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1 Introduction

A smooth 2n-dimensional manifold M equiped with a smooth transitive

action of a Lie group is called a homogeneous space. If in additional M is a

symplectic manifold, we refer to it as a homogeneous space with a symplectic

structure and, if the structure is invariant, a homogeneous space with an

invariant symplectic structure.

Recently there has been much progress in the area of symplectic mani-

folds and group actions. I was interested in the classical problem of classify-

ing compact homogeneous spaces with symplectic structure. The difficulty is

that we do not know anything about the transitive group and the isotropy

group (Cf. [DG1,2,Hk]). In the Kähler case we know that the isometric

group is compact. In this note we prove following theorem:

Main Theorem: Every finite dimension Lie subgroup of the automor-

phism group of a compact symplectic manifold is locally a product of a com-

pact semisimple group and a 2-step solvable group R. Moreover, the adjoint

representation of R on R′ is a subgroup of a compact torus.

An application of this result is a simpler and more prospective proof

of the classification of the compact homogeneous manifolds with invariant

symplectic structures.

I am also interested in the structure of compact homogeneous manifold

with symplectic structure (which might not be invariant under the group

action)

In [Gu1,2] we also proved the following theorem:

Proposition 1. Every compact homogeneous complex manifold with a

2-cohomology class ω such that ωn is not zero in the top cohomology is a
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product of a rational homogeneous space and a complex parallelizable solv-

manifold with a right invariant symplectic structure on its universal cover-

ing.

This generalized the result of [BR] for the Kähler case (one does not

assume that the Kähler form is invariant).

These results suggest further study in two directions along the lines of

Proposition 1. One is the classification of compact complex homogeneous

space; the other is the classification of compact homogeneous space with

a symplectic structure. The first problem can be solved by the method

in [Gu3,7], where in the first paper we prove that every compact complex

homogeneous space with an invariant volume is a torus bundle over a product

of a rational homogeneous space and a complex parallelizable manifold and

in the second paper we classify compact complex homogeneous spaces of

1-step. In the present paper we are working in the direction of the second

problem. This is quite analogous to the results in [Gu1,2]:

Proposition 2. Every compact homogeneous space with an invariant

symplectic structure is a product of a rational homogeneous space and a

torus with invariant symplectic structures.

In this classification, the tori which occur are not necessarily standard.

The following conjecture arises naturally from our arguments for the proof

of the above proposition:

CONJECTURE. If G/H is a compact homogeneous space with a sym-

plectic structure, then G/H is diffeomorphic to a product of a rational ho-

mogeneous space and a finite quotient of a compact locally flat parallelizable

manifold with a symplectic structure.

Here we call a manifold N locally flat parallelizable if N = G/H for a
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simply connected Lie group G which is diffeomorphic to Rk for some integer

k and H is a uniform discrete subgroup.

In our future work we will attempt to prove this conjecture and to classify

the compact locally flat parallelizable manifolds with a symplectic structure.

We prove our Proposition 2 at the end of 1997 in the line of the section

3—we prove the diffeomorphism in [Gu5], then the symplectic isomorphism

in [Gu6]. Then we get the Main Theorem. But we just found the paper

[ZB] which literally included all our results in [Gu5,6] with a different proof.

So in this note we combine our three papers in one and keep the proof in

the section 3 to show the reason of the Conjecture and the relation to the

general compact homogeneous manifold theory.

Another consequence of our main theorem is that we can start to consider

the classification of compact symplectic manifold of codimension 1.

2 The Proof of the Main Theorem

2.1 Preliminary

Let (M, ω) be a symplectic manifold and G a Lie group of symplectic

diffeomorphisms of M , i.e., a smooth action G×M →M such that g∗ω = ω

for all g ∈ G. Let Hamloc(M) be the set of smooth vector fields X on M

such that LXω = 0. In this situation we have the following sequence:

0→ R
i
→ C∞(M)

sgrad
→ Hamloc(M)

α
← G

where i realizes the real numbers as constant functions, the skew-gradient

sgrad(f) is a vector field Xf such that iXf
ω = ω(Xf , ) = df , and α is

the natural Lie algebra homomorphism arising from the G–action. The
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associated Lie algebra structure { , } on C∞(M) is defined by

{f, g} = ω(sgrad(f), sgrad(g)).

It follows that sgrad: C∞(M) → Hamloc(M) is a Lie algebra homomor-

phism, and we are confronted with a lifting question: Does there exist a Lie

morphism λ : G → C∞(M) such that sgrad◦λ = α ? If such a lifting exists,

we refer to the G–action as a Poisson action (with regard to the lifting). In

this case the G–equivariant dual map

Φ : M → G∗, Φ(x)(ξ) = λ(ξ)(x)

is called the moment map. If every G–field is the skew-gradient of some

function, i.e., if for every ξ ∈ G the associated vector field is of the form

ξM = sgrad(fξ), then the G–action is called a Hamiltonian action (our

definition is different from the one in [GS]).

The following is a list of elementary observations in the above setting

(see [GS]):

(1) Let G′ be the commutator of G, then the G′–action is Hamiltonian,

and if G is a semisimple group, then it induces a Poisson action (see also

[GS p.185]).

(2) Suppose that ξ ∈ G can be lifted. Then

{ x ∈M | dfξ(x) = 0 } = { x ∈M | ξM (x) = 0 }.

