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Abstract: In this paper, we apply a result of the classification of a compact cohomogeneity one
Riemannian manifold with a compact Lie group G to obtain a classification of compact cohomogeneity
one locally conformal Kähler manifolds. In particular, we prove that the compact complex manifold is
a complex one-dimensional torus bundle over a projective rational homogeneous, or cohomogeneity
one manifold except of a class of manifolds with a generalized Hopf surface bundle over a projective
rational homogeneous space. Additionally, it is a homogeneous compact complex manifold under
the complexification GC of the given compact Lie group G under an extra condition that the related
closed one form is cohomologous to zero on the generic G orbit. Moreover, the semi-simple part S
of the Lie group action has hypersurface orbits, i.e., it is of cohomogeneity one with respect to the
semi-simple Lie group S in that special case.
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1. Introduction

Let M be a complex manifold and h be a Hermitian metric. If h is locally conformal to
a Kähler metric, i.e., for any point m ∈ M there is an open neighborhood O such that on O
we have that g = e f h is a Kähler metric with a function f , we say that (M, h) is a locally
conformal Kähler. That is, let Ω( , ) = h( , J ), then d(e f Ω) = 0.

A (compact) Riemannian cohomogeneity one manifold M with a compact Lie group
G has a real hypersurface orbit, which was classified as the following (see [1] page 198,
for example):

A. The generic real hypersurface orbits are the same as a compact homogeneous space
G/H, although they might have different (induced) Riemannian metrics. The generic
orbits form an open set U of M.

B. M − U has at most two components. Each of them is a compact homogeneous space
G/Hi such that H is a subgroup of Hi for each i and Hi/H are spheres.

C. The quotient space I = M//G has four possibilities:

1. An open interval (a, b). In this case, all the orbits are generic and M is open with
two ends.

2. A half-open interval [a, b). In this case, there is only one special orbit correspond-
ing to the point a in the interval and M is open with one end.

3. A closed interval [a, b]. In this case, there are two special orbits corresponding to
the points a and b. M is closed.

4. S1. In this case, all the orbits are generic and M is closed.
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In the compact case, only cases 3 and 4 could happen.
In the case in which M is complex and compact, the complexification GC acts on M

also and therefore, GC has complex orbits. One of them contains a real hypersurface orbit
and hence is an open orbit. We denote the open GC orbit by UC. We notice that all the
generic hypersurfaces are in some GC open orbits. The generic hypersurfaces in the orbit
space I consist of a connected interval. Therefore, all of them are in UC. Then, there are
three possibilities:

3a. U = UC, I = [a, b] and the special orbits are complex sub-manifolds. We say that M is
a GC almost homogeneous manifold with two ends. See [2] for examples.

3b. I = [a, b] but UC − U has only one component. We say that M is a GC almost
homogeneous space with one end. See [3,4] for examples.

c. M is GC homogeneous. This comes from the case 4 as above.

We should see later on that only the case c would happen if we assume that the
Lee form θ = −d f (therefore closed) is in a trivial cohomology class on the generic G orbits.
They are basically the quotient of the open orbits as the C∗ bundle we studied earlier, e.g.,
in [2] or those mentioned in [5].

Remark 1. By the local nature of the defining function f , θ is in general in a nonzero cohomology
class even restricted to the generic orbits. We shall see some examples in Theorems 2 and 3. In those
cases, we do see that all the cases of 3a, 3b and c can actually happen. One also can notice that θ
being in a zero cohomology class to the generic orbits does not imply that θ is in a zero cohomology
class on the manifold. See our Theorem 1 for example.

Recently, Professor Hasegawa et al. proved in [6] (see also [7,8]):

Proposition 1. A compact homogeneous locally conformal Kähler manifold M = G/H is a
complex 1-dimensional torus bundle over a rational projective homogeneous space.

Remark 2. Here, by locally conformal Kähler, we always mean that the manifold is not Kähler.
Otherwise, the statement of this result is obviously not true.

