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In this article, we give a survey of some progress of the complex

geometry, mostly related to the Lie group actions on compact

complex manifolds and complex homogeneous spaces in the last

thirty years. In particular, we explore some works in the special

area in Differential Geometry, Lie Group and Complex Homoge-

neous Space. Together with the special area in nonlinear analysis

on complex manifolds, they are the two major aspects of my re-

search interests.

1 Introduction

Let M = G/H be a complex manifold, with G a real finite dimensional Lie

group, H a closed Lie subgroup such that the complex structure on M is

invariant under the action of G. We call M a complex homogeneous space.
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Let M be a complex homogeneous space, h be a Hermitian metric, if h

is also invariant under the action of G, we call (M,h) an Hermitian homo-

geneous space.

Some classical examples of Hermitian homogeneous spaces appeared as

early as once mathematians understood the Riemann surfaces, i. e., the

complex one dimensional manifolds. When dimC = 1, we have C = R2 = C

(the third as an abelian Lie group); CP 1 = S2 = PSL(2,C)/B, where B is

the subgroup of PSL(2,C) which is corresponding to the upper triangular

matrices (we notice that B[1, 0] = [1, C]);

D = {z ∈ C||z|<1} = {(x, y) ∈ R2|x2+y2<1}

= {z ∈ C|Imz>0} = SL(2,R)i

= {ai+ b

ci+ d
|ad−bc=1, a, b, c, d∈R}

= {ac+ bd+ i

c2 + d2
|ad−bc=1, a, b, c, d∈R}.

Higher dimensional Hermitian homogeneous spaces appeared first in the

E. Cartan’s landmark classification of the symmetric Riemannian manifolds,

which also led eventually to the classification of the semi-simple and reduc-

tive Lie groups. Hermitian symmetric space has three fundamental types:

flat ones; spaces with positive sectional curvatures or the compact type; s-

paces with negative sectional curvature type or the noncompact type. There

is a duality between the compact type and the noncompact type. All the

noncompact type can be realized as a homogeneous bounded domain in Cn.

See [Hel].

It turns out that there are many more complex homogeneous manifolds

other than Hermitian symmetric spaces.

There is a big class of Kähler homogeneous spaces (M,h). If h is an
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Hermitian metric, i.e., h(J , J ) = h( , ), we let ω( , ) = h( , J ), we call ω

the Kähler form of h. We say that (M,h) is Kähler if d(ω) = 0.

A compact complex homogeneous space with an invariant Hermitian

structure was classified by H. C. Wang in [W], see also [HKo]. In fact,

they classified the compact complex homogeneous space under compact Lie

groups. A Hermitian manifold is a Riemannian manifold. The identity

component of the Riemannian isometric group for a compact Riemannian

manifold is a compact Lie group. So is the identity component of the Her-

mitian isometric group for a compact Hermitian manifold.

Therefore, we have:

Proposition 1. If M = G/H is a compact homogeneous Riemannian

manifold with G connected, then G is a subgroup of a compact Lie group.

In particular, both G and H are reductive with compact semi-simple parts.

We then have (see [HKo] Theorem B):

Theorem 1. Any compact Hermitian homogeneous manifold is a com-

plex torus bundle over a rational (therefore simply connected) projective ho-

mogeneous space.

In the case in that h is Kähler, the fibration is a product. Kähler ho-

mogeneous spaces with a Semisimple Lie group were classified by A. Borel

in [Bo], Kähler homogeneous spaces with a reductive Lie group were classi-

fied by Matsushima in [Mat]. Eventually, Káhler homogeneous spaces were

classified by Dorfmeister and Nakajima in [DN].

Theorem 2. Any simply connected Kähler homogeneous space is, bi-

holomorphically, a product of a rational projective homogeneous space, a Cn

and a bounded homogeneous domain in Cm.

Therefore, the classification problem for the Kähler homogeneous spaces
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were completely solved.

After 1987, more attentions go to the classifications of non-Kählerian

complex homogeneous spaces; compact complex manifolds with an open

orbit, i.e., almost homogeneous spaces (cf. [HO]).

The rational projective homogeneous spaces are Kähler-Einstein. There-

fore, the geometry on compact Kähler homogeneous spaces are relatively

simpler. People were more interested in non-homogeneous geometrical man-

ifolds.

The partial differential equations involved in the geometry usually are

very hard to be understood. Many of them are nonlinear. In many earlier

efforts, those equations were reduced into ordinary differential equations on

many doable situations.

One of the major case is in which the metric is invariant under a Lie

group action that has a real hyper-surface orbit. In this case, we call the

manifold being co-homogeneity one.

Theorem 3. Any compact cohomogeneity one complex manifold is al-

most homogeneous.

There are also many interesting results and conjectures over the charac-

teristics of certain classical homogeneous spaces.

Without a Kähler condition, the classification of compact complex ho-

mogeneous spaces will be addressed in the next section.

For noncompact case, there is a Kobayashi conjecture:

Conjecture 1. Let M = G/H be a complex homogeneous space with a

real Lie group G. Then the Kobayashi pseudo distance gives a holomorphic

fibration over a bounded homogeneous domain in some Cm such that the

Kobayashi pseudo distance on each fiber vanishes.
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See, for example, [Wi1] and [St]. We notice that for any compact complex

homogeneous manifold, the Kobayashi pseudo distance vanishes.

Complex homogeneous spaces of complex dimension three was classified

by Winkelmann [Wi2], where he also proved the Kobayashi conjecture for

complex dimension three.

2 Classification of Compact Complex
Homogeneous Spaces

In the 1960’s, there was a famous structure result for the compact complex

homogeneous spaces given by an Abel prize winner J. Tits [Ti].

Let M = G/H be a compact quotient of a complex Lie group G with

H a complex Lie subgroup. Assume that H0 is the identity component of

H. N = {n ∈ G|nH0n−1⊂H0}. We notice that H ⊂ N . We call N the

normalization of H0 in G. Then H0 is a normal subgroup of N . N/H =

(N/H0)/(H/H0). That is, H/H0 is a cocompact discrete Lie subgroup of

N/H0. We say that N/H is parallelizable. The holomorphic tangent bundle

of N/H is trivial, i. e., a product. That is (from [Ti]):

Theorem 4. For any compact complex homogeneous space M , we can

write M = G/H with a complex Lie group G and a closed complex Lie sub-

group H. Moreover, there is holomorphic fibration G/H → G/N such that

G/N is a rational projective homogeneous space and N/H is a parallelizable

complex homogeneous space.

Therefore, if we really want to classify all the compact complex homoge-

neous spaces, we need to do two things: (1) Classify all the compact complex

parallelizable complex manifolds. (2) Understand the bundle structure.

These were almost done in [Gu1]. First, let G be a complex Lie group,
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then there is a complex semi-simple Lie subgroup S such that G = SR with

R a complex solvable Lie normal subgroup of G. R is the maximal solvable

Lie normal subgroup of G. We call R the solvable radical of G and S a

Levi subgroup of G.

In [Gu1], we proved the following:

Proposition 2. Let G/H be a parallelizable compact complex homoge-

neous space, S be a Levi subgroup of G. Assuming that S is simple and acts

on R nontrivially. Then S = Al for a positive integer l.

Therefore, we have Theorem A there:

Theorem 5. Let G/H be a compact complex parallelizable homogeneous

space. Then there is a holomorphic fibration G/H → G/HR. Moreover,

assume that S is a Levi subgroup of G, then G/HR is an S compact complex

parallelizable homogeneous space. And any factor of S which acts on R

nontrivially is of Al type.

We notice that R/(H ∩R) is a solv-manifold. Therefore, it is natural to

reduce the classification to the classification of the solv-manifolds and the

irreducible representation of Al on solv-manifolds.

Then it is natural that we have Theorem B, then Theorem C, D, G, H

in [Gu1]. They are quite technical and therefore we do not state them here.

The interested reader might just look at [Gu1]. This work was done at the

end of last century. Some constructions in the last three paragraphs in the

fifth section of [Gu1] was also appeared in [SW].

Lower dimensional compact complex solv-manifolds of complex dimen-

sion up to five was classified in [Gu2].
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3 Pseudo-kählerian homogeneous spaces

Let M = G/H be a complex homogeneous space, i. e., the complex struc-

ture is invariant under the action of G. Let ω be a differential (1, 1)-form on

M . We say that ω is pseudo-kähler if it is non-degenerate at every point. If

ω is also invariant under G, we say that (M,ω) is a pseudo-kählerian homo-

geneous space. We notice that if ω is positive, then ω is Kähler. Therefore,

pseudo-kähler is a generalization of Kähler. It can be also regarded as the

semi-Riemannian version of generalization to the Riemannian geometry as

for the Kähler geometry. Recall that a semi-Riemannian manifold (M, g) is

a pair of a differential manifold and a differentiable nondegenerate symmet-

ric 2-tensor g on its tangent bundle. If g is positive definite at every point,

we have a Riemannian structure. For a pseudo-kähler manifold (M,ω),

g( , ) = ω( , J ) introduces a natural semi-Riemanian structure on M .

After the completion of the classification of Kähler homogeneous space

(cf. [DN]), it is natural to classify the pseudo-kählerian homogeneous spaces.

For the Kähler case, it is easy to see that H can be compact. Therefore

H is reductive. In the case in which M is compact, we also have that G can

be compact.

However, in the pseudo-kähler case, both H and G could be much more

complicated. This made the classification much more complicated, even

when M is compact. However, in [DG1], we proved:

Theorem 6. If (M = G/H,ω) is a compact pseudo-kählerian homoge-

neous space, then G and H are compact. The Tits’ fibration for the com-

plexification GC is a product of pseudo-kähler homogeneous spaces and the

fibers are compact complex torus.

In the proof, we used both Tits’ fibration from [Ti] and Hano-Kobayashi
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fibration from [HKo]. Actually, we proved that

Theorem 7. If M = G/H is a compact complex homogeneous space

with an invariant volume form, then the Tits’ fibration and the HK fibration

are the same.

The Hano-Kobayshi fibration is actually the Ricci form fibration.

Let V = Kdz ∧ dz̄ be the invariant volume form, then ∂∂̄ logK is a global

differentiable 2-form on M , which we call the Ricci form. The fibers of the

Ricci form fibration are just the integrating sub-manifolds of the distribution

given by the kernel of the Ricci form. One could also see in [Gu3] page 66,

Remark for a detail understanding of this fibration.