(3) If the G–action is Poisson with moment map Φ : M → G∗, then

ker(dΦx) = { v ∈ TxM | ωx(v, w) = 0 for all w ∈ TxG(x) } = (TxG(x))⊥,

where (TxG(x))⊥ is the skew-orthogonal complement to the tangent space

of the G–orbit G(x).
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(1), (2) and (3) come from the properties of the Poisson bracket. If

M is compact, we might use C∞
0 (M) = {f ∈ C∞(M)|∫

M
fωn=0} instead of

C∞(M) in (1) and we see that G′ is actually Poisson by the argument of

[GS p.186–187]. We have:

Lemma 1. If M is compact, then the Lie algebra of the exact Hamilto-

nian group of M is C∞
0 . The group is “compact” in the sense that its Lie

algebra has an invariant positive definite inner product (f, g) =
∫

M fgωn.

Proof: It is known that the exact Hamiltonian group of M is generated

by functions h with
∫

M hωn = 0. All these kind of functions consists a

infinite dimensional Lie algebra since

∫

M
{f, g}ωn =

∫

M
df ∧ dg ∧ ωn−1 = 0.

This metric is invariant since

({h, f}, g) + (f, {h, g})

=

∫

M
(gdh ∧ df + fdh ∧ dg) ∧ ωn−1

=

∫

M
d(fg) ∧ dh ∧ ωn−1 = 0.

Q. E. D.

For a further application of this section, we also list the following prop-

erty:

(4) If G is as in (3) and G(x) = G/H is a generic orbit with moment

fibering

Φ|G(x) : G/H → G/J = G(Φ(x)) x ∈M,

then H0 / J0 and J0/H0 is abelian (see [GS p.190]).
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2.2 The Proof

Now we are ready to prove the Main Theorem:

Since G′ is a subgroup of the exact Hamiltonian group, there is an in-

variant inner product (f, g) on its Lie algebra. Moreover, G acts on the Lie

algebra of G′ and keeps the inner product invariant. We see that the adjoint

group of G on G′ is a subgroup of a compact group and it splits locally

into a product of its compact semisimple part and the abelian part. So G is

locally a product of a compact semisimple group and a solvable 2-step Lie

group R. And the adjoint action of R on R′ is a subgroup of a torus.

3 On the Classification of Compact Homogeneous

Manifolds with Invariant Symplectic Structures

3.1 Preliminaries

1. A rational homogeneous manifold Q is a compact complex manifold

which can be realized as a closed orbit of a linear algebraic group in some

projective space. Equivalently, Q = S/P where S is a complex semisimple

Lie group and P a parabolic subgroup, i.e., a subgroup of S which contains

a maximal connected solvable subgroup (Borel group). Every homogeneous

rational manifold is simply-connected and is therefore an orbit of a compact

group. In general, a quotient K/L with K compact and semisimple carries

a K-invariant complex structure which is projective algebraic if and only if

L is the centralizer C(T ) of a torus T ⊂ K.

A parallelizable manifold is the quotient of a Lie group by a discrete

subgroup.

A solv-manifold is a homogeneous space with a solvable Lie group.
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In our research we are interested in locally flat parallelizable manifolds

in the sense that the Lie group is locally flat , i.e., its universal covering is

diffeomorphism to Rk for some integer k. By the classification of the Lie

group, we see that a Lie group G is locally flat if and only if its semisimple

part is locally isomorphic to a product of SL(2, R)’s.

2. In this subsection we recall some basic results about simply connected

Lie groups (see [On]). First, any simply connected Lie group has a Levi

decomposition G = SR with S a semisimple subgroup, R a simply connected

maximal solvable normal subgroup and S ∩R = {e}.

A connected closed subgroup U ⊂ G is said to be a k-subgroup if the

manifold G/U is compact. Let G be the Lie algebra of G, IntG the Lie

group of its inner automorphisms. A subalgebra U ⊂ G is said to be compact

in G if the connected subgroup in IntG corresponding to the subalgebra

AdGU ⊂ AdG is compact. A subalgebra H ⊂ G is said to be a k-subalgebra

if there exists a subalgebra U which is compact in G, such that G = U +H.

Let G be a semismple Lie algebra, U a maximal compact subalgebra in

G, and G = U + P the Cartan decomposition. Let θ denote an involutive

automorphism of G which is given by the formula θ(x + y) = x− y, where

x ∈ U , y ∈ P. Let H− be a maximal abelian subalgebra in P and let

H = H+ +H− be a Cartan subalgebra in G which contains H− and H+ ⊂

U . We consider the complexification GC of G and let us denote by σ the

corresponding conjugation in GC. Then HC is a Cartan subalgebra in GC.

Let us denote by Σ ⊂ (HC)∗ the corresponding system of roots of GC. If

α ∈ Σ, then by Gα we denote its root subspace in GC. The roots of Σ

are real in the subspace H∗ = iH+ +H−. Let us determine on (HC)∗ an

8



anti-involution σ∗ by the formula

(σ∗φ)(x) = φ(σx) (x ∈ HC).

If α ∈ Σ, then σ∗α is also a root, and σGα = Gσ∗α. Let Σ0 = {α ∈ Σ, σ∗α =

−α}. Then Σ0 = {α ∈ Σ|α|H−
=0}. Let Σ1 = Σ\Σ0. It is clear that Σ0 and

Σ1 are invariant relative to σ∗.