In [7], we actually prove the following in the G homogeneous case:

Proposition 2. A compact homogeneous locally conformal Kähler manifold is cohomogeneity
one under the action of the semi-simple part S of the Lie group, i.e., S has hypersurface orbits.
M = N × S1 as a homogeneous space (but not necessary as a Riemannian manifold) with N the
S orbits. Both the original locally conformal Kähler metrics and the related Kähler metrics are
cohomogeneity one under the S action.

Moreover,

Proposition 3. A compact homogeneous locally conformal Kähler manifold M is a complex one-
dimensional torus bundle, over a rational homogeneous projective space, which is a finite quotient
of a quotient of a C∗ bundle by some action ea with Rea ̸= 0. The metrics on M, as a submersion,
are completely determined by the Kähler class of the base manifold and the Kähler class, as the
restriction, of the fiber. On the other hand, any positive homogeneous C∗ bundle over a rational
projective homogeneous space has a compact homogeneous locally conformal Kähler manifold as a
compact quotient.

In particular, the homogeneous case is a special case of the cohomogeneity one case,
in which G = S.

Now, we come back to the general cohomogeneity one case.
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We notice that on O one has d(e f Ω) = 0. That is

e f (d f ∧ Ω + dΩ) = 0.

As before, one defines θ = −d f . Then dΩ = θ ∧ Ω. Since Ω is nondegenerate, θ is uniquely
determined if n = dimC M > 1. In the following, we always assume that n ̸= 1 since when
n = 1, M is always Kähler.

Lemma 1. θ is closed and represents a nonzero cohomology class if h is not conformally Kähler
itself. In the compact cohomogeneity one case, θ is invariant.

Proof. dθ = d(−d f ) = 0 implies that θ is closed. If θ represents a zero class in the
cohomology, then θ = dF for a global function F. That is, e−Fh is Kähler. Since G is
reductive, the Lie algebra of G is s + c with s compact semi-simple and c abelian. Since Ω
and dΩ are invariant under G, so is θ.

Next result is one of the major parts of this paper. This result basically says that the
manifold is of type III but not of type I or II (see the similar definition in the Kähler case
in [5,9] or the references in [9]) if θ is in a zero cohomology class on the generic G orbit.
That would greatly simplify our proof. This would also generalize Proposition 2 to the
cohomogeneity one case. We need prove the following:

Theorem 1. Let M be a compact cohomogeneity one locally conformal Kähler manifold. If θ is in a
zero cohomology class on the generic orbits, then the compact manifold M is GC homogeneous and
I = S1.

Proof. Since θ is invariant, we let π : U → U/G be the quotient map. Then, the bundle is a
product if I ̸= S1. On U, θ is locally θ0 + da with a a function of t and θ0 is a closed 1 form
on π−1(t). Moreover, by θ closed, we see that θ0 is closed on each fiber and is constant on t.
Therefore, if θ0 = 0, we can regard f = a as a function on I up to adding a constant. If I
is an interval, f can be globally defined and therefore, θ is a zero cohomology class. We
obtain a contradiction whenever θ0 = 0.

Now, if θ0 ̸= 0 and I is an interval, locally, after modifying Ω by Ωa = e−aΩ we can
assume that a = 0. That is, θ = θ0.

If θ0 ̸= 0, we have as in [7], we have that

Ω = k(t)θ ∧ Jθ + Ω1.

Restricting to each fiber so we have that:

Ωt = k(t)θ ∧ Jθ + Ω1,t,

dtΩt = θ ∧ Ωt = θ ∧ Ω1,t.

We notice that actually on the orbit θ = θ1 + θ2 with θ1 ∈ ker J and θ2 ∈ JG∗. Here, G is the
Lie algebra of G. It is classical that we identify G with the vector fields generated by the
actions of the one parameter subgroups generated by the corresponding elements of the
Lie algebra.