In general, the classification of certain type of pseudo-kählerian homo-

geneous spaces is very difficult due to the complication of the isotropic sub-

group H. Therefore, we tried the case that G is reductive. Fortunately, we

succeeded. In [DG2, DG3, DG4], we proved the following:

Theorem 8. If (M = G/H,ω) is a pseudo-kählerian homogeneous

space with a reductive Lie group G. Then H is also reductive. Moreover,

G = C × S with C abelian and S semisimple, and M is a product of a flat

pseudo-kählerian homogeneous space C/H ∩ C and a Wolf space S/H ∩ S.

The Wolf spaces are the pseudo-kählerian homogeneous spaces found

in [Wo] by Professor Wolf in the 1960’s when he was working on infinite

dimensional representation theory of semi-simple Lie groups. Let S be a

semi-simple Lie group, T a compact torus in S. Let H = CS(T ) = {s ∈

S|st=ts, for any t∈T } be the centralizer of T , then G/H is a Wolf space and is

simply connected. If H is compact, then M = G/H is Kähler. This gives

Borel’s result in [Bo] (resp. Matsushima’s result in [Mat]) of the classification

of semi-simple (resp. reductive) Kähler homogeneous spaces. In particular,
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if S is compact, G/H is a rational projective homogeneous space.

When G is reductive, we obtained a generalization of Theorem 2 in the

pseudo-kählerian case in [DG4]:

Theorem 9 Let (M = G/H,ω) be a pseudo-k”ahlerian homogeneous

space with G reductive, then M is biholomorphically a product of rational

projective homogeneous space, a flat pseudo-kählerian homogeneous space

and a pseudo-kählerian homogeneous space of open Wolf type. Moreover, the

bounded holomorphic function fibration is a trivial bundle over a bounded

symmetric domain, with fibers of reductive pseudo-kählerian homogeneous

space with only constant bounded holomorphic functions.

Further efforts on the classification of compact complex homogeneous

spaces with a (non-necessary invariant under the group action) pseudo-

kählerian form were carried out in [Gu3, 4]. We shall address this in a

later section.

Following [Wi2], one could also classify the homogeneous pseudo-kähler

spaces up to complex dimension three, and check the Hano-Kobayashi fibra-

tion.

4 Compact cohomogeneity one manifolds

Since the classification of compact complex homogeneous spaces are almost

fully understood and they did not provide enough information for geomet-

rical analysis on compact complex manifolds, we study a bigger class of

compact complex manifold called compact almost homogeneous complex

manifolds.

A compact complex manifold M is called an almost homogeneous

manifold if the holomorphic automorphism group has an open orbit on M .
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In complex geometry, a major problem is to find Kähler-Einstein metrics

on compact complex manifolds.

A compact complex manifold M is Einstein if there is an Hermitian

metric h such that Ric(h) = kh in any sense. However, in this survey article

we only consider the case in which the Ricci curvature tensor is given by the

Ricci form defined by the volume form in our earlier sections.

When k is a constant, we could assume that it is in three different situ-

ations: k = −1, k = 0, k = 1.

In the case in which k = −1, h must be Kähler, the problem was started

by Calabi, who proved the uniqueness and the third order estimate [Ca1, 2,

3]. We called this the first Calabi problem as the special case of the first

Calabi conjecture. Then the problem was fully resolved mild independently

by Aubin [Au] and Yau [Ya] with handy proofs. To be fair, one has to say

that Yau’s solution of this conjecture was heavily depended on the earlier

work of Calabi and Aubin. See the Math review of [Ya], for example. In this

case, the Ricci curvature defines a negative (1, 1) form in the first Chern class

C1(M) ∈ H1,1(M) ∩H2(M,C). We have following Aubin-Yau Theorem:

Theorem 10. If M has a negative first Chern class, then M admits a

Kähler-Einstein metric.

In the case in which k = 0, one has the generalized Calabi first problem:

Problem 1. Find all the compact Hermitian manifolds such that the

metric h is Einstein, with the Ricci form defined earlier.

When h is Kähler, this is a special case of the second Calabi conjecture,

which says that for any compact Kähler manifold and any 2-form α in the

first Chern class, there is a Kähler metric such that α is the Ricci curvature

form of the Kähler metric. This was proven by Professor Yau in [Ya] also,
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which, together with his other outstanding achievements in Riemannian

geometry, garanteed him winning the Fields medal.

Theorem 11. If M is a compact Kähler manifold with a Kähler class

γ ∈ H1,1(M)∩H2(M,C), then for any (1, 1) form α in the first Chern class,

there is a Kähler metric ω in γ such that Ric(ω) = α.

In particular, if M is a Kähler manifold with a zero first Chern class,

then there is a Ricci flat Kähler-Einsten metric in any given Kähler class.

That is, the Ricci form of the solution Kähler metric is zero. In this case,

we call (M,ω) a Calabi-Yau manifold.

We notice that the Calabi-Yau manifolds do not give all the Ricci flat

compact complex manifolds. For example, a compact complex parallelizable

manifold has an invariant holomorphic volume and a zero Ricci form.

Therefore, the existence problem for the compact Kähler manifold was

completely solved when the first Chern class C1(M) ≤ 0. The solution is

somehow more topological and is very easy to check.

When k = 1, the situation is quite different. If M has a positive first

Chern class, we call M a Fano manifold. The following Theorem is due

to Matsushima [Ma]:

Theorem 12. If M is a Fano manifold and is Kähler-Einstein, then

the automorphism group is reductive.

It seems that this obstruction is good enough for dimCM = 2. After

long struggle through Professors Siu, Y. T. [Si1] and Tian, G.-Yau, S. T.

[Tia1], [TY], [Tia2], the following result was obtained by [Tia2]:

Theorem 13. Let M be a Fano surface, then M is Kähler-Einstein if

and only if M has a reductive automorphism group.

There are very few Fano surfaces. They are homogeneous surfaces CP 2,
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CP 1 × CP 1 = Q2; almost homogeneous manifolds: Pl, l = 1, 2, 3; and

projective manifolds Pl, l = 4, 5, 6, 7, 8. Here Pl are blow up of CP 2 at l

generic points. Except Pl, l = 1, 2, all other Fano surfaces have reductive

automorphism group. Tian’s proof was very technical.

We have to say that this solution for the surfaces case depends heavily on

the classification of Fano surfaces. And there was not any stability involved.

Indeed, it is possible:

Conjecture 2. For any Kähler class on a Fano surface, there is an

Calabi extremal metric in the given Kähler class.

Here, a Kähler metric is Calabi extremal if its scalar curvature is a

potential function of a holomorphic vector field.

One notice that when C1(M) < 0, there is no holomorphic vector fields

on M and when C1(M) = 0, up to a finite covering, M is a product of

compact complex torus, Calabi-Yau manifolds Yi such that H l,0(Yi) = 0

when l 6= 0, ni = dimC Yi and H0,0(Yi) = Hni,0(Yi) = C; hyperkähler

manifolds Kj such that H l,0(Kj) = 0 when l is odd or bigger than mj =

dimCKj and H l,0(Kj) = C when l is even and ≤ mj . In the last case,

H∗,0(Kj) is generated by a holomorphic symplectic structure in H2,0(Kj).

That is, all the holomorphic vector fields come from the first factor, the

compact complex torus. Therefore, the Fano condition in Theorem 12 is

artificial, unnecessary.

However, we see that the case in which the automorphism group is kind

of rich, with its Lie algebra consisting of the holomorphic vector fields, is

exactly in the Fano case.

Therefore, it is very natural to classify almost homogeneous Fano mani-

fold of complex dimension three with a reductive Lie group. This was done
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in [Gu5, 6, 7].

Even so, it is still quite hard to find Kähler-Einstein metric for the

almost homogeneous manifolds. First we consider a general classification

of compact almost homogeneous manifolds. Let M be a compact complex

almost homogeneous manifold and O be an open orbit, then M − O is a

lower dimensional subvariety. The following result was well-known, see, e.

g., [Ah], [HSn].

Theorem 14. Let M be a projective almost homogeneous manifold un-

der a complex Lie group G and G has an open orbit, then M−O has at most

two connected components. We call the manifolds compact complex almost

homogeneous manifold of one or two ends, according to the number of the

components of M − O being one or two. In particular, if M has two ends,

then M has three G orbits O, E0 and E∞, and O is a C∗ bundle over a

projective homogeneous space Q.

We see that the compact complex almost homogeneous manifolds with

two ends are easier to be handled and the maximal compact subgroup of G

has a real hypersurface as an orbit. We call the projective almost homoge-

neous manifolds with two ends the type III cohomogeneity one Kähler

manifolds.

Recall that a Riemannian manifold is cohomogeneity one if its isom-

etry group has a real hypersurface orbit.

Proposition 3. Any compact cohomogeneity one Kähler manifold is

almost homogeneous.

This is also the Theorem 3 we mentioned earlier. The type III case with

the Einstein problem was done by Sakane and Koiso [KS]. They gave the first

nonhomogeneous examples of compact Fano manifolds with Kähler-Einstein

13



metrics. Their results are seemly even earlier than the examples given by

Siu, Tian-Yau on the Fano surfaces. They used Kobayashi’s construction of

the Riemann metrics on the S1 bundles.

Theorem 15. A Fano almost homogeneous manifold with two ends

admits a Kähler-Einstein metric if and only if the Futaki invariant corre-

sponding to the S1 action is zero.

For a general Kähler class γ 6= C1(M), we can not have a Kähler-Einstein

metric. Therefore, it is interesting to find a Kähler metric with a constant

scalar curvature. Even in the Ricci class, in the compact complex almost

homogeneous manifold with two ends, there is an obstruction of the Futaki

invariant (cf. [Fu]). Therefore, it is natural to find some other kind of

canonical metrics.

In early 1980’s Professor Calabi [Ca4, 5] defined the Calabi extremal

metrics being the critical metrics for the functional:

ω →
∫
M
R2ωn

which is called the Calabi functional. Here, R is the scalar curvature of

the metric.

Calabi prove that:

Theorem 16. The Kähler metric g is extremal if and only if the lifting

of dR is a holomorphic vector field.

The following result was given by Professor Andrew Hwang (Cf. [Hw]),

when we were trying to find Kähler-Einstein metrics, using a Ricci class

method.