If in (HC)∗ we introduce an ordering and if ∆ ⊂ Σ, let us denote by ∆+

and ∆− the sets of positive and negative roots respectively, which belong

to ∆. It is known that this ordering may be introduced in such a manner

that Σ+
1 will be invariant relative to σ∗. Then Σ−

1 is also invariant, and

σ∗Σ+
0 = Σ−

0 .

The subsystem ∆ ⊂ Σ is said to be closed if for any α, β ∈ ∆ such

that α + β ∈ Σ, we have α + β ∈ ∆. Clearly, Σ0, Σ+
1 and Σ−

1 are closed

subsystems.

Let us now set NC = Σα∈Σ+

1

Gα. From the fact that system Σ+
1 is closed,

it is clear thatNC is a nilpotent subalgebra in GC. Moreover, σ(NC) = NC.

Hence, if we let N = NC ∩ G, we have that NC is a complex envelope of

N . As it is well known, a so-called Iwasawa decomposition holds; namely:

G = U +H− +N .

or G = UH−N with H−N a maximal triangular subgroup in G. Let Π ⊂ Σ+

be a system of simple roots, Π0 = Π∩Σ0, Π1 = Π∩Σ1. It appears that for

every α ∈ Π1 there exist a β ∈ Π1 such that σ∗α − β =
∑

γ∈Π0
kγγ, where

kγ ≥ 0. If we set β = σ̃α, then we have an involution σ̃ of system Π1.

An algebra G is said to be normal if H− = H. In this case Σ1 = Σ and

σ̃ = 1. It is clear that in every complex semisimple Lie algebra there exists

exactly one (up to conjugacy) normal real form.
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We find it convenient to write a real semisimple Lie algebra G by means

of its Satake scheme. This scheme is constructed as follows. We take the

Dynkin diagram of GC; that is, the diagram of the system Π. The circles

which correspond to elements which belong to Π0 are blackened; those be-

longing to Π1 are left white. In addition, in Π1 by means of arrows we show

pairs of roots which are permuted by the involution σ̃.

We call a subgroup L of G a t-subgroup if H−NNR ⊂ L, where H−N is

a maximal triangular subgroup of the semisimple part of G and NR is the

maximal nilpotent normal subgroup in R. To describe a t-subgroup it is

sufficient to describe its intersection with the semisimple part of G.

Using above terminology, let us describe the well-known method for the

construction of t-subalgebras in a semisimple Lie algebra G. Let Γ ⊂ Π1 be

some subset which is invariant relative to σ̃. Let us denote by Σ′ the system

of roots which can be linearly expressed by the system Π0 ∪ Γ and by Σ′′

a system of all roots which can not be expressed linearly by Π0 ∪ Γ. It is

clear that Σ′ and Σ′′ are closed systems. In what follows, it is convenient to

study an element xΓ ∈ H which is defined by the formulas

α(xΓ) =

{

0, if α ∈ Π0 ∪ Γ,
1, if α ∈ Π1\Γ.

Clearly, such an element exists and is uniquely determined. We will show

that xΓ ∈ H−. In order to do this, one must verify that σxΓ = xΓ or that

(σ∗α)(xΓ) = α(xΓ) = α(xΓ) for all α ∈ Π. For α ∈ Π0 this is true because

σ∗α = −α. If α ∈ Γ, then σ∗α = σ̃α +
∑

γ∈Π0
kγγ, where σ̃α ∈ Γ. For

this reason (σ∗α)(xΓ) = (σ̃α)(xΓ) = 0 = α(xΓ). Similarly we verify it for

α ∈ Π1\Γ.

We notice that Σ′ = {α ∈ Σ, α(xΓ) = 0}, Σ′′+ = {α ∈ Σ, α(xΓ) > 0}.

Because xΓ ∈ H−, it follows at once from what we have proved that Σ′ and
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Σ′′+ are invariant relative to σ∗.

Let us denote by ZΓ the centralizer of the element xΓ in G. It is clear

that ZC
Γ is the centralizer of xΓ in GC and

ZC

Γ = HC +
∑

α∈Σ′

Gα.

Let us denote by CΓ the subspace in H which is annihilated by all roots in

Π0 ∪ Γ or, what comes to the same thing, in Σ′, it is the center of ZΓ. And

ZΓ = CΓ + SΓ, where SΓ is the semisimple part of ZΓ.

Let us set NC
Γ =

∑

γ∈Σ′′+ Gγ . It is a nilpotent subalgebra of GC which is

invariant under σ. Consequently NC
Γ is a complex envelope of NΓ = NC

Γ ∩G.

In particular, N∅ = N .

Finally, let us set UΓ = ZΓ + NΓ. Then UC
Γ is a parabolic subalgebra

in G and NΓ is the nilradical of UΓ. Let C+
Γ = CΓ ∩ U , C−Γ = P ∩ CΓ and

MΓ = C+
Γ +EΓ be the maximal compact ideal of ZΓ with EΓ semisimple, Z ′

Γ

be its complement in ZΓ. Then we call a subalgebra

T =M+ Z ′
Γ +NΓ

withM a subalgebra ofMΓ a standard t-subalgebra. Then we have:

Proposition 3. Every t-subalgebra of a semisimple Lie algebra G is a

standard t-subalgebra. Moreover, the normalizer of T in G is P (M) +Z ′
Γ +

NΓ, where P (M) is the normalizer of M in MΓ.