On the other hand,
dtΩt = −ktθ ∧ dt(Jθ) + dtΩ1,t,

where kt = k(t).
This, as in [7], implies that Ω1,t = −ktd(J(θ)), which has a complex rank of n − 2. We

notice here that Jθ is not zero on the orbits. If Jθ = 0, then Ωt = Ω1,t, θ ∧ Ω1,t = dΩ1,t,
which cannot happen since θ is in the center of the Lie algebra G. This means that θ2
will never be zero. We shall see actually that θ1 = 0 in the next two sections. That is,



Mathematics 2024, 12, 1710 4 of 12

Ωt = kt(θ ∧ Jθ − d(Jθ)). By assuming Jθ and J(dt) to be zero on the Lie algebra of H, we see
that H is in the centralizer of Jθ2. Also, we have, Ω = l(t)dt ∧ J(dt) + k(t)(θ ∧ Jθ − dt(Jθ))
since Ω1 = l(t)dt ∧ J(dt) + Ω1,t.

Moreover, by the rank of d(Jθ) being n − 2, the centralizer C(Jθ2) of Jθ2 introduces a
fibration p : G/H → G/C(Jθ2) of the generic orbits on rational homogeneous spaces of
complex dimension n − 2. This means the generalized Tits normalization fibration (Cf. [10]
for the case with UC compact) of GC, on the open orbit, has a complex two-dimensional
parallelizable fiber with a rational G homogeneous space as the base if the base is homoge-
neous. If the base of the generalized Tits fibration is not homogeneous, we would again
obtain a one-dimensional complex torus bundle. See a proof of this in the next section. That is,
in the first case the fiber is a quotient of a complex two-dimensional reductive Lie group.
However, a complex two-dimensional Lie group can only be abelian. That is, the fiber
of p is a real three-dimensional torus. Since θ is invariant under G, θ is in the center and
the center of G has at least one dimension. The complex center of GC has at most two
dimensions. Therefore, in the extreme case of a complex two-dimensional fiber, we should
obtain some kind of Hopf surface bundle. This will be dealt with in the next two sections.
See Theorems 2 and 3.

We will have some examples in the next section.
Therefore, we end up in a mild similar situation in the compact homogeneous case,

except that the metric h itself is not necessarily homogeneous under any compact Lie group
even in the setting of our Theorem 1.

Even so, we still obtain a similar structure result to the Proposition 1, or Theorem 1, in
general in this paper:

Main Theorem: A compact cohomogeneity one locally conformal Kähler manifold is a
homogeneous holomorphic fiber bundle with fiber F and base B, such that either F is a complex
one-dimensional torus and B a projective rational homogeneous space or a projective cohomogeneity
one manifold, or F is a generalized Hopf surface and B is a projective rational homogeneous space.

Remark 3. By a (classical) Hopf surface, we mean that it is a complex surface defined as in the
Example 1 in the next section with the base manifold to be CP1. A generalized Hopf surface is a
finite quotient of a classical Hopf surface.

2. The Normalization Fibration

Let M be a compact complex manifold with a cohomogeneity one G Hermitian struc-
ture. Then G is compact, and hence is reductive. Let GC be the complexified Lie group of
G. Then GC also acts on M such that M is UC ∪ D. We call D the complex end. D might be
a divisor or a complex lower-dimensional submanifold. We have UC = GC/HC. We notice
that, in general, HC is not the complexification of H.

There is a natural fibration of UC = GC/HC → N = GC/NormGC(HC
0 ), where

HC
0 is the identity component of HC and NormGC(HC

0 ) = {g ∈ GC∥ghC
0 g−1⊂HC

0
} is the

normalization of HC
0 in GC. Let GC be the Lie algebra of GC and HC be the Lie algebra of

HC. Then, N is just the GC orbit of HC in GC. Since M is G cohomogeneity one, N is either
G homogeneous or G cohomogeneity one.

If N is G homogeneous, then the fiber is cohomogeneity one under K = (G ∩
NormGC(HC

0 ))/H0 ⊂ NormG(H0)/H0. Moreover, if K is a codimension one compact
Lie subgroup of a complex Lie group, it must be abelian.