Theorem 17. A Fano almost homogeneous manifold with two ends

always admits a Calabi extremal metric.
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We were able to prove the following result by a calculation of the scalar

curvature equation in [Gu8]. By our argument (but not the one in [Hw])

it is easy to see that the Yau-Tian-Donaldson conjecture generally does not

hold for Kähler metrics with constant scalar curvature. It is about the

positive lemma involved there. This was also pointed out many years later

by an Inventiones paper [ACGT]. One notices that the admissible metrics

construction there was very restricted and does not include the compact

complex almost homogeneous with two ends. So did [Hw] do not eventually

treat the compact complex almost homogeneous manifold with two ends but

only some special cases of the admissible metrics.

Theorem 18. For any Kähler class on a compact complex almost ho-

mogeneous manifold with two ends, there always exists a Calabi extremal

metric in the given Kähler class.

However, to apply the Ricci flow method to get some kind of generaliza-

tion of the Kähler-Einstein metrics, it is natural to consider the complex

quasi-Einstein metrics which is the fixed point of the generalized Ricci

flow:

gt = Ric(g)−HRic(g).

Here HRic is the harmonic part of Ric.

A Kähler metric ω is a generalized complex quasi-Einstein metric

if there is a function f such that let X be the vector field obtained by the

lifting of df , then

LXω = Ric(ω)−HRic(ω).

In [Gu9], we obtained:

Theorem 19. X must be holomorphic. Moreover, for any Kähler class

on a compact complex almost homogeneous manifold with two ends, there
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always exists a generalized complex quasi-Einstein metric.

These works took care of the compact almost homogeneous manifolds

with two ends, which were done when I was a Ph. D. graduate student. We

shall mention the Maxwell-Einstein and the generalized Kähler Ricci-soliton

metrics (somehow we would not treat some similar m-Calabi metrics) in our

section 8.

Somehow, we did not get any new Kähler-Einstein metric at that time.

Obviously, there are many non-type III compact co-homogeneity one Kähler

manifolds, see [Ah], [HSn] for example. As professor Huckleberry once men-

tioned later on, some people wanted to do it, but none knew how to do

it.

Eventually, we found some simple series of examples Nn and Mn in [GC].

They are compact co-homogeneity one Kähler manifolds of type II but Nn

behave as type I manifolds. Let Pn = CPn ×CPn, then SL(n+ 1,C) acts

on Pn diagonally with two orbits: D = {(x, x)|x∈CPn} and O = Pn−D. Mn

is just the blow up of Pn along D and the symmetric group S2 = Z2 acts on

Pn with D being the set of fixed points. Let Q2 = P2/S2, then N2 is just

the blow up of Q2 along D. Moreover, SU(n+ 1) acts on Pn, Mn, Nn as a

cohomogeneity one action, i. e., with real hypersurface orbits.

Let H be a real hypersurface orbit, then H = K/L, and assuming that

A = {k ∈ K|kh=hk for any h∈L} be the centralizer of L in K, A is of real

dimension either one or three. If A is one dimensional, we say that the

compact co-homogeneity one Kähler manifold M is of type I if it is not a

type III manifold. If M is not of type I or type III, we say that M is of

type II. See [Gu21].

Basically, we proved the following:
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Theorem 20. For any Kähler class on a compact cohomogeneity one

manifold with zero first Betti number which is not of type III, there is a

Kähler metric in the given Kähler class with a constant scalar curvature if

and only if certain topological integral is smaller than zero.

This integral is the negative of the generalized Futaki invariant related

to the exceptional closed orbit. We notice that since it is not of type III,

the exceptional orbit is connected and homogeneous.

In our case, the necessary condition here is stronger than the semi-stable

property of the closed orbit in the work of Professors Ross and Thomas [RT].

The proof of Theorem 20 for the type I manifolds was published in

[Gu10]. The sufficient part (corresponding to the Uhlenbeck-Yau part for

the holomorphic vector bundle case, see [UY]) for the type II manifolds

was published in [Gu11, 12, 13]. However, the necessary part (correspond-

ing to the Kobayashi part, cf. [Kb1, 2]) for the type II manifolds is more

complicated and is to be published later on. See [Gu14], for example.

Therefore, we obtained infinite many Kähler-Einstein manifolds as well

as infinite many Fano manifolds without any Kähler-Einstein metric.

Basically, we used Kähler-Einstein metrics (or Kähler metrics with con-

stant scalar curvature) smooth on the open orbit O but with conic singu-

larities on the exceptional orbit M − O to approach the required smooth

metrics. The generalized Futaki invariant is naturally coming from the pos-

sible obstruction for this process.

Our approach also led to the following:

Conjecture 3. Any smooth complex hypersurface in CPn is Kähler-

Einstein.
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5 Compact complex homogeneous spaces with in-
variant volume

When a complex homogeneous space admits an invariant volume form, one

can define the Ricci form as earlier in section 3. Then the kernel of the

Ricci form gives a distribution on the space. In [HKo], Professors Hano and

Kobayashi proved that the distribution is complex and integrable. There-

fore, it gives a real fibration with complex fibers. The fibration might not

be holomorphic. Our Theorem 7 says that in the case in which M = G/H

is compact, the fibration is actually holomorphic. After the classification

of the compact pseudo-kähler homogeneous space in [DG1], it is natural to

consider the same question for compact complex homogeneous spaces with

an invariant symplectic structure or even volume form.

The symplectic structure case was actually done in [Hu]. See also [Gu3].

Theorem 21([Gu3]). Let M = G/H be a compact complex homogeneous

space such that there is a non-degenerate 2-form ω which is invariant under

the action of G, then M is a product of a projective rational homogeneous

space and a compact complex torus.

This result implies that the compact complex homogeneous space with an

invariant symplectic structure is not much different from a compact Kähler

homogeneous space. This is obviously not true for compact complex homo-

geneous spaces with invariant volume forms. First, if M = G/H is compact

complex homogeneous with G compact as dealt with by H. C. Wang in [W]

and Hano-Kobayashi in [HKo], then M admits a G invariant volume. We

call this kind of homogeneous spaces the Wang spaces. Next, if M = G/H

is compact complex parallelizable with H a discrete co-compact subgroup,

then G is unimodular and admits an invariant volume. Therefore, any prod-
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uct of a Wang space and a compact complex parallelizable homogeneous

space admits an invariant volume. Fortunately enough, by our insight from

Theorem 7, this is not very far from a classification.

In [Gu] we have:

Theorem 22. Any compact complex homogeneous space with an invari-

ant volume is a compact complex torus bundle over a product of a Wang

space and and a compact complex parallelizable space.

6 Compact complex manifolds with holomorphic
symplectic or pseudo-kähler structures

It is very important to understand the classification of compact complex sur-

face, that is, compact complex manifold of complex dimension two. And it

is also very important to understand compact Riemannian manifold with a

special holonomy group. In general, a real n dimensional compact orientable

Riemannian manifold might have a holonomy group SO(n). When it is a

complex m dimensional compact Kähler manifold, the holonomy group re-

duced to U(m). When the holonomy group is a subgroup of SU(m), the

Kähler metric has a zero Ricci curvature. In the later case, as we men-

tioned earlier that the interesting cases are the Calabi-Yau manifolds and

the hyperkähler manifolds. Hyperkähler manifolds have even complex di-

mension 2l since a nondegenerate 2-form can only have an even rank, and

the manifolds have holonomy group Sp(l).

One of the Kodaira conjectures was that (proven in [Si2])

Theorem 23. A compact complex surface S is Kähler if and only if the

first Betti number of S is even.

The proof finally reduced to the K3 surfaces, which are simply connect-
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ed compact complex surfaces with non-degenerate holomorphic volumes (or

holomorphic symplectic forms). So, the question is: Is any K3 surface a

Kähler surface? Professor Todorov published a paper in Inventiones [To]

and claimed the proof. But Professor Siu pointed out some defect in the

Mathematical Review and published another paper in Inventiones [Si2] prov-

ing the conjecture.

The question left: Is any simply connected compact complex manifold

with a holomorphic symplectic structure a Kähler manifold?

Professor Todorov wrote another long paper and claimed that all of them

were also Kähler.

After a long time, none could say that he was correct or not. But most

people believed that this was true. It was similar to the situation for the

Bogomolov-Todorov-Tian unobstructed Theorem for the Calabi-Yau mani-

folds, for which Professor Tian eventually gave a clean solution in [Ti3].

When I was a Ph. D student in UCBerkeley, Professor Todorov gave a

talk. Then I started producing compact complex homogeneous spaces with

holomorphic symplectic structures in [Gu3]. I realized that they must be

complex parallelizable and even must be a solvmanifold. That is, M = G/H

with G solvable. We constructed more examples of solvmanifolds even with-

out requiring that G to be complex. See [Gu3]. Then we came to the simple

examples of Kodaira-Thurston surfaces. A Kodaira-Thurston surface is a

compact complex nonkähler surface with a holomorphic symplectic struc-

ture. By the solution of the Kodaira conjecture that it has an odd first

Betti number. And it is a quotient of a real nilponent Lie group. Actual-

ly, its universal covering as a real Lie group has a right invariant complex

structure on G.
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Theorem 24. Let S be a compact complex surface with a holomorphic

symplectic structure, consider S(k) be the symmetric product of S. It consists

of k points in S without order. Then there is a smooth complex manifold

S[k] over S(k) with induced holomorphic symplectic structure.

Here we say that a complex manifold M is over N if there is a holomor-

phic map π : M → N such that π−1(n) is a point for a dense open set of N .

We call S[k] the k-th Hilbert scheme of S.

Basically, there are only three kind of such S: a complex two dimensional

torus, a K3 surface, a Kodaira-Thurston surface.

S[k] are Kähler if S is either a complex torus or a K3 surface.

S[k] is not simply connected when S is a Kodaira-Thurston surface and

is not Kähler.

A Kodaira-Thurston surface is a Lagrange torus fibration over a torus.

Moreover, the center of G acts on the fiber as a holomorphic complex torus

action C. The C action lifted to an action on S[k]. Let a : S → T be

the fibering map. Then there is a map a :
∏
i Si → T , with Si = S such

that a(s1, · · · , sk) = a(s1) + · · ·+ a(sk). This induces a map a : S(k) → T .