3. In this subsection we recall some basic results on a generalization

of the Tits fibration, introduced by V. V. Gorbatservich [Gb1] to compact

homogeneous spaces. It coincides with a fibration considered by Tits [Ti]

in the case of compact complex homogeneous spaces. We call it the double

normalizer fibration as in [Gb1] or the the Gorbatservich fibration. Let
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M = G/H, H0 be the identity component of H and P (L) = NormG(L0)

the normalizer of the identity component of a subgroup L in G, P k(L) =

P (P k−1(L)) we have:

Proposition 4. Let G be a connected real Lie group acting almost

effectively and transitively on the manifold M = G/H and let G/H →

G/P 2(H) be the double normalizer fibration.

Then

(a) P k(H) = P 2(H) for all k ≥ 2. In particular, the double normalizer

fibration of G/P 2(H) is a trivial fibering.

(b) G/P (H) is a compact homogeneous space in RP k for some integer k

such that G acts as a linear group and P (H) is a t-subgroup of G.

In particular, the nilradical of G is in P (H) and the intersection of a

semisimple part of G with P (H) is a standard t-subgroup.

(c) Any normalizer bundle of G/P 2(H) is itself.

(d) The semisimple part S of G acts on G/P 2(H) transitively. There is a

maximal connected compact subgroup K of S acts on G/P 2(H) tran-

sitively, i.e., G/P 2(H) = K/K ∩ P 2(H).

If G is a complex Lie group and H ⊂ G is a closed complex subgroup,

then we have the normalizer fibration G/H → G/P (H) and P k(H) = P (H).

Let G and H denote the Lie algebras of G and H, respectively. The base

space G/N is realized as the Ad(G)–orbit of the subspace H in the Grass-

mann manifold of subspaces of G that have the same dimension as that of

H. And G/P (H) is a rational homogeneous manifold and P (H)/H is a

compact parallelizable homogeneous manifold.
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4. In this subsection we will recall the foliation fibering induced by the

action of the maximal compact subgroup of G. This was considered by V.

V. Gorbatservich in [Gb2]. He proved following structure theorem:

Proposition 5. Let M = G/H be a compact homogeneous, K be a

maximal compact Lie subgroup in G. Then all the K orbits have same

dimension and M//K is a good orbifold, i.e., has a compact manifold as a

covering. Moreover, there is a subgroup H ′ ⊂ H of finite index such that all

the K orbits on M ′ = G/H ′ are the same and M ′//K is smooth with Rk

as its universal covering for some integer k.

5. In the rest of this paper we will use frequently arguments on the Lie

algebra level.

First we recall the following result due to Koszul [Kz]:

Proposition 6. Let G be a real Lie group and H a closed subgroup.

Then G/H admits a G-invariant symplectic structure if and only if there

exist a 2 form ρ on G which satisfies following conditions for all x, y, z ∈ G

and h ∈ H

ρ([x, y], z) + ρ([y, z], x) + ρ([z, x], y) = 0,

ρ(Adh(x), Adh(y)) = ρ(x, y).

6. Here we collect some results we need from the splitting theory of the

Lie group (see [Gb3]). Let G = SR be a Levi decomposition of a semisimple

Lie group. We call G a splittable Lie group if R = TU with T ∩U = {e} such

that T acts semisimplely and U acts unipotently on the Lie algebra G. We

call a Lie group embedding α : G → M(G) from G to a splittable simply
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connected Lie group M(G) = T · S · U a Mal’cev splitting or M-splitting if

α(G) is a normal subgroup of M(G) and M(G) is a semidirect product of

T and α(G), and α(G) · U = M(G).

Proposition 7. For any simply connected Lie group G there is a unique

Mal’cev splitting.

The Mal’cev splitting can be constructed as following:

Let G = S · R be the Levi decomposition of a connected simply con-

nected Lie group G. Consider the adjoint representation AdG : G →

GL(G); put G∗ = AdG(G), and let < G > be the algebraic closure of

G∗ in GL(G). Since < G > is algebraic, it has a Chevalley decomposition

< G >= T ∗S∗U∗, where U ∗ is the unipotent radical, S∗ is semisimple,

and T ∗ is abelian and consists of semisimple (i.e., completely reducible)

elements. Put W ∗ = S∗U∗; then < G >= T ∗W ∗, with T ∗ ∩ W ∗ finite.

Let t∗ : T ∗W ∗ → T ∗/T ∗ ∩ W ∗ be the natural epimorphism, with ker-

nel W ∗. Writing T̂ = T ∗/T ∗ ∩ W ∗, we have clearly t∗(AdG) ⊂ (T̂ )0,

since G is connected. If for the connected abelian Lie group (T ∗)0 we

consider the universal covering for πT : T̃ → (T ∗)0, it is obvious that

t∗ · πT : T̃ → (T̂ )0 is the universal covering for (T̂ )0. Since G is connected

and simply connected, there exists a unique homomorphism t̃ : G→ T̃ such

that t∗ ·πT · t̃ = t∗ ·AdG. Put T = t̃(G), T ∗
G = πT · t̃(G); then T is a connected

simply connected abelian Lie group covering of T ∗, while T ∗
G ⊂< G >. We

see that T ∗
G can be regarded as a subgroup of AutG. The imbedding T ∗

G →

AutG and the homomorphism πT induce a homomorphism φ : T → AutG,

with kerφ = ker πT ∩ T discrete. Then we can get the Mal’cev splitting

M(G) = T ×φ G and M(G) = TSU for a unipotent group U such that

dimU = dimR, dimU/NR = dimT , where NR is the nilpotent radical
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of G. Now we let WG = SU, WG,l = S/l(S) · U , then AutWG,l and the

semidirect product AutWG,l ∝WG,l are prealgebraic groups. We can regard

T ∗
G as a subgroup of AutWG,l. Let a(T ∗

G) be the prealgebraic hull of T ∗
G in

AutWG,l, and Al(G) = a(T ∗
G) ∝ WG,l. We see that Al(G) is prealgebraic.

