Sample Problems for the Midterm

- The exam is on Friday, 02/19, 3:10 pm – 4:00 pm.
- In each problem, you have to show every step of your calculation.

Basic notions:
1. Check that each given function is a solution of the given problem or not:
 (1) Function: \(y = 3e^{2x} \); Differential equation: \(y' - 2y = 0 \).
 (2) Function: \(y = y(x) \) satisfying the algebraic equation \(x^2 + cy = 0 \), where \(c \) is a constant; Differential equation: \(y' = \frac{xy}{x^2-1} \).
 (3) Function: \(y = e^{-x} - e^{-2x} \); Initial value problem: \(y'' + 3y' + 2y = 0, y(0) = 0, y'(0) = 1 \).

First order equations:
2. Solve the following first order equations:
 (1) \(xy' + y - 2x = 0 \).
 (2) \(y' \sin x + y \cos x = 1 \).
 (3) \(xyy' = (y^2 - 1)^2 \).
 (4) \((x^2 + y^2)dx + 2xydy = 0 \).
 (5) \((3x + 2y^2)dx + 2xydy = 0 \).
 (6) \(y' = \frac{x^2 + 2xy + y^2}{x^2} \).
 (7) \(y' + y = xy^2 \).

3. Solve the following initial value problems:
 (1) \(y' + 2xy = x, \quad y(0) = 1 \).
 (2) \(2yy' \sin x + y^2 \cos x = 1, \quad y(\pi/2) = 0 \).

Application problems:
4. An initial deposit of $1,000,000 in a bank with 6% annual interest rate compounded continuously will approximately last how long if it is subject to annual withdrawals of $100,000?

Approximation solutions:
5. Use Euler's method to compute the approximation solution of the initial value problem
 \[y' = y + x, \quad y(0) = 1 \]
 at \(x_1 = 0.1 \) and \(x_2 = 0.2 \). Compare your approximation with the actual values.