If N is G cohomogeneity one, then the fiber is K homogeneous and therefore is a
compact quotient of K, which can only be a torus since K is both compact and complex.
Therefore, again K is abelian. In the second case, there is a classification of the possible N
in [3,4]. See also [5,9], as well as the references therein.

In both cases, the Lie algebra of C(Jθ2) is a direct product of H and an abelian sub-
group T .

This make the compact cohomogeneity one Hermitian structure being handleable
in general.
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In our case, we see that the normalization fibration has a fiber with a complex dimen-
sion of no more than two.

If θ0 ̸= 0, then the fiber is not trivial. In this case, if N is cohomogeneity one, by the
dimension bound, the fiber is of complex dimension one since dt is not in the fiber.

Lemma 2. If θ0 ̸= 0 and the base of the normalization fibration of the GC open orbit is of
cohomogeneity one, then the fibration is a homogeneous complex one-dimensional torus bundle over
a cohomogeneity one quasi-projective complex GC homogeneous manifold. Moreover, the complex
one-dimensional torus bundle extends to the whole manifold. That is, the manifold itself is a complex
one-dimensional torus bundle over a compact projective rational cohomogeneity one manifold.

Proof. The compactification of the base manifold N in the Grassmannian is a cohomogene-
ity one projective variety Nc. The components of Nc − N are G homogeneous compact
complex manifolds. The ends in M − UC are also complex and compact. They are also G
homogeneous and locally conformal Kähler. Indeed, let Ei = G/Hi be one of the complex
ends in condition B in the Introduction, then near any point e ∈ Ei, there is a local neigh-
borhood on which M is locally a product as a complex vector bundle over Ei and along a
geodesic perpendicular to Ei, Hi has a sphere as an orbit and the torus of the normalization
fibration projects to Ei as an embedding. Therefore, we find that the limit of the complex
torus does not contract and is actually locally free. That is, the torus bundle structure
extends over to the ends.

Example 1. Let Nc be any compact projective cohomogeneity one manifold. We also assume L is a
positive homogeneous line bundle over Nc and L∗ represents the nonzero points in the line bundle.
There is a natural C∗ action on L∗. Then L∗/(a) with a nonzero complex number a with |a| ̸= 1 is
a compact cohomogeneity one locally conformal Kähler manifold. Similarly, this occurs if we replace
Nc with a projective rational homogeneous manifold.

Remark 4. The projective rational homogeneous spaces are Kähler–Einstein with positive Ricci
curvature. Therefore, they are simply connected. The classes of the line bundles are discrete. Thus,
the identity components of the automorphism group acts trivially on these classes. This implies that
all the line bundles are homogeneous. Similarly, if Nc is any compact simply connected projective
cohomogeneity one manifold, then all its line bundles are homogeneous.

In the case of Lemma 2, the complexified Lie group has a center of complex dimen-
sion one.

And the G/H → G/C(Jθ) must have a three-dimensional fiber and the three-dimensional
fiber is included in the center of C(Jθ). Therefore, M is exactly one of the manifolds from
Example 1.

Therefore, we have:

Theorem 2. Let M be a compact cohomogeneity one locally conformal Kähler manifold. If θ0 ̸=
0 and the normalization fibration of the GC open orbit is a G homogeneous torus bundle over
cohomogeneity one base, then M itself is a quotient torus bundle of a positive C∗ bundle over a
projective rational cohomogeneity one manifold.

We notice that in this case θ1 = 0.
When θ0 ̸= 0 and N is G homogeneous, then the fibration has a complex dimension

two fibration.

Lemma 3. If θ is not in the zero cohomology class of the generic G orbit and the normalization
fibration of the GC open orbit has a G homogeneous base, then the fiber is an abelian complex two-
dimensional Lie group that is cohomogeneity one. That is, M is a compact complex two-dimensional
locally conformal Kähler manifold F bundle over a projective rational space. The group action of the
fiber is a three-dimensional compact Lie group.
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In this case, N = SC/P with GC = SC × A, SC being semi-simple and P a parabolic
subgroup of SC. Here, A is a complex abelian Lie group of complex dimension one or two.
Let π2 be the projection map from GC to SC, then π2(HC) ⊂ P is a complex codimension
one normal subgroup if dimC A = 2, or π2(HC) = P if dimC A = 1.