Let Ml(G) = T ∗
GSlU as a quotient of M(G), then:

Proposition 8. The group Al(G) is prealgebraic, and there exists an

imbedding β : Ml(G)→ Al(G) such that the following properties hold:

1) Al(G) is splittable, and if Al(G) = T ′S′U ′, where U ′ is unipotent, S ′

semisimple and T ′ a prealgebraic torus, then β(Ml(G)) ⊃ S′U ′ and

S′ = Sl, where S is the semisimple part of G and U ′ = U .

2) The prealgebraic closure of each of the subgroup β(Gl) and β(Ml(G)) in

Al(G) is Al(G) itself.

Here we like to give a very simple example: Let G = G1×G2, G1 = TN

with T , N, G2 abelian and T acts on N almost faithfully and as a compact

torus without any eigenvector. Then < G >= AdG(T )N, W ∗ = N ,

t∗ : AdG(T )N → AdG(T ) = T̂

πT : T → AdG(T )

t̃ : TN ×G2 → T

T ∗
G = AdG(T ), φ : T → AdG(T )

M(G) = T ×φ G = TU, U = {(t, t−1, n, g)|t∈T n∈N g∈G2
}

WG = WG,l = U, Al(G) = Ml(G) = AdG(T )U.
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7. Here we recall the Gorbatservich modification for a compact homoge-

neous spaces. This is first used in [Gb4]. Similar construction can be found

in the study of homogeneous Kähler manifolds, e.g., [Dm], [DN].

Let M = G/H be a compact homogeneous space of a simply connected

Lie group G. We set G∗ = Gl = G/l(S) be the image of G(H∗ = H/H ∩

l(S) be the image of H) in Al(G). We also set P∗ = NAl(G)(H
0
∗ ), the

normalizer of H0
∗ . Since the subgroup H0

∗ is connected, then its normalizer

is a prealgebraic group, i.e., the identity component of an algebraic group.

Hence the group π0(P∗) is finite. Passing from H to the subgroup H1 =

H ∩ π−1(P 0
∗ ∩H∗) of finite index, where π : M(G) → Ml(G) is the natural

epimorphism, we might assume that H∗ ⊂ P 0
∗ by considering a finite covering

M ′ of M . This inclusion will be assumed to hold in what follows.

We consider the natural epimorphism γ : Al(G)→ Al(G)/Wl. We have

Al(G)/Wl = T∗×π(WG)/Wl with WG = SU, Wl = SlNR (our Wl is the same

as in [Gb4] but different from the one in [Gb3], in [Gb3] Wl = S/l(S)·U) and

T∗ is a prealgebraic torus; π(WG)/Wl = U/NR. So Imγ = T∗ × U/NR, we

denote it by A. A is connected and Abelian. There is a natural embedding

of the group G∗/Wl = R/NR in Ml(G)/Wl which is contained in A.

We denote the image of R/NR by B. By B ∩ T∗ = {e} we see that the

projection µ : T∗ × U/NR → U/NR to the second factor is an isomorphism

on B, i.e., B is closed in A. Now we consider the subgroup H∗/H∗∩Wl of A

and its closure H∗/H∗ ∩Wl (in the Euclidean topology) which we denote by

A1. Since H∗/H∗ ∩Wl ⊂ B we have A1 ⊂ B. Since the group B is simply

connected and Abelian, A1 is a closed subgroup of it, A1 is torsion free and

isomorphic to Rp × Zq for some p, q ≥ 0.

Finally we consider the subgroup γ(P∗) ⊂ A. The subgroup Kerγ = Wl is
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closed in the “Zariski topology” onAl(G), so does the Lie group P∗, therefore

γ(P∗) is a closed subgroup of A. But H∗ ⊂ P∗, so H∗/H∗ ∩Wl ⊂ γ(P∗) and

hence A1 ⊂ γ(P∗), i.e., A1 ⊂ γ(P 0
∗ ) by our convention. The group γ(P 0

∗ ) is

connected and Abelian and hence γ(P 0
∗ ) = K × V , where K is a maximal

compact subgroup of γ(P 0
∗ ) (which is a torus), and V is simply connected.

Since A1 is closed in A and torsion free, A1∩K = {e}. Hence the projection

K × V → Y onto the second direct factor on A1 is a monomorphism. Now

it follows from this that there exists a closed simply connected subgroup

C ⊂ γ(P 0
∗ ), such that A1 ⊂ C and A1 is uniform in C (we notice that C

is not always in B). We set Φl = γ−1(C). Then Φl is a closed connected

subgroup of Al(G). To it corresponds a closed connected subgroup Φ of

A(G).