Locally, we can regard a as a holomorphic function on S[k]. Then da is a

holomorphic 1-form. Using the holomorphic symplectic structure ω we lift

da to a holomorphic vector field Xa = ω∗( , da). Then Xa corresponds to

the diagonal C action on S[k]. One naturally have a holomorphic symplectic

reduction Rk = a−1(0)//C. However, Rk usually is only an orbifold but not

a manifold. To get a manifold, a natural way is to get a covering π : R̃k → Rk

such that R̃k is a smooth manifold. This kind of covering is called a good

covering and was studied by Thurston for real three dimensional manifold.

To find this kind of good coverings we have to choose the right Kodaira-
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Thurston surface by adding a topological condition on the torsion part of

the fundamental group of S.

By calculating a topological bilinear form on the second cohomology of

R̃k, we were able to prove in [Gu15] that

Theorem 25. For k > 2, R̃k is a simply connected compact holomorphic

symplectic manifold which, as a topological differentiable manifold, does not

admit any Kähler structure.

In the proof, we also corrected an error of Professor Fujiki on the topo-

logical bilinear form on the second co-homology group for the Kähler case.

We actually proved in [Gu15] that the Lefschets property for the Kähler

manifold does not hold for R̃k.

Theorem 26. For k > 2, the Lefschetz Theorem does not hold for R̃k

with any closed 2 form.

After we submitted the paper to Inventiones as Professor Todorov and

Siu did earlier, the referees claimed first that my construction did not work,

then they said that my construction was ok but my proof was wrong, they

gave an idea of their thought for the case of k = 3 in the referee report. Ba-

sically, the idea is, one find a covering of S(k) first, then apply the symplectic

reduction. It is like, to go from the northwest corner of a block in a city to

its southeast corner, you might go to the south first and then the east as I

did, or go to the east first then the south. I worked out their “proof” for

the complex dimension four and generalized it to all the cases with k > 2.

Then, someone asked me where Professor Todorov was wrong. I said that

it was not my obligation.

As such, Professor Gromov introduced me to Professor Bogomolov. Pro-

fessor Bogomolov realized that one can just use a sub-manifold S in R̃k to
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prove the nonkählerness of our manifold. Since if the ambient manifold is

Kähler, then the sub-manifold is also Kähler. But S is nonkähler, as Pro-

fessor McDuff did in her construction [MD] of a simply connected compact

nonkähler real dimension ten real symplectic manifold. Later on, simply

connected compact nonkähler real six and four dimensional real symplectic

manifolds were constructed by Professor Gompf in [Gf], possibly stimulat-

ed by our work. Our work was submitted in the summer 1993. A similar

construction, generally called the Kummer construction, was used by Pro-

fessor Joyce to construct the first compact simply connected Riemannian

manifolds with special holonomy group G2 (seven dimensional) and Spin(7)

(eight dimensional) in [Jo], possibly also stimulated by our work.

Anyway, Professor Bogomolov obtained

Proposition 4. For k > 2, R̃k, as a complex manifold, is not Kähler.

Therefore, he gave an alternative negative answer to Todorov’s question

with a simpler argument, to the nonkähler property. Somehow, he had prob-

lem with the restriction of the fundamental group of the Kodaira-Thurston

surface to be chosen. I informed him the choosing condition. I also talked

to one of the referees of his paper. After that, with possibly helping from

Professor Siu, both papers were accepted. As a matter of fact, in that year,

1995, Professor Bogomolov published three papers with a similar feature:

gave a different proof for several important results, completely or partially.

After that, motivated by our construction, Professor Fernandez et al

published a paper in Annals [FM] constructing a simply connected compact

real eight dimensional real manifold with a real symplectic structure which is

not formal. Formality is a condition with which a compact Kähler manifold

should satisfy.
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Theorem 27. There is a simply connected non-formal real eight dimen-

sional manifold with a real symplectic structure.

I was told about this result by Professor Fernandez and we proved that:

Theorem 28. R̃3 is not formal.

The real dimension of R̃k is 4k − 4. For k > 3 we have:

Conjecture 4: R̃k is not formal for k > 2.

Also, the classification of compact complex homogeneous spaces with

(non-necessary invariant) pseudo-kähler structure were classified in a series

of papers in [Gu3, 4, 16, 17]. For the Kähler case, it was proved by [BR]

that M is a product of projective rational homogeneous space and a complex

torus.

Theorem 29. Any compact complex homogeneous space with a real

symplectic structure is a product as a compact complex homogeneous space

of a rational projective homogeneous space with a solv-manifold with a re-

al symplectic structure. If M is pseudo-kählerm the second factor is also

pseudo-kähler with an abelian nilradical. If M is Kähler, then the second

factor is a complex torus. If M is holomorphic symplectic, then the first

factor is a point.

Further more, in a third paper for the examples of the nonkählerian

holomorphic symplectic structure, we proved in [Gu29] that

Theorem 30. For our manifolds M = R̃k, H2(M,C) = H0,2(M) +

H1,1(M) +H2,0(M). Moreover, there is a bilinear form on H2(M,R) with

one dimensional kernel .

Theorem 31. Let M be a simply connected compact holomorphic sym-

plectic manifold, if

H2(M,C) = H2,0(M) +H1,1(M) +H0,2(M),
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then M is unobstructed.

We applied a symplectic geometry proof other than the earlier ones.

Moreover, we proved:

Theorem 32. For all the known simply connected compact holomorphic

symplectic manifolds, it is deformation equivalent to a holomorphic sym-

plectic manifold, which is a Lagrange complex torus fibration over a complex

projective space.

Therefore, one have:

Conjecture 5. Any simply connected holomorphic symplectic manifold

is deformation equivalent to a holomorphic symplectic manifold which is a

holomorphic Lagrange torus fibration over a complex projective space.

This was later on called as the SYZ conjecture for the holomorphic sym-

plectic manifolds, especially by Professor Todorov.

7 Compact homogeneous spaces with complex
structures

It was well-known that (cf. [W])

Theorem 33. Let G be an even dimensional compact Lie group, then

on it, there is a G invariant complex structure.

One could construct the complex structure through the complexification

GC of G. Let T be a Cartan subgroup of GC and P be a parabolic subgroup

containing T . Since T ∩ G is a real compact torus in G. One can regard

T as (C∗)k, where k is the rank of G. GC/P = G/(T ∩ G) is a projective

rational homogeneous space. By our assumption k = 2l is even. Let π :

Ck → (C∗)k be the natural universal covering. π−1(1) is generated by

αj = (aj1, · · · , ajk), ajs = 0 if s 6= j; ajj = 2πi, where 1 ≤ j ≤ k. One could
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choose a subspace Cl of Ck such that π(Cl) is closed in (C∗)k and αj are

not in (C∗)l. For example, Cl has points of (b1, ib1, b2, ib2, · · · , bl, ibl). Let

P = TU with U the nil-radical of P and HC = π(ClU), then GC/HC = G

has the natural complex structure induced from GC.

The same arguments works for the compact even dimensional homoge-

neous spaces G/H with G compact such that there is a subgroup J with

G/J rational projective homogeneous and J/H being a torus. For example,

the Hopf manifolds, and S2n+1 × S2m+1.

Question 1. When does a compact homogeneous space G/H, with G

compact admit a complex structure?

It was well-known that S2n does not admit any almost complex structure

if n is not 1 or 3.

Conjecture 6. S6 does not exist any complex structure.

Around 1986, Professor C. C. Hsiong, the initiator of the Journal of

Differential Geometry gave a “proof”. When he was giving a talk in the

Institute of Mathematics, Academia Sinica, I was sitting there and I found

his proof was wrong. Since Professor D. Z. Dong came late, I gave my “note”

to him and told him that the proof was wrong.

Around 2003, Professor S. S. Chern had another effort before he passed

away. Therefore, someone called it the Chern’s Last Theorem [MN]. See

also [Br]. We understood that the problem was still open.

Around 2005, Professor Etesi posted another negative “proof” in the

arXiv saying that there was a complex structure on S6, but quickly with-

drew. Around 2011, he posted another “proof” of his claim in the same

place, which was eventually published in 2015. See [Et1].

Two developments occurred after that: 1. Professor Etesi wrote anoth-
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er paper and claimed that there is a conjugated G2 orbit in G2, which is

diffeomorphic to S6, and it is a complex three dimensional sub-manifold of

G2 with the same complex structure he published earlier [Et2]; 2. Professor

Atiyah posted a “proof” of the conjecture in arXiv in 2016 [At], possibly

with an effort of trying to disprove Professor Etesi’s conclusion.

It seems that there is no general agreement in the mathematical society.

By using the homogeneous space theory, we were able to prove in [Gu18]

that Professor Etesi’s second claim in [Et2] does not hold.

Theorem 34. The conjugated G2 orbit in G2 mentioned by Professor

Etesi is not a complex submanifold of G2.

With a proof of that the algebraic dimension of any complex structure

on S6 is zero (cf [CDP1], [CDP2]), our result implies that the following

conjecture is true:

Conjecture 7. There is no compact complex threefold of S6 type in

G2.

8 Compact complex manifolds with Maxwell-
Einstein metrics and Generalized Ricci Solitons

8.1 Maxwell-Einstein metrics and so on

Definition 1. For any given Kähler class, there is a Maxwell-Einstein metric

conformally related to the Kähler class if g̃ = u−2g is an Hermitian metric

with a constant scalar curvature such that u is the Hamiltonian function of

a holomorphic vector field related to a Kähler metric g in the given Kähler

class.

Here, again, we consider compact almost homogeneous manifolds with

two ends. Consider that the metrics being invariant under the action of the
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maximal compact Lie group on the C∗ bundle, it can be seen that if g is

a Maxwell-Einstein metric, then u = aU + b for some a, b ∈ R, where U is

the normalized potential function of the holomorphic vector field on the C∗

bundle such that U ∈ [−1, 1]. That is, U achieves −1 on the zero section of

the corresponding line bundle and 1 on the corresponding infinity section.

From [Dr], p.119, (6.1), or [Au], p.126, (1), we have that the scalar

curvature of g̃ is:

S̃ = −2
2n− 1

n− 1
v−

n+1
n−1 ∆v + Sv−

2
n−1 (1)

= 2(2n− 1)(u∆u− n|Du|2) + Su2

Here v = u−n+1 and S being the scalar curvature of our Kähler metric

g. Notice that here we have a different sign for the Laplacian.

We then in [Gu28] have:

Theorem 35. (cf. [KS], [Gu8]) There is a Maxwell-Einstein metric

related to any given Kähler class on a compact almost homogeneous manifold

with two ends.