Example 2. Let Li, i = 1, 2 be two of the line bundles in the examples 1 over N. We can obtain the
Kähler metrics on Li using some Hermitian metrics on them. Then, the product V = L1 × L2 is a
vector bundle over N × N with a product Kähler metric. Let V∗ represent the nonzero points over the
diagonal submanifold, which is itself an N. Now, we consider the group action GC = SC × (C∗)2

with the second factor action:

(c1, c2) : (l1, l2) → (c1(c2)
bl1, c1(c2)

al2).

This action comes down to V∗/(a) with an a such that |a| ̸= 1.

This gives some possible manifolds in Lemma 3. We shall deal with the structure of
the the complex dimension two fiber in the next section.

3. Compact Complex Dimension Two Locally Conformal Kähler Manifold of
Cohomogeneity One

In this section, we shall deal with the complex dimension two case. We notice that if
dimC M = 2, then G is a compact torus.

In this case, we have the standard case: Ω = |dz|2
|z|2 and the group action is

G = [C∗/(2)]× S1 with the S1 action (z1, z2) to (eatz1, ebtz2) for an element et ∈ S1. The
group action is

(z, w) : (z1, z2) → (ez+bwz1, ez+awz2).

Here, we need to assume that both a and b are integers.
Now, in general, we let z = x + iy, w = t + iv and we assume that the compact

three-dimensional real Lie group is generated by x, y and v. Locally, after replacing Ω by
eaΩ we can assume that θ = θ0 = adx + bdy + cdv. As we discussed earlier, we see that
θ2 = adx + bdy is not zero. We could assume simply that a = 1 and b = 0.

Before we go further, we want to prove that c = 0. If c is not zero, we let c = 1. Then
we have θ = dx + dv and let

Ω = Adz ∧ dz̄ + Bdz ∧ dw̄ + B̄dw ∧ dz̄ + Cdw ∧ w̄.

θ = 1/2(dz + dz̄ − idw + idw̄)

dΩ = A′dt ∧ dz ∧ dz̄ + B′dt ∧ dz ∧ dw̄ + B̄′dt ∧ dw ∧ z̄.

By dΩ = θ ∧ Ω, we determine
A′ = −B − iA.

Now, by A positive, we determine that A′ = −ReB and 0 = ImB + A. Therefore, B =
−A′ − iA. We also obtain

B′ = −C − iB.

That is, −A′′ − iA′ = −C + iA′ − A. That is, A′′ = C + A and A′ = −A′. The second
identity implies that A is a constant and the first identity implies that 0 = C + A. But both
A and C are positive, which is a contradiction. This implies that θ = dx.

Therefore, in the case we also obtain θ1 = 0.
Let Ω = f dx ∧ dy + gdx ∧ dv + hdy ∧ dv + dt ∧ (Adx + Bdy + Cdv).

dΩ = dt ∧ ( f ′dx ∧ dy + g′dx ∧ dv + h′dy ∧ dv).
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Now, by dx ∧ Ω = dΩ we obtained that h is a constant c. However, we also have:

dx ∧ Ω = cdx ∧ dy ∧ dv + dx ∧ dt ∧ (Bdy + Cdv).

We have h = c = 0, B = − f ′, C = −g′. This is true if Ω is locally conformal symplectic.
However, we also have that Ω is from a Hermitian metric. That is, J∗Ω( , ) =

Ω(J , J ) = Ω. We have Jdx = dy, Jdy = −dx, Jdt = dv, Jdv = −dt. Then

J∗Ω = − f dy ∧ dx − gdy ∧ dt + Adv ∧ dy − dv ∧ (− f ′dx − g′dt)

= f dx ∧ dy − f ′dx ∧ dv + Adv ∧ dy − dt ∧ (−gdy + g′dv).