With this construction at hand, V. V. Gorbatservich proved in [Gb4] the

following theorem:

Proposition 9. Let M = G/H be a compact homogeneous space of a

simply connected Lie group G. Then there exists a subgroup H ′ of finite

index in H and a subgroup Φ of A(G), such that:

(a) Φ is a connected, simply connected, closed subgroup of A(G), containing

H ′,

(b) WΦ = WG, in particular SΦ = SG, UΦ = UG (although M(Φ) and M(G)

are not generally isomorphic),

(c) for the decomposition A(G) = TWG with T an Abelian subgroup of

A(G) we have Φ ⊂ TG, G ⊂ TΦ, where Φ ∩ T = G ∩ T = {e},

(d) there exists a diffeomorphism η : Φ → G which is the identity on the

subgroup H ′ and induces a diffeomorphism Φ/H ′ → G/H ′,
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(e) Φ = NΦ((H ′)0)SΦ,

(f) the Lie group (NΦ((H ′)0))l = NΦ((H ′)0)/NΦ((H ′)0)∩ l(S) has a finite

number of connected components.

Here we also test this construction with a simple example that G is the

same as the example in last subsection and H is in the kernel of Ad|N such

that H ⊂ N and does not contain any ideal of G1, NAd(T )(H
0
∗ ) is discrete.

Then:

G∗ = Gl = {(Adt, (t, t−1), n, g)|t∈T n∈N g∈G2
}

H∗ = H, H∗ ⊂ {(Adt, (t, t−1), n, g)|Adt=1} ⊂ U

P∗ = NAd(T )(H
0
∗ )U, P 0

∗ = U, H1 = H, M ′ = M, WG = U, Wl = N

γ : Ad(T )U → Ad(T )× U/N = A = {(Adt1, (t2, t
−1
2 ), g)|t1 ,t2∈T g∈G2

}

T∗ = Ad(T ), G∗/NR = {(Adt, (t, t−1), g)|t∈T g∈G2
} = B

A1 = H∗/H∗ ∩Wl = H∗/H∗ ∩Wl ⊂ {(Adt, (t, t−1), g)|Adt=1}

p = 0, K = e, V = U/N, C = V. Φl = U = Φ.

We will see that this modification turns out to be very useful in our

classification.

3.2 The Splitting Theorem

Theorem 1. Let (G/H,ω) be a compact homogeneous space with an in-

variant symplectic structure. Then the double normalizer bundle is a product

of a rational homogeneous space and a solv-manifold with an invariant sym-

plectic structure.

Proof: Assume that G is simply connected, then the maximal compact

subgroup K is semisimple. So K is Poisson, by the Proposition 5 and (4)
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of 2.1 we get that every K orbit is, up to a finite covering, a same torus

bundle over a rational homogneous space Q = K/J which is induced by the

moment map K/K ∩H → K/J . In particular, if ξ ∈ J (the Lie algebra of

J) and if T is the closure of the 1-parameter group exp tξ in J , then

FixM (T ) = { x | ξM (x) = 0 } = { x | dfξ(x) = 0 } 6= 0.

Now let T be a maximal torus in J . We see that one of the K orbit must be

Q since not other homogeneous space of this type can be locally isomorphic

to Q (the isotropy group J is connected and is the normalizer of itself). So

all the K orbits are isomorphic to Q. Now for any K orbit there is only

one point on it with isotropy group J . So we get a section s of the compact

foliation, i.e., M is a product of Q and s. Now we see that s is a symplectic

reduction of the moment map and therefore s is a symplectic manifold with

the induced symplectic structure.

Now from the normalizer of J being itself, i.e., J = K∩H = K∩P 2(H),

we see that the double normalizer fibration (see (d) of Proposition 4) has

Q as the base and s as a fiber and s itself is a compact homogeneous space

with an invariant symplectic structure. We have s = P 2(H)/H as a fiber of

the double normal fibration. By P (H) be a t-subgroup in G we see that all

the semsimple factors of P 2(H) is in P (H). If a simple factor S1 of P (H) is

not in H it acts almost freely on s, i.e., only elements in its center may have

fixed points, then since S1 is Poisson, every element in its Lie algebra have

fixed points, a contradiction. We see that all the semisimple factors must

be in H, i.e., the radical of P 2(H) acts on s transitively. So we get that s is

a solv-manifold with an invariant symplectic structure.

Q. E. D.

Remark 1. (1) In our proof above we have to use the structure of the
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double normalizer fibration and t-subalgbra in Propositon 3,4 to prove that

the moment map is actually equivariant.

(2) An easy calculation can show that the Levi decomposition is actually

a product. We first prove this in [Gu6], and found that this is a conclusion

of our Main Theorem later. See also [ZB].

3.3 Compact Solv-manifolds with Invariant Symplectic Struc-

tures

Lemma 2. Every compact solv-manifold with an invariant symplectic

structure is a two step solv-manifold. Moreover, the orbits of the commu-

tator are isotropic, and any element in the Lie algebra correspond to the

commutator is conjugate to an element in the Lie algebra of the isotropy

group.

Proof: We consider the moment map introduced by N = [G, G] (see the

sentence after (3) of 2.1). The corresponding subgroup N is unipotent, in

particular on N ∗ and each orbit in the image is compact hence must be a

point. We see that N/N∩H is abelian, [N , N ] ⊂ H as an ideal must be zero.

Hence G is a two step solvable group. Moreover, since the moment map is

a constant on each commutator orbit, we see that df(X) = ω(Xf , X) = 0

for all Xf , X in the commutator, i.e., the commutator orbits are isotropic.

We also see that any element in the Lie algebra of the commutator

corresponds to a function on the manifold, and hence has a zero point, i.e.,

this element is in the Lie algebra of the isotropy group at that point. So every

element in the Lie algebra of the commutator is conjugate to an element in

the Lie algebra of the isotropy group.