Around twenty years ago, after we seeing [HSi1, 2] and [De], I came up

with this kind of metrics and obtained some partial result of this Theorem.

I told Professor Kobayashi about it. However, somehow, first we did not get

further Hermitian-Einstein metric in the Riemannian sense and second, by

the proof of Yamabe conjecture, every Kähler metric is conformally related

to a Hermitian metric with a constant scalar curvature, just as every Her-

mitian metric has a smooth Riemannian scalar curvature, we did not pay

much attention to these metrics. However, recently, after the publications of

LeBruns two papers [LB1,2], it seems to us that Maxwell-Einstein metrics

became a hot topic in the mathematical community.
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Together with Calabi extremal metrics and the quasi-Einstein metrics,

we have three virtual-Kähler-Einstein metrics on compact almost homoge-

neous manifolds with two ends now.

Moreover, there was another kind of virtual-Kähler-Einstein metrics on

these kind of manifolds, which was called generalized Kähler Ricci solitons,

defined by [Na].

The existence result was obtained in [Gu23]. Since it is difficult for the

mathematics community to reach that article, we would like to copy some

of the results in the next two subsections for the convenience of the readers.

This material also shows the general strategy how did we approach a proof

of our Theorem 35.

Above discussions shows that on CP 2 blow up one point, there exists

all these four kind of standard metrics in any given Kähler class. One can

actually expect:

Conjecture 8. On CP 2 blow up two points, there always exist all of

these four kinds of canonical metrics in any given Kähler class.

8.2 Existence of the Generalized Extremal-solitons on Cer-
tain Completions of Line Bundles

In every Kähler class of a compact almost homogeneous manifold with two

ends we found a unique Calabi extremal metric in [Gu8], [Gu22]. See Theo-

rem 18. Recall that a compact Kähler manifold is almost homogeneous with

two ends if and only if it is an equivariant completion of a homogeneous C∗

bundle over a compact homogeneous Kähler manifold. Moreover, we found

a unique extremal metric in a given Kähler class on certain completion of

C∗ bundle if the function Φ in [Gu8] or [Gu22] is positive. We realized in

[Gu21] that this is equivalent to the geodesic stability of the Kähler class.
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Therefore, we see how important is the positivity of Φ in [Gu8]. There

are abundant evidences that the existence of the Calabi extremal metrics is

very rare. For example, in our construction, if the base manifold is negatively

curved, it is very difficult to get any Calabi extremal metric. In many cases,

Φ will not be always positive on the given open interval. Also, there is

another canonical metrics called the generalized quasi-Einstein metrics (cf.

Theorem 19). What are the relations between the existence of these two

kinds of metrics? In [Gu24], we defined a family of metrics called extremal

solitons which connects these two kinds of metrics. Again, the existence of

those metrics on compact almost homogeneous Kähler manifolds with two

ends is heavily depended on the positivity of Φ, through the positive Lemma.

Different from working on the Ricci class in the earlier works, in [Gu8]

we started to deal with the scalar curvatures directly. That made the break-

through in [Gu8]. The positive Lemma then secured the existence. We told

professors Kobayashi and Peter Li about our results and gave out our results

in the Riverside geometric conference in the spring 1992.

It turns out later on this positive Lemma is critical in the solution of the

existence of Kähler-Einstein metrics of cohomogeneity one [Gu11], [Gu13],

[Gu21], [Gu25].

In the following of this section we shall define a certain class of com-

pletions of C∗ bundles which we will consider and prove the existence of

the generalized extremal soliton metrics on them. To interpolate the ex-

tremal metrics and those quasi-Einstein metrics in [Gu9], which are a kind

of Kähler-soliton metrics as a generalization of Ricci-soliton metrics, as well

as extremal-solitons, we define a big family of generalized extremal soli-

tons which also take the generalized Kähler-Ricci soliton in [Na] as special
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examples. A Kähler metric is extremal if

R−HR = φ

where R is the scalar curvature, HR is the average of the scalar curvature

and φ a potential function of a holomorphic vector field. A Kähler metric is

a quasi-Einstein metric or a Kähler-soliton if

R−HR = ∆φ

where ∆φ is the Laplacian of a potential function of a holomorphic vector

field. When the Kähler class is the Ricci class or the negative Ricci class we

have exactly the Kähler Ricci-soliton. The Kähler Ricci-solitons were first

studied by H. D. Cao (see [Co]), Koiso [Ki1], [Ki2] and Tian, which was mo-

tivated by Hamilton’s similar work on the Ricci-solitons in the Riemannian

case.

A Kähler metric is an extremal-soliton if we have

R−HR = φ1 + ∆φ2

with two potential functions φ1, φ2 of holomorphic vector fields.

A Kähler metric is a generalized extremal-solition if we have

R−HR = φ1 + ∆φ2 + (∇φ3,∇φ4) (∗)

with four potential functions φi, i = 1, 2, 3, 4, of holomorphic vector fields in

the holomorphic version, and with four parallel functions in the equivariant

Mabuchi moduli space of the Kähler metrics in the parallel version (see

[Gu26]).

We see that the parallel version can be much more general since the space

of the potentials of holomorphic vector fields is only a finite dimensional
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vector space, while the space of the parallel infinitesimal Kähler potentials

is an algebra.

In this subsection 8.2 we consider the existence of the generalized extremal-

solitons. This generalized the results in [Gu8], [Gu9], [Gu24].

In particular we have:

Theorem 36. There is a continuous family of generalized extremal-

soliton metrics, defined by the equation (18), in every Kähler class on a

compact almost homogeneous manifolds with two ends, whenever the char-

acteristic equation of the corresponding homogeneous equation of (16) (which

defining our metrics and is just the equation (*) in our circumstance) has

two real roots, which interpolates the extremal metric and the generalized

quasi-Einstein metric we obtained before, as well as the generalized Kähler-

Ricci solitons defined in [Na].

In our proof, we see that this family is defined by the equation (18) with

above four functions. Therefore, the subset of the generalized extremal-

solitons has a real dimension of three. The condition in our Theorem 32,

i.e., with two real roots, is basically whenever our definition make sense.

In the process, we should prove a generalized version of the positive

Lemma, the Lemma 10.

This does not give the existence of the generalized Kähler-Ricci soliton

in [Na] 3.10 automatically. We need a little bit more work. A generalized

extremal-soliton is a generalized Kähler-Ricci soliton if φ3 = φ4, φ2 =

4φ3, φ1 = mφ2 with a constant m = πC1∧ωn−1

ωn , where C1 is the first Chern

class of M . We notice that m is just the product of π and the average of the

scalar curvature. In [Na] p.509 to 512, he gave an example. However, he was

not able to solve the problem for compact almost homogeneous manifolds
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with two ends. See page 512 there. We calculate the formula of φ1, which is

determined by b in (10), in the Lemma 9 carefully, in subsection 8.3. There

are three parts in the numerator and just one part in the denominator. We

are able to prove that when the characteristic equation has repeated real

roots, b is equivalent to the square (and the negative square) of the roots as

the root turns to the infinity. That gives us:

Theorem 37. There is always a generalized Kähler-Ricci soliton in any

given Kähler class if the base manifold has constant and positive trace Ricci

eigenvalues (see (4) after Lemma 1). In particular, if the base manifold

is compact homogeneous, there are generalized Kähler Ricci solitons in any

given Kähler class.

Our results can be regarded as a continuation of [Gu24] (and [KS1],

[KS2], [Ki2], [Gu22], [Gu8], [Gu9], [Gu21], [Gu27], [Na]). Thus we suggest

that the reader be familiar with the Kähler geometry and the material in

some of those papers. We state, without detailed proof, the Lemmas and

Proposition 5 similar to those in the afforementioned papers as follows. The

readers might take [Gu8], (Cf. [Gu9], [Gu27]) as the standard reference.

Most Lemmas and Proposition 5 can be actually found in [Gu8]. Lemma 2

and 3 can be found in [Gu27] (although they are not really necessary for this

result). Lemma 2 and 3 give us a better understanding of the construction.

Another way to understand our construction is that U in the Lemma 1 is

just the moment map of the C∗ action on the line bundle.

Let p : L → M be a holomorphic line bundle over a compact complex

Kähler manifold M and h a hermitian metric of L. Denote by L0 the open

subset L − {0-section} of L and let s ∈ C∞(L0)R be defined by s(l) =

log |l|h (l ∈ L0), where | |h is the norm defined by h. Now we consider a
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function τ = τ(s) ∈ C∞(L0)R which depends only on s and is monotone-

increasing with respect to s.

Let J̃ be the complex structure of L and J be the complex structure of

M . Now we consider a Riemannian metric on L0 of the form

g̃ = dτ2 + (dτ ◦ J̃)2 + g, (2)

where g(l) = p∗gτ(s(l))(m) with m = p(l) ∈ M and gτ is a one parameter

family of Riemannian metrics on M . Define a positive function u on L0

depending only on τ by u(τ)2 = g̃(H, H), where H is the real vector field

on L0 corresponding to the R∗ action on L0.

Lemma 1.(Cf [KS1], [Gu8] p. 2257) Suppose that the range of τ contains

0. Then g̃ is Kähler if and only if g0 is Kähler and gτ = g0 −UB, where B

is the curvature of L with respect to h and U =
∫ τ
0 u(τ)dτ

Throughout this section, we assume the following

(1) L̂ is a compactification of L0 and g̃ is the restriction of a Kähler

metric of L̂ to L0.

(2) The range of τ contains 0.

(3) The eigenvalues of B with respect to gτ are constant on M .

(4) The traces of the Ricci curvature r of g on each eigenvector space of

B are constant.

Condition (4) here is much more general than as it is presented in [Gu18],

[Gu22] in which we have:

(4)’ the eigenvalues of r are constants.

Our results cover some results which appeared in later years. For exam-

ple, if g has a constant scalar curvature and B has only one eigenvalue.

Abusing the language, we call the constants in (4) the trace eigenvalues.
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Let (z1, ..., zn) be a system of holomorphic local coordinates onM . where

n = dimCM . Using a trivialization of L0, we take a system of holomorphic

local coordinates (z0, ..., zn) on L0 such that ∂/∂z0 = H −
√
−1J̃H.