Then, A = 0, g = − f ′. That is, we have

Ω = f dx ∧ dy − f ′(dx ∧ dv + dt ∧ dy) + f ′′dt ∧ dv

= −2( f dz ∧ dz̄ − f ′(dz ∧ dw̄ + dz̄ ∧ dw) + f ′′dw ∧ dw̄).

For Ω to be a metric, we need f > 0, f ′′ > 0 and

f f ′′ − ( f ′)2 > 0.

that is, f > 0 and if g = f ′/ f then g′ > 0. Then both A = limt→+∞ g and B = limt→−∞ g
exist, although one of them might be infinite.

Now, let us look at the metric restricted to the compact G orbits. We have that h is
conformal to

dzdz̄ − g(dzdw̄ + dwdz̄) + f ′′/ f dwdw̄.

Restricting to G, we obtain

dx2 + dy2 + f ′′/ f dv2 − 2gdydv.

We cannot have f ′′/ f tending to infinity. Otherwise, at infinity the metrics are dv2. That
is, both x and y contract. This cannot happen by the condition B in the Introduction for
the ends. So limt→+∞ f ′′/ f = a2 and limt→−∞ f ′′/ f = b2. And by f ′′/ f > g2, we see that
both A and B are finite. A > B. By the fact that the orbits do contract in one real dimension,
we see that A = a and B = b when we choose the sign of a, b properly. If the choice of a
and b are attainable, i.e., there are actually examples with this pair of numbers, we replace
w by lw in our construction and we see that the pair la and lb is also attainable. Therefore,
if a, b are rational, then the pair is attainable. We notice that in the earlier examples we have
θ0 = −2dx instead of dx.

Therefore, it is reasonable to believe that for any pair of a, b it is attainable.
Also, the metric is equivalent to |dz − gdw|2 + g′|dw|2. And at the ends g′ = 0. The

metrics are dx2 + (dy − adv)2 and dx2 + (dy − bdv)2. Therefore, there are two vectors
k(ay + v) and l(by + v) in the lattice. Since g′ = 0 at the ends, we have the metrics |dz −
adw|2 and |dz − bdw|2 at the ends. We know that the ends are complex one-dimensional
torus. The kernels of G acts on them are y − av = 0 and y − bv = 0. Therefore, there are
two linearly independent elements in the discrete subgroup Γ of R3 such that G = R3/Γ.
Therefore, the complex two-dimensional group GC is a quotient of U = C∗ × C∗. We can
understand that if 2πk(a, 1), 2πl(b, 1) are two minimums of them, then the action on U
is (ek(az+w), el(bz+w)). We want to choose the right signs of k and l in the way to make the
coefficients of z non-negative.

Then, either M can be the quotient of (C2 − {0})/(c, d) with nonzero c and d such that
both |c| = ekas, |d| = elbs > 1. They are the generalized Hopf surfaces. The existence of the
locally conformal Kähler structures was established earlier by many authors. For example,
see [11]. We just note here that the metrics constructed in [11], page 1114 are G invariant
locally conformal Kähler metrics. We have in page 1111, ϕ(ctu, dtv) = ϕ(u, v) + t. Then,

in page 1112 Φ(ctu, dtv) = (cd)tΦ(u, v). [|u|2Φ
− 2k1

k1+k2 ](ctu, dtv) = [|u|2Φ
− 2k1

k1+k2 ](u, v), sim-
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ilarly for the one with v. ∆ in (16) of page 1113 is invariant under this action also. We have

Φ
k2−k1
k2+k1 (ctu, dtv) = |d/c|tΦ(u, v), similarly for ∂2

u,ūΦ.
Or, one of |c|, |d| is 1. Say, for example, |c| = 1 but |d| > 1. What we mean is that in the

other case, the construction for M would be the same. Now, we assume that |c| = ekas = 1
with ks ̸= 0. Then, a = 0. The generic G orbits are (S1 × C∗)/(c, d).