Q. E. D.

Now we assume that G is a direct sum A+N as a vector space, where
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N = [G,G] and such that H = H ∩A+H ∩N . We let H1 = H ∩A, H2 =

H ∩N and

B = {a ∈ A|ρ(a, N )=0},

B = H1 + A1 as a direct sum of vector speces, then A is a direct sum

H1 +A1 +A2, N is a direct sum H2 +N1 as vector spaces, where A2 is a

complement of H1 in

C = {a ∈ A|ρ(a,A1)=0}.

We have:

Lemma 3. [B, B] = 0, [B, N ] = 0.

Proof: Since ρ([B, B], A) = ρ(B, [B, A]) ⊂ ρ(B, N ) = 0, we see that

[B, B] ⊂ H. In the same way we see that [B, N ] ⊂ H. And [[B, B], G] ⊂

[B, N ], [[B, N ], G] ⊂ [B, N ], we see that [B, N ], [B, B] generates an ideal

in H, that is, [B, B] = [B, N ] = 0.

Q. E. D.

By this Lemma 3 we can see that H1 is a Lie subalgebra, by modification

we can assume that H1 = 0. We also see that A1 ⊂ P (H). Now by

the last sentence of the Lemma 1 and counting the dimension we see that

P (H) = N+A1. Now we consider the G action on the Grassmanian G(G,H)

ofH in G. The orbit throughH is exactly the base of the normalizer fibering,

being compact and with an abelian transitive group it must be a torus with

its action on itself. We can also regard it as an orbit in G(N ,H) and the

action of G on it is an almost faithful representation of adjoint action AdG|N

on N as the restriction of the adjoint action. In particular, we see that AdG

acts on N as a compact group. To see this we notice that H(N + A1) is an

open and closed subgroup of P (H), hence is closed in G, i.e., G/H(N +A1)

is compact. We see that H(N +A1) is cofinite in P (H). But H acts on N/H
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trivially since (A2,N/H) is a perfect pair to ρ and any invariant subspace of

H on which H acts nontrivially must be an ideal of G, i.e., H is in the kernel

of Ad|N . Now for a generic element in G, it does not have any eigenvector in

N , otherwise this eigenvector will generate an ideal in H. Now we consider

a minimal invariant subspace V of the linear transformation of A = ad(a)

on G for an element a ∈ A2, then either ad(a)|V = 0 or V ∩ N 6= 0. In the

latter case we must have V ⊂ N since the eigenvalues of ad(a)|V C are not

zero, hence V has dimension 2 and ad(a) is semisimple. This implies that

A1 can be chosen to be an abelian ideal, and A2 +N is another ideal. So

we get:

Lemma 4. If we let G1 = A2 +N and G2 = A1. Then G = G1 + G2 as

direct sum of Lie algebras. Moreover, G2 is abelian and A2 acts on G1 as

torus.

Now we can apply Gorbatservich modification (Proposition 9) to our

case with some modification from the 7. in the Preliminary. Instead of

P∗ = NAl(G)(H
0
∗ ) we consider P∗ ∩D where

D = {a ∈ Al(G)|ρ(Ad(a)x, Ad(a)y)=ρ(x, y) for all x,y∈G},

then all the construction go through. and basically we get same modification

modulo a finite covering. Especially in the case of the example in the 7. of

the Preliminaries we see that P 0
∗ = U acts trivially on N , we will see that

this is what exactly happens here latter on.

Moreover if we defind on M(G) that ρ(t1 + x, t2 + y) = ρ(x, y), then on

Φ we have ρ([t1+x, y], z)+ρ(y, [t1 +x, z]) = 0 for all t1+x ∈ LieΦ, y, z ∈ G

and hence

ρ([t1 + x, t2 + y], t3 + z) + ρ([t2 + y, t3 + z], t1 + x)
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+ρ([t3 + z, t1 + x], t2 + y)

= ρ([t1 + x, t2 + y], z) + ρ([t2 + y, t3 + z], x)

+ρ([t3 + z, t1 + x], y)

= ρ([t1 + x, y], z) + ρ([x, t2 + y], z)− ρ([x, y], z)

+ρ([t2 + y, z], x) + ρ([y, t3 + z], x)− ρ([y, z], x)

+ρ([t3 + z, x], y) + ρ([z, t1 + x], y)− ρ([z, x], y)

= 0

for all t1 + x, t2 + y, t3 + z ∈ LieΦ.

Here we see that H is in the kernel of Ad|N . So it is easy to see by the

example in Preliminaries 7. that in our case Φ is abelian and ρ(Ad(h)(t1 +

x), Ad(h)(t2 +y)) = ρ(t1 +x, t2 +y), i.e., by Proposition 7 we see that Φ/H

is also a compact homogeneous space with an invariant symplectic structure.

Now by Φ abelian we see that it is a torus. So we get:

Theorem 2. Every solvable compact homogeneous space with an invari-

ant symplectic structure is a torus.

Remark 2. The actually symplectic torus structure was obtained in

[Gu6] by completely integrable system. See also [ZB] for a very interesting

version of the proof of Theorem 2.

Conbining Theorem 1 and 2 we obtain Proposition 2.

3.4 Examples of Nonstandard Symplectic Torus

In last section we get some nonstandard symplectic torus in the case A2 6= 0

and H2 6= 0. Although they have standard torus as their modification,

themselves are not standard. The dimension of H1 can be as big as possible.

So can be the dimension of G. In this section we will give some simple
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examples which show that this situation does occur.