Here we notice that z0 corresponds to w1 in [Gu27] p.552, and s can be

regarded as Re(z0) near the point under consideration. So s is the x1 in

[Gu27] p.552. As in [Gu8], we let ϕ = u2 as a function of U and we let F be

the Kähler potential as in [Gu27] p.552. Then, by comparing [Gu8] Lemma

2 (or the Lemma 4 below) with [Gu27] p.552, we immediately have1

∂2F

∂s2
= g̃00̄ = 2ϕ.

This gives the following lemma.

Lemma 2. 2ϕ = ∂2F
∂s2

.

From H = 2−1 ∂
∂s we have 1

4(dτds )2 = ϕ and dτ
ds = 2u. Hence

U =

∫ τ

0
udτ =

∫ s

s(0)
2u2ds =

∫ s

s(0)

∂2F

∂s2
ds,

that is, ∂F
∂s = y1 up to a constant as presented in [Gu27] p.552, i.e.,

Lemma 3. U is the Legendre transformation of s.

Here we use the Legendre transformation in [Gu27] instead of the mo-

ment map in [Gu8] since we need the new insight in the later sections.

Remark 1. We can see in [Gu24] that the function U here, the Legendre

transformation in [Gu27] and the miraculous function U in [GC], [Gu11],

[Gu21] are special cases of the parallel coordinates along the curves in the

Mabuchi moduli space of Kähler metrics on compact almost-homogeneous

manifolds with actions of reductive groups.

1The F we used in [Gu27] is the 1
4

of the usual potential function in the Kähler
geometry. The difference might cause a constant factor in the calculations, e.g., for Lemma
2, but does not affect our conclusions.
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Let X̂i, X̂ī (0 ≤ i ≤ n) be the partial derivatives ∂/∂zi, ∂/∂z̄i on L0

and Xi, Xī (1 ≤ i ≤ n) be the partial derivatives ∂/∂zi, ∂/∂z̄i on M .

Lemma 4.(Cf [KS1], [KS2], [Gu8] Lemma 2) We have that

g̃00̄ = 2u2, g̃0̄i = 2uX̂īτ, g̃ij̄ = gij̄ + 2X̂iτ · X̂j̄τ (3)

where 1 ≤ i, j ≤ n. At the point P ∈ L0 considered, we can choose a local

coordinate system around m = p(P ) ∈ M such that (∂/∂zi)τ = 0 at m,

making X̂iτ = X̂j̄τ = 0 at P . Then if f is a function on L0 depending only

on τ , we have

X̂0X̂0̄f = u d
dτ

(
u dfdτ

)
, X̂iX̂0̄f = 0,

X̂iX̂j̄f = −1
2uBij̄

df
dτ , (4)

if f is a function on L0 depending only on t. The Ricci curvature at this

point is

r̃00̄ = −u d
dτ

(
u d
dτ log(u2Q)

)
, r̃0̄i = 0,

r̃ij̄ = p∗r0 ij̄ + 1
2u

d
dτ log(u2Q) ·Bij̄ , (5)

where Q = det(g−1
0 · gτ ). In particular, we have the scalar curvature

R̃ = ∆
Q −

1
2Q

d
dU

(
d
dUQϕ

)
(6)

where ϕ = u2 as a function of U and ∆(U) = Q
∑
i,j r0 ij̄g

ij̄
τ(U). We also

have ϕ′(minU) = 2 and ϕ′(maxU) = −2.

Lemma 5.(Cf. [FMS], [Mb], [Gu8] Lemma 3) We can also regard U as

a moment map corresponding to (g̃, J̃H) and gτ as the symplectic reduction
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of g̃ at U(τ). Furthermore, g̃ is extremal if and only if R̃ = a+ bU for some

a, b ∈ R.

Let M0 = U−1(minU) and M∞ = U−1(maxU). M0 and M∞ are

complex sub-manifolds, since they are components of the fixed point set

of H −
√
−1J̃H, which is semi-simple. Let D0 be the codimension of M0 in

L̂, D∞ be the codimension of M∞ in L̂.

Lemma 6.(Cf. [Gu8] Lemma 4) Suppose that there is another Kähler

metrics g̃∨ on L̂ in the same Kähler class, which is of form (1) on L0. Let

τ∨, g∨, U∨, Q∨, ∆∨, ϕ∨, u∨

be the corresponding metric and the corresponding functions of s. Then there

is a unique corresponding τ∨ such that g∨0 = g0. In this case, minU∨ =

minU (or maxU∨ = maxU) and Q∨ = Q, ∆∨ = ∆ hold. So we may write

D = maxU and −d = minU . Then

Q(U) = (1 + U
d )D0−1Q−d

(or = (1− U
D )D∞−1QD), (7)

where Q−d (or QD) is a polynomial of U such that Q−d(−d) 6= 0 (or QD(D)

6= 0) and

∆(U) = D0(D0 − 1)1
d(1 + U

d )D0−2Q−d (mod (1 + U
d )D0−1)

(or = D∞(D∞ − 1) 1
D (1− U

D )D∞−2QD (mod (1− U
D )D∞−1)). (8)

Proof: Let g̃ − g̃∨ = i∂̂
¯̂
∂φ, then

g̃∨
ij̄

= g̃ij̄ + 1
2u

dφ
dτBij̄ = (g0)ij̄ − (U − 1

2u
dφ
dτ )Bij̄ , (9)
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for 1 ≤ i, j ≤ n. So at minU (or maxU), g̃ij̄ = g̃∨
ij̄

, meaning there is a τ0

such that g∨τ∨(τ0) = g0. By choosing τ∨ such that τ∨(τ0) = 0, one sees that

minU∨ = minU and maxU∨ = maxU , as desired.

The last statement follows from the fact that the scalar curvature R̃ is

finite on both M0 and M∞. Q. E. D.

In order to proceed, we will need normalization. By rescaling we have

the following.

Lemma 7.(cf. [Gu9] Lemma 5) For any given a1 ∈ R, g̃ is a generalized

extremal-soliton if and only if g̃∨ = a2
1g̃ is a generalized extremal solution.

Furthermore, we can choose U∨ = a2
1U + a2 for any a2 ∈ R, allowing us to

assume that maxU −minU = 2 and minU = −1, then maxU = 1.

For example, if L̂ = CPn+1, then M0 is a point, M∞ = M = CPn. In

this case L̂ is the one point completion (compactification) of the hyperplane

line bundle L over M with M∞ as the zero section. The anticanonical

line bundle is (n + 1)L. Therefore r0,ii = n + 1 and Q = (1 + U)n. We

have that the Kähler metric at U = 0 is the curvature of L and therefore

∆ = n(n+ 1)(1 + U)n−1.

From Lemma 5, it can be seen that, if g̃ is a generalized extremal-soliton

metric, then

R̃ = a+ bU + c∆̃U + (∇(eU + f),∇(gU + h)) (10)

for some a, b, c, e, g ∈ R with a φ2 = cU + d, φ3 = eU + f, φ4 = gU + h. We

notice that here we have φ1 = a + bU and the corresponding holomorphic

vector field is determined by b.

By Lemma 4 we have that

∆̃f = g̃ᾱβX̂ᾱX̂βf
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= g̃0̄0X̂0̄X̂0f + g̃ā0X̂āX̂0f + g̃0̄aX̂0̄X̂af + g̃ābX̂āX̂bf

=
1

2u2
(X̂0̄X̂0f) + 0 + 0 + g̃āb(X̂āX̂bf) (11)

=
1

2u2
u
d

dτ
(u

d

dτ
f) + gābτ (−2−1u

df

dτ
Bbā)

= 2−1 d

dU
(ϕ(U)

d

dU
f)− 2−1ϕ(U)(

d

dU
f)gābt Bbā

= 2−1 d

dU
(ϕ

d

dU
f) + 2−1ϕ(

d

dU
f)

1

Q

d

dU
Q

=
1

2Q

d

dU
(ϕQ

d

dU
f),

and

(∇f1,∇f2) = g̃ᾱβ((X̂ᾱf1)(X̂βf2) + (X̂ᾱf2)(X̂βf1))

= g̃0̄0((X̂0̄f1)(X̂0f2) + (X̂0̄f2)(X̂0f1)) (12)

=
1

2u2
· 2(u2 d

dU
f1)(u2 d

dU
f2)

= ϕf ′1f
′
2.

From these we get

∆̃φ2 + (∇φ3,∇φ4) =
1

2Q

d

dU
(ϕQ

d

dU
(cU + d)) + egϕ

=
c

2Q

d

dU
(ϕQ) + egϕ

= R̃− (

∫ 1

−1
R̃QdU)/(

∫ 1

−1
QdU)− φ1 (13)

=
∆

Q
− 1

2Q

d

dU
(
d

dU
Qϕ)− (a+ bU).

Let m =
∫ 1
−1 R̃QdU/

∫ 1
−1QdU , α =

∫ 1
−1QdU and β =

∫ 1
−1 UQdU . Then we

have that ∫ 1

−1
R̃QdU =

∫ 1

−1
[∆− 2−1 d

dU
(
d

dU
Qϕ)]dU

= δ − 2−1 d

dU
(Qϕ)|1−1
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= δ − 2−1[Q
d

dU
ϕ+ ϕ

d

dU
Q]|1−1 (14)

= δ − 2−1[Q(1) · (−2)−Q(−1) · 2]

= δ +Q(1) +Q(−1),

where δ =
∫ 1
−1 ∆dU . Therefore, m = (δ +Q(−1) +Q(1))/α.

Hence we obtain

c(ϕQ)′ + 2eg(ϕQ) = −(Qϕ)′′ − 2(a+ bU)Q+ 2∆. (15)

Let f = ϕQ, F = 2∆− 2(a+ bU)Q, l = 2eg, then

f ′′ + cf ′ + lf = F. (16)

Assume that c2− 4l ≥ 0, then the corresponding homogeneous equation

has a solution fh = ekU with k = −c−
√
c2−4l

2 or −c+
√
c2−4l

2 to be one of the

solutions of the characteristic equation. We notice that k′ = −k − c is the

other solution.

Let f = gekU , then ekU (g′′ + 2kg′ + cg′) = F and

f = ekU
∫
e−(2k+c)U [

∫
e(k+c)UFdU ]dU.

Let U = −1, we have f(−1) = 0 and therefore,

f = ekU
∫ U

−1
e−(2k+c)y[

∫ y

−1
e(k+c)xF (x)dx+ c1]dy.

