little bit details in [22]. Let z= (z1,...,zn) be the standard coordinate

on On=Cn−{0}. We write that

r= |z|2 =

n∑
i=1

|zi|2.

Our U(n) invariant Kähler metric on On has a Kähler form ω= i
2∂∂̄p(r), where p∈C∞[0,+∞).

Under the coordinate z, the metric has components gij̄ =f(r)δij +f ′(r)z̄izj . Here and from now

on we write that f(r)=p′(r), h(r)=(rf)′, and call the metric ds2(h) or ω(h). Both f and h

are in C∞[0,+∞). Note that p is determined by f up to the addition of an arbitrary constant.

It is easy to see that ω(h) is a metric and is complete if and only if f >0, h>0, and that∫ +∞

0

√
h

r
dr= +∞.
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Now we let ϕ=u2 =g(V,V )=hr as in [33]. Here V is the holomorphic vector field on On

corresponding to the C∗ action on the line bundle.

Then dt=
√
hd|z|, U =

∫ t
0
udt= 2−1(rf−m) with m a positive number related to the metric

on the zero section.

Theorem 8.1. Let e1 be the unit direction of V , then the holomorphic sectional curvature

A=R11̄11̄ =−ϕUU

4 and A>0 if and only if ϕ is convex down with respect to U . And in the case

of Cn, the metric has positive bisectional holomorphic curvature if and only if A>0.

In this case, we also have U ∈C∞[0,+∞), and ϕ(0) = 0, ϕU ≥0.

Therefore, there are three cases for the asymptotic property of the function ϕ when U tends

to the infinity: 1. ϕ does not have any asymptote; 2. ϕ has a horizontal asymptote; 3. ϕ has a

slant asymptote.

Theorem 8.2. For any integer k and any Kähler class Km on an open almost homogeneous

manifold On−1(k) of complex dimension n, there is no U(n) equivariant complete Kähler metrics

with positive bisectional holomorphic curvature in the given Kähler class.

Theorem 8.3. For any integer k>0 and any Kähler class Km on an open almost homogeneous

manifold On−1(k) of complex dimension n, there is no U(n) equivariant complete Kähler metrics

with positive sectional holomorphic curvature in the given Kähler class.

Theorem 8.4. For any integer k>0 and any Kähler class Km on an open almost homogeneous

manifold On−1(−k) of complex dimension n, there are many U(n) equivariant complete Kähler

metrics with positive sectional holomorphic curvature and with a horizontal asymptote of ϕ with

respect to U in the given Kähler class.

This Theorem is one of the cores of [22].

In [22], we also prove that on On−1(−1):

Theorem 8.5. For any Kähler class Km on an open almost homogeneous manifold On−1(−1)

of complex dimension n, there are many U(n) equivariant complete Kähler metrics with positive

sectional holomorphic curvature and without an asymptote of ϕ with respect to U , or with a

slant asymptote of ϕ with respect to U in the given Kähler class.

In this Theorem the case with a slant asymptote is very difficult and is one of the cores

of [22].

We notice that it was pointed out by Professor Binglong Chen that a product metric would

give a metric with positive holomorphic sectional curvature when k= 0.

It turns out that for the case without an asymptote of ϕ with respect to U , or with a slant

asymptote, the problem is much more difficult and our original method in [22] does not work at

all.

Therefore and fortunately, in [56], which we obtained in the summer 2022, we are able to

use a method similar to test the virus finally solve the problem.

Theorem 8.6. For any integer k>0 and any Kähler class Km on an open almost homogeneous

manifold On−1(−k) of complex dimension n, there are many U(n) equivariant complete Kähler
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metrics with positive sectional holomorphic curvature and without an asymptote of ϕ with respect

to U , or with a slant asymptote of ϕ with respect to U in the given Kähler class.

Furthermore, in [100], they considered a special class of Kähler class on the affine quadric of

complex dimension two M1 ={z2
1 +z2

2 +z2
3 = 1} and proved that they did not have nonnegative

holomorphic sectional curvature. There was a mistake in their claim that all the co-homogeneity

one Kähler metrics have their format. We informed Professor B. Yang many times but he seemly

just ignore. Possibly, it was very difficult to explain that there are actually more co-homogeneity

one Kähler metrics under the same group action. In [57], following the line in [47, 48], we

explain the complex structure. After a long and a difficult journey, we finally are able to find a

right bi-holomorphic map from the open orbit of CP 1×CP 1−{(x,x)} in [55] to the complex

quadric, which gives us a peek into the possibility of a type II metric that is different from theirs.

Obviously, there is an SO(3) action on M1. It turns out that it is a co-homogeneity one action.

Professor B. Yang gave a diffeo-morphism from M1 to the tangent bundle T (S2) of two

dimensional sphere S2. Let r be the length of a tangent vector v∈T (S2). This diffeo-morphism

is equi-variant with respect to this SO(3) action. He also gave three vector fields Xi with

i=1, 2, 3 as a basis of the Lie algebra of SO(3) such that [Xi,Xj ]=−Xk for (i, j, k) having

the same order as that of (1, 2, 3).

Let dr, ω1, ω2, ω3 be the dual forms of ∂r, X1, X2, X3. Then dωi=ωj ∧ωk if (i, j, k) has

the same order as that of (1, 2, 3).

Let Y1 =dr− iω3 and Y2 =ω1− icothrω2. Then Y1, Y2 generically form a basis of T 1,0M1.

In [57] we let U = b2−c2 tanh2r with b a function of r and c a constant, and we obtained:

Theorem 8.7. A closed (1, 1) form has a format

ω= b(r)Y1∧ Ȳ1 +b(r)tanhrY2∧ Ȳ2 +ci
sinhr

cosh2r
(Y1∧ Ȳ2−Y2∧ Ȳ1)

And, it is Kähler if and only if U(0) = 0, U >0 for r>0.

When c= 0, we get a special type of Kähler metrics given by [100]. But there are examples

such that c is not zero. This fits quite well with [47].

This is only a small corner of a glacier mountain. However, from this example, one could

see the futile part of the co-homogeneity one geometry.

[References]

[1] AKHIEZE D. Equivariant completions of homogeneous algebraic varieties by homogeneous divisors[J]. Ann.

Glob. Anal. Geom., 1983, 1: 49–78.

[2] APOSTOLOV V, CALDERBANK D J, GAUDUCHON P, TONNESEN-FRIEDMAN C. Hamiltonian

2-forms in Kähler geometry III, extremal metrics and stability[J]. Invent. Math., 2008, 173: 547-601.

[3] ATIYAH M. The non-existence complex 6-sphere[M]. Math. DG, ArXiv: 1610.09366.

[4] BEAUVILLE A. Variétés Kähleriennes dont la premiére classe de Chern est nulle[J]. J. Differ. Geom., 1983,
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[79] ROSS J, NYSTRÖM D W. Harmonic discs of solutions to the complex homogeneous Monge-Ampére
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[83] SEMMES S. Complex Monge-Ampére and symplectic manifolds[J]. Amer. J. Math., 1991, 114: 495–550.
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