Let Cn be a complex vector space generated by vectors e1, · · · , en with

S1 = {eiθ|θ∈[0,2π]} action eiθ : ek → ekiθek.

Regarding S1 as a subgroup of the automorphism group of the abelian

group Cn we get a Lie group G = S1 ∝ Cn as a semiproduct.

Now we let Z = (Z + iZ)n be the standard lattice in Cn,

H0 = {(z1, · · · , zn) ∈ Cn|Re(z1+···+zn)=0},

and H = Z + H0.

Then G/H is a nonstandard torus occured in last section with sym-

plectic structure introduced by ρ in the Proposition 7 such that ρ(s, x) =

1, ρ(s, h) = 0, ρ(x, h) = 0 for all h ∈ H, where s is a generator of the Lie

algebra of S1, x ∈ Cn is an element such that Re(x1 + · · ·+ xn) = 1.

See also [ZB] for similar examples.

It is very surprising fact to me that we can get a classification for compact

homogeneous space with an invariant symplectic structure since the auto-

morphism group of a compact symplectic manifold has infinite dimension.

From any smooth function we can construct a one parameter group which

keep the symplectic structure invariant. So we can see that the base man-

ifold is always “homogeneous” under the symplectic automorphism group.

But we see from our classification that a compact symplectc manifold is

homogeneous under a finite dimensional Lie subgroup of the symplectic au-

tomorphism group is so different. Moreover, we are seemly be able to classify

compact homogeneous space with a symplectic structure which is nonneces-

sary invariant under the group action.

Using the nonstandard torus we can construct new examples of simply

connected compact symplectic manifolds as in [Gu4] and [Bo].
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[BR] A. Borel & R. Remmert: Über Kompakte Homogene Kählersche

Mannigfaltigkeiten, Math. Ann. 145 (1962), 429–439.

[DG1] J. Dorfmeister & Z. Guan: Classifications of Compact Homoge-

neous Pseudo-Kähler Manifolds, Comm. Math. Helv. 67 (1992), 499–513.

[DG2] J. Dorfmeister & Z. Guan: Pseudo-Kählerian Homogeneous Spaces

Admitting a Reductive Transitive Group of Automorphisms, Math. Zeis-

chrift 209 (1992), 89–100.

[Dm] J. Dorfmeister: Homogeneous Kähler Manifolds Admitting a Tran-

sitive Solvable Group of Automorphisms, Ann. Scient. Ec. Norm. Sup., 4

Serie, vol 18 (1985), 143–180.

[DN] J. Dorfmeister & K. Nakajima: The Fundamental Conjecture for

Homogeneous Kähler Manifolds, Acta Math. 161(1988), 23–70.

[Gb1] V. V. Gorbatservich: On the Double Normalizer of the Stationary

Subalgebra of a Plesiocompact Homogeneous Spaces, Siberian Math. J. 34

(1993), 451–456.

25



[Gb2] V. V. Gorbatservish: On a Fibration of Compact Homogeneous

Spaces, Trans. Moscow Math. Soc. vol 1 (1983), 129–157.

[Gb3] V. V. Gorbatservich: Splittings of Lie Groups and Their Appli-

cation to the Study of Homogeneous Spaces, Math. USSR Izvestija. vol 15

(1980), 441–467.

[Gb4] V. V. Gorbatservich: Plesiocompact Homogeneous Spaces, Siber.

Math. J. 30 (1989), 217–226.

[GS] V. Guillemin & S. Sternberg: Symplectic Techniques in Physics,

Cambridge Univ. Press. 1984.

[Gu1] Z. Guan: Examples of compact holomorphic symplectic manifolds

which admit no Kähler structure. In Geometry and Analysis on Complex

Manifolds—Festschrift for Professor S. Kobayashi’s 60th Birthday , World

Scientific 1994 63–74.

[Gu2] D. Guan: A Splitting Theorem for Compact Complex Homoge-

neous Spaces with a Symplectic Structure. Geom. Dedi. 67(1996), 217–225.

[Gu3] D. Guan: Classification of Compact Complex Homogeneous Spaces

with Invariant Volumes, to appear in Transactions of AMS.

[Gu4] D. Guan: Examples of Compact holomorphic Symplectic Mani-

folds which are not Kählerian II, Invent. Math. 121(1995), 135–145.

[Gu5] D. Guan: Classification of Compact Homogeneous Space with an

Invariant Symplectic Structure, preprint 1997.

[Gu6] D. Guan: Fine Structure of Compact Homogeneous Space with an

Invariant Symplectic Structure, preprint 1997.

[Gu7] D. Guan: Toward a Classification of Compact Complex Homoge-

neous Spaces, preprint 1998.

[Hk] A. T. Huckleberry: Homogeneous Pseudo-Kählerian Manifolds: A

26



Hamiltonian Viewpoint, Note di Matematica 10(1990) suppl. 2, 337–342.

[HO] A. T. Huckleberry & E. Oeljeklaus: Classification Theorems for

Almost Homogeneous Spaces, Publ. de l’Inst. Elie Cartan, Nancy, Janvier

1984, 9. 178 pages.

[Kz] J. L. Koszul: Sur la Form Hermitienne Canonique des Spaces Ho-

mogenes Complexes, Canad. J. Math. 7(1968), 562–576.

[On] A. L. Onishchik: On Lie Groups Transitive on Compact Manifolds

II, Math. USSR Sbornik. vol. 3 (1967), 373–388.
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