But

(fe−kU )′(−1) = (ϕ′Qe−kU )(−1) = 2Q(−1)ek = e2k+cc1.

2Q(−1)e−k−c = c1.

Let U = 1, we have

(ϕ′Qe−kU )(1) = −2Q(1)e−k = e−2k−c[

∫ 1

−1
e(k+c)xF (x)dx+ c1].
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−2Q(1)s = −2aαe − 2bβe + 2δe + 2Q(−1)s−1.

Therefore,

a = [δe +Q(1)s+Q(−1)s−1 − bβe]/αe = me − bβe/αe,

where

s = ek+c = e−k
′
, αe =

∫ 1

−1
e−k

′UQ(U)dU, βe =

∫ 1

−1
e−k

′UUQ(U)dU,

δe =

∫ 1

−1
e−k

′U∆(U)dU,

me =
δe +Q(1)s+Q(−1)s−1

αe
.

All these coefficients are only depended on k′. We fix k′.

We have that

Qϕ = ekU [

∫ U

−1
[

∫ y

−1
e−k

′x[−2(a+ bx)Q(x) + 2∆(x)]dx

+2Q(−1)s−1]e(k′−k)ydy]. (17)

We denote the right side by Φ(U).

Let U = 1, we have the equation

0 =

∫ 1

−1
[

∫ y

−1
e−k

′x[−2(a+ bx)Q(x)

+2∆(x)]dx+ 2Q(−1)s−1]e(k′−k)ydy. (18)

Let

p(U) =

∫ U

−1
2e−k

′x[∆(x)− (a+ bx)Q(x)]dx+ 2Q(−1)s−1, (19)

then by P (1) = −2Q(1)s we have:

p(U) =

∫ 1

U
2e−k

′x[(a+ bx)Q(x)−∆(x)]dx− 2Q(1)s. (20)
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By the last statement of Lemma 6, we know that p(U) is nonnegative

near −1 and non-positive near 1. Since the right side of the above equation

(18) turns to −∞ (or +∞) when −k turns to +∞ (or −∞), there is at least

one solution c. We pick up the smallest c, and have

Lemma 8. For any b, k′, there is a solution c for (18).

Proposition 5.(cf. [KS1], [Gu8] Lemma 6) There is a generalized

extremal-soliton metric in the Kähler class of g̃ for a given b if ϕ0(U) =

Φ(U)/(QecU ) is positive on (−1, 1).

If we let b = 0 we have the extremal part free metrics including those

(generalized) quasi-einstein metric, as in [Gu9].

To obtain metrics with same k = k′ including extremal metrics and the

generalized Kähler-Ricci soliton metrics in [Na] we just let c = −2k and

solve (18) to find a and b as we did in [Gu8] p.2259 (see Lemma 5 there).

Let k − k′ = 0, δ1e =
∫ 1
−1 e

−k′xx∆(x)dx, γe =
∫ 1
−1 e

−k′xx2Q(x)dx, then (18)

becomes

0 =

∫ 1

−1

∫ y

−1
e−k

′x((a+ bx)Q(x)−∆(x))dxdy − 2Q(−1)s−1

=

∫ 1

−1

∫ 1

x
e−kx((a+ bx)Q(x)−∆(x))dydx− 2Q(−1)s−1

=

∫ 1

−1
e−kx(1− x)((a+ bx)Q−∆)dx− 2Q(−1)s−1

= aαe + bβe − aβe − bγe − δe + δ1e − 2Q(−1)s−1

= meαe + δ1e − 2Q(−1)s−1 − aβe − bγe − δe

= meαe + δ1e − 2Q(−1)s−1 −meβe +
b

αe
(β2
e − αeγe)− δe.

We notice that the coefficient of b can not be zero since

αet
2 + 2βet+ γe =

∫ 1

−1
e−kU (t+ U)2QdU > 0
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for any t. Therefore, there is a unique solution of b. Similarly, for any

different pair of k, k′, we can also solve b uniquely.

Lemma 9. For any pair of k, k′, there is a solution b for (18).

Lemma 10.(cf. [Gu8], [Gu9], [Gu22]) If r has nonnegative trace eigen-

values, then for a given b we have:

(1) Φ as above is always positive on (−1, 1).

(2) the solution c in Lemma 8 is unique.

Proof: Since the derivative of Qϕe−kU is p(U)e(k′−k)U , we have that

d

dU
(e−(k′−k)U d

dU
(Qϕe−kU )) = 2e−k

′U (∆(U)− (a+ bU)Q(U)). (21)

Diagonalizing B, we see that Q is a product of polynomials of degree 1. Let

−a−1
1 < ... < −a−1

p < b−1
1 < ... < b−1

q ,

denote the distinct roots of Q for which some corresponding Ricci curvature

rīi is nonzero, where ai, bj are positive. Let

S(U) = U
p∏
i=1

(1 + aiU)
q∏
j=1

(1− bjU),

T (U) = UQ(U)/S(U)

and

Ψ(U) =

(
ek
′U d

dU
(e−(k′−k)U d

dU
[(Qϕ)(U)e−kU ])

)
/T (U).

Then Ψ is a polynomial of degree p + q + 1 and Ψ(a) = −raS′(a) for a a

root of S(U)/U , where ra ∈ R+ be the corresponding trace eigenvalue of

the ricci curvature, since r is nonnegative. We can see that S′(a) 6= 0 and

> 0 (or < 0) if and only if S′ < 0 (or > 0) for the root before a and after a

(if such exists). Because S′(0) > 0, we have S′(−a−1
p ) < 0 and S′(b−1

1 ) < 0,
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that is, Ψ(−a−1
p ) > 0 and Ψ(b−1

1 ) > 0. Now there are p − 1 (or q − 1) zero

points of Ψ in (−a−1
1 ,−a−1

p ) (or in (b−1
1 , b−1

q )) if p, q are not zero (one may

also check the case of q = 0 or p = 0). If ϕ has some nonpositive points

in (−1, 1), then in (−1, 1), Qϕ has at least two maximal and one minimal

points since ϕ(−1) = ϕ(1) = 0, ϕ(−1 + ε) > 0, ϕ(1 − ε) > 0 for ε small

enough. So we get that there are at least 4 zero points of Ψ in (−a−1
p , b−1

1 ).

Ψ has at least (p− 1) + (q− 1) + 4 = p+ q + 2 zeros, a contradiction. Thus

we have (1).

For (2) we only need to prove that the function p(U) in (19) has only

one zero point in (−1, 1). If p(U) has at least two zero points in (−1, 1),

then p(U) has at least three zero points, since it is nonnegative near −1 and

non-positive near 1. So Ψ has at least 4 zero points in (−a−1
p , b−1

1 ), which is

a contradiction.

Q. E. D.

Corollary 1.(cf. [Gu8], [Gu9]) For every Kähler class of a compact al-

most homogeneous manifold with two ends, there exists generalized extremal-

soliton metric for any given pair b, k′. In particular, there is always an

extremal metric and a (generalized) quasi-Einstein metric, as well as the

extremal-soliton metric for any given b.

Proof: Since every compact Kähler almost homogeneous space is a com-

pletion of a C∗ bundle over a product of a torus A and a C–space N with

two homogeneous Kähler spaces as two ends [HSn] Theorem 3.2), a maximal

compact subgroup of the identity component of the automorphism group of

this manifold is G = A× S × S1, where A is also the Albanese torus and S

is a maximal compact subgroup of the identity component of the automor-

phism group of N . For any Kähler metric g, gG =
∫
h∈G h

∗gdm is a Kähler
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metric of form (2), where m is the Haar measure on G; it is invariant under

G. Also the Ricci curvature of A×N is nonnegative, the condition in our as-

sumption follows from the well-known property of the invariant cohomology

(1,1) classes for these manifolds (see [DG3] p. 326 proof of the Proposition).

Q. E. D.

In the case of b = 0 we can have a little bit more. We say that the trace

eigenvalues (see three lines under the condition (4)’) is nonnegative at

one side if the trace eigenvalues are nonnegative for all −a−1
i or for all b−1

j

in the proof of the Lemma 9. We have:

Corollary 2.(cf. [Gu8], [Gu9]) If the trace eigenvalues only change sign

once and nonnegative at one side, then for any given k′, there is an

extremal part free (i.e., b = 0) generalized extremal-soliton metric. In

particular, the completion of the Hodge line bundle over a Hodge manifold

with a constant scalar curvature admits (generalized) quasi-einstein metric.

Proof: In the proof of Lemma 10, if b = 0, then the polynomial

ek
′xp′ is one degree lower. Therefore by ignoring the root at which the trace

eigenvalue is negative and changing the sign, the proof still goes through.

By the argument in the proof of the Theorem 5.4 in [KS1] p. 177, we have

our Corollary.

Q. E. D.

This Corollary also says that there is more chance for the existence of

the extremal free metrics than that of others.

8.3 The existence of the generalized Kähler-Ricci solitons

In the last section, Lemma 8, 9, 10 give the existence of metrics for many

cases, once (18) holds. Lemma 9 further gives a direction in finding the
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metrics in [Na]. In this subsection, we should show that our argument in

the last subsection does give the solution of the existence of the metrics in

[Na], a five years question when [Gu23] was done according to the date he

submitted his paper. Now we let k = k′. A calculation of b in Lemma 9

shows that

b = [(αe + βe)Q(−1) + s(βeδe − αeδ1e + sQ(1)(βe − αe)] (22)

/ [s(β2
e − αeγe)].

We then have:

Lemma 11. When −k turns to +∞, b is dominated by k2. That is,

limk→−∞ b/k
2 = 1.

Proof: We let

Lm =

∫ 1

0
e−kx(1− x)mdx.

Then when −k turns to +∞,

L0 =
s− 1

−k

is equivalent to s/(−k).

Lm =
1

−k

∫ 1

0
(1− x)md(e−kx) =

1

−k
[1 +mLm−1]

is equivalent to m
−kLm−1 or m!

(−k)mL0 and so m!s
(−k)m+1 .

Now, if Q(1) is not zero, then s2(βe−αe)Q(1) dominates the numerator.

It is equivalent to −s
3(Q(1))2

k2
. This can be done by express Q(x) by its Taylor

series around 1. s(βeδe−αeδ1e) is in the level of s3

−k3 . While (αe+βe)Q(−1)

is in the level of s
−k .

Let

Q(x) = (1− x)m−1Q1(1) + a(1− x)m + b(1− x)m+1 (mod(1− x)m+2),
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then the denominator s(β2
e − αeγe) is equivalent to −sm(Q1(1))2

k2
L2
m−1. In

particaular, when m = 1, i.e., Q(1) 6= 0, we have −s3 (Q(1))2

k4
. Therefore, b is

equivalent to k2 when −k turns to +∞ as desired.

Now if Q(1) = 0, then s(βeδe − αeδ1e) dominate the numerator. Let

Q(x) = (1− x)m−1Q1(1) + a(1− x)m (mod(1− x)m+1)

and

∆(x) = m(m− 1)(1− x)m−2Q1(1) + c(1− x)m−1 (mod(1− x)m),

then numerator is equivalent to sm(m−1)(Q1(1))2Lm−1Lm−2/k. Therefore,

b is equivalent to −(m− 1)kLm−2/Lm−1 or k2, as desired.

Q. E. D.

Similarly, when −k turns to −∞, b is dominated by −k2. Therefore,

b = Ak with any given constant A will always have a solution. We have:

Corollary 3. In the case as in Lemma 10, there is always a generalized

Kähler-Ricci soliton of [Na] in any given Kähler class.

9 Characteristic properties of complex
homogeneous spaces as complex manifolds

For a Riemann surface, i. e., a complex manifold of complex dimension one,

its universal covering is one of the three complex one dimensional homoge-

neous spaces: the Riemann sphere CP 1 = C ∪ {∞} = S2; C and the unit

ball B = {z ∈ C||z|<1}.

In the higher dimension case, we also have three special homogeneous

spaces: CPn; Cn and the unit ball Bn = {z ∈ Cn||z|<1}.

There are also Hermitian symmetric spaces [Hel]; projective rational

homogeneous spaces [Bo], [Ti]; the Wolf compact homogeneous quaternion
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spaces and complex homogeneous contact spaces [Wo1]; the quotient of the

complex ball.

Question 2. How do we characterize these homogeneous spaces or

quotient of these spaces among the complex Hermitian manifolds or their

related Riemannian manifolds?

It was proved by Siu-Yau [SYau] that if a Kähler manifold M has a

positive bisectional curvature, then M is bi-holomorphically to a complex

projective space. On the other hand, Professor Mori [Mor] proved that

Theorem 38. If a compact projective manifold has an ample holomor-

phic tangent bundle, then M is a projective space.

When M is Kähler-Einstein and has nonnegative bisectional curvature,

Professor N. Mok and J. Q. Zhong [MZ] proved that:

Theorem 39. If a compact complex manifold M is Kähler-Einstein

with nonnegative bisectional curvature, then M is isometric to a Hermitian

symmetric space.

With a help of Mori’s method, Professor Mok [Mok] even went further

and proved:

Theorem 40. If a compact complex manifold M has nonnegative bisec-

tional curvature with the Ricci curvature being positive at one point, then M

is isometric to a product of several Hermitian symmetric spaces such that

except for the factors of projective spaces, the metrics on each factor is just

the Hermitian symmetric metric.

For the positive curved case, one have the Campana-Peternell conjecture

[CP]:

Conjecture 9. A compact projective manifold with a nef tangent bun-

dle is a projective rational homogeneous space.
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This conjecture was proven by Professor A. Kanemitsu [Ka] up to the

complex five dimension.

Question 3. Does any co-homogeneity one compact Kähler manifold

have a nef tangent bundle?

A related question is about the classification of compact quaternion man-

ifolds with positive Ricci curvature [PS]:

Conjecture 10. A compact quaternion manifold with a positive Ricci

curvature is a Wolf compact homogeneous quaternion space.

Another version of this conjecture is that

Conjecture 11. A compact complex contact Fano manifold is homoge-

neous.

These two conjectures were proven to be true up to real dimension 8.

Notice that a quaternion Kähler manifold has a real dimension 4k with k

a positive integer. Therefore, the situation for these two conjectures is not

very positive at all, and is up to any imagination as far as now. Some

serious efforts were done in [HH] and [He]. However, there was a gap in

[HH]. See [HH1], for example. We notice that a compact complex Fano

contact manifold is Kähler-Einstein. One needs more efforts to understand

these manifolds.

There is also some characteristic conjecture for Cn (cf. [CZ]).

Conjecture 12. Any complete but noncompact Kähler manifold with

positive bisectional curvature is bi-holomorphic to Cn.

Considerably works have been done, for example, see [Liu]. The U(n)

co-homogeneity one examples of Cn have been classified in [WZ]. See also,

for example, [Yang], [YZ].
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Question 4. Does this Yau’s conjecture (conjecture 12) holds for co-

homogeneity one Kähler metrics?

There is also some characteristic conjecture for Bn.

Here we consider the possibly compact quotient of Bn.

A similar condition is that the holomorphic bisectional curvature is neg-

ative. Even for the compact surface case, there are examples of negative

holomorphic bisectional curvature which is NOT a quotient of B2. There-

fore, one could only consider the Kähler-Einstein version. The first effort

was done by Professors Siu and Yang in [SY]. Let Kmax, Kmin, Kav be the

maximal, minimal, average of the holomorphic sectional curvature. There

they proved that

Theorem 41. Let M be a compact Kähler-Einstein surface of non-

positive Ricci curvature. If M has non-positive holomorphic bisectional cur-

vature and Kav −Kmin ≤ a[Kmax −Kmin] with a < 2

3(1+
√

6/11)
. then M is

a quotient of either the complex unit ball or a complex plane.

In [HGY] we improved that this is true for a ≤ 2

3(1+
√

1/6)
and conjecture

that this is true for a = 1/2. Eventually, in [Gu19], we were able to prove the

conjecture and actually we do not need the non-positivity of the bisectional

curvature. We actually proved:

Theorem 42. Let M be a compact Kähler-Einstein surface of non-

positive Ricci curvature. If we have a condition as in Theorem 41 with

a = 1/2, then M is a quotient of either a complex unit ball or a complex

plane.

We do not expect the manifold to have B2 as the universal covering if

we do not have the condition a = 1/2 and expect that a = 1/2 is sharp even
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for manifolds with negative bisectional curvatures. However, as Professor

Bun Wong pointed out, it should be true if we (only) have negative sectional

curvature. More precisely, one have:

Conjecture 13. If a compact Kähler-Einstein surface has negative sec-

tional curvatures, then M is a quotient of a complex two dimensional unit

ball in C2.

10 Compact locally conformal Kähler manifolds

Definition 2. Let M be a complex manifold, h be an Hermitian metric. If

h is locally conformal to a Kähler metric, i.e., for any point m ∈M there is

an open neighborhood O such that on O, g = efh is a Kähler metric with

a function f , we say that (M,h) is a locally conformal Kähler. That is, let

ω( , ) = h( , J ), then d(efω) = 0.

In 2012, Professor Hasegawa et al proved in [HKa] (see also [GMO]):

Theorem 43. A compact homogeneous locally conformal Kähler man-

ifold M = G/H is a complex 1-dimensional torus bundle over a rational

projective homogeneous space.

It is striking that Theorem 1 and Theorem 43 are so close, yet the proofs

of Theorem 43 in [HKa] and [GMO] are so complicated (to us). Therefore,

at the end of 2012, in [Gu20] we took a simple approach from Theorem 1 to

Theorem 43. As people could see, our machinery in the compact complex

homogeneous spaces theory is powerful enough to solve this problem.

We also filled in the details of the argument in [HKa] (our argument was

earlier than [GMO]) from a more complex homogeneous space and higher

dimensional aspect.

We also took Vaisman’s earlier approach in [V1, 2] into our account.
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We proved the following result of a classification of the compact homo-

geneous locally conformal Kähler metrics:

Theorem 44. The manifold is co-homogeneity one under the action of

the semi-simple part S of the Lie group, i.e., S has hyper-surface orbits.

M = N × S1 as a homogeneous space (but not necessary as a Riemannian

manifold) with N the S orbits. Both the original locally conformal Kähler

metrics and the related Kähler metrics are co-homogeneity one under the

S action. Moreover, M is a complex one dimensional torus bundle, over a

rational homogeneous projective space, which is a quotient of a C∗ bundle

by some action ea with Rea 6= 0. The metrics on M , as a submersion,

is completely determined by the Kähler class of the base manifold and the

Kähler class, as the restriction, of the fiber.

At the beginning of Sept. 2012, Professor Hasegawa visited us and

showed us their work on the classification of compact homogeneous locally

conformal Kähler manifolds. They seemly had a difficulty to publish. Al-

though not being a referee, as this was an important result, we came up

these proofs.

Let us give a quick description for the case when dimCM = 2. According

to Theorem 1, M is either a complex torus of complex dimension 2 or a

complex one dimensional torus bundle over CP 1. The simply connected case

was excluded by the locally conformal Kähler (but nonkähler) condition. For

a complex torus, all the homogeneous hermitian metrics are actually Kähler.

Therefore, we obtain the Theorem 37. We also notice that the manifold M

might not be a Hopf surface itself but a finite covering of it. However, any

homogeneous hermitian metrics comes from the Hopf surface covering and

therefore, most the results about the Hopf surfaces apply to M .
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Also, in this case, the semi-simple part of the group comes down to be an

effective isometric subgroup on CP 1 and therefore is SU(2). This is because

that the isometric group on the torus fiber is abelian. Now, the dimension

of SU(2) is 3 and the action is co-homogeneity one, i.e., it has hypersurfaces

as orbits. To be homogeneous for M = G/H, the center of G is at least

of a real dimension 1 and at most of real dimension 2. G is locally either

SU(2)×R or SU(2)×C. Moreover, the SU(2) orbits are S1 bundles over

CP 1. That leads to a line bundle and therefore a C∗ bundle M∗ over CP 1.

M∗ is a covering of M . Let Ma = (C2 − {0})/(a), (a) = {ai|i∈Z} with

a ∈ C∗ and |a| 6= 1, be a Hopf surface, then M∗a = C2 − {0}. Then M∗a is

a finite covering of M∗. We denote M∗a simply by C2,∗. The covering map

C2,∗ to M∗ introduces a Hopf surface covering over M (introduced by the

corresponding S1 bundles, which introduces a finite torus covering for each

fiber).

This is our Theorem 44 for the complex dimension 2 case.

In a following paper, we were able to classify compact co-homogeneity

one locally conformal Kähler manifolds.
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