We now have that the open orbit is U with the action (ekw, el(bz+w)). Again, since
we only need to deal with the existence of the complex structure near any one of the
ends, by changing w we can assume that k = 1. We recall that near the end, the metric
is |dz − gdw|2 + g′|dw|2 with limt→−∞ g = limt→−∞ g′ = 0. Therefore, we could let
g = h 2e2t

1+e2t = hF. We only need to prove that the complex structure is attainable for

a function g = F. Let W = ew. Then, F = 2|w|2
1+|W|2 and F′ = 4|W|2

(1+|W|2)2 . The metric is

|dz − 2W̄dW
1+|W|2 |

2 + 4|dW|2
(1+|W|2)2 near W = 0. This is obviously attainable. The other side could

be also down by regarding it as the end of Hopf surfaces. Indeed, even in this case, one
might change the first C∗ by multiplying the second C∗, therefore, it reduces to the earlier
generalized Hopf surfaces case. In fact, in this case, we have |c| = |d| and the standard
Kähler metrics on C2 would produce the required locally conformal Kähler metric, as
pointed out by [11] on page 1110.

Theorem 3. Let M be a compact cohomogeneity one locally conformal Kähler manifold. If θ0 ̸= 0
and the normalization fibration on the GC open orbit has a homogeneous base, then the manifold is a
generalized Hopf surface bundle over a rational projective homogeneous manifold.

4. Proof of the Main Theorem

Now, we can concentrate ourselves on the situations with θ0 = 0.
Before we go any further, let us make an observation that the Tits fibration [10] in this

case is a complex torus bundle over a rational projective homogeneous space. According
to Tits, the fiber is a complex compact parallelizable homogeneous space. That is, it is a
quotient of a complex Lie group by a discrete subgroup. In our case, The complex Lie
group has a codimension one compact subgroup. Then first, the semi-simple part is trivial.
Second, the compact subgroup is a torus. Therefore, the complex Lie group itself is abelian
and could be a complex torus. This is similar to the homogeous case in [7], in which we
had a Hano–Kobayashi torus fibration.

Let t be the map from M to S1. We denote Ms = t−1(s) and h = g = dt2 + gt by
choosing a right coordinate for S1. Then, we have:

Theorem 4. Let M be a compact cohomogeneity one locally conformal Kähler manifold with θ0 = 0,
then Ω = f (t)(θ ∧ Jθ) + dtαt(modH), where H is the Lie algebra of H, each hypersurface orbit
is an S1 bundle over a same given rational projective homogeneous space and the bundle maps are
submersions. Moreover, the semi-simple part S of G has a cohomogeneity one action.

Proof. By a local argument used in the proof of Theorem 1, we see that θ = da for a function
a of t.

By orthogonal decomposition, we obtain

Ω = φ(t)θ ∧ Jθ + Ω1

with Jθ ⊥ θ, Ω1 ⊥ θ.
Then Jθ, Ω1 ∈ ΛT∗Mt and

dΩ = −φ(t)θ ∧ dt(Jθ) +
dΩ1

dt
∧ dt + dtΩ1 = θ ∧ Ω1.

We have dtΩ1 = 0 and
Ω1 = dtαt + Ω0(modH)



Mathematics 2024, 12, 1710 9 of 12

with Ω0 ∈ ∧2C∗ if we denote C the center.

Lemma 4. Ω0 = 0.

Proof. We have:

dΩ = −φ(t)θ ∧ dt(Jθ) +
d(dtαt + Ω0)

dt
∧ dt = θ ∧ (dtαt + Ω0)(modH)

We now consider the Tits fibration from [10]:

M = GC/HC → GC/NormGC(HC
0 ),

where NormGC(HC
0 ) = NC is the normalization of the identity component HC

0 of HC in
GC. The fiber is a complex parallelizable manifold, i.e., a quotient of a complex Lie by a
discrete subgroup. It is abelian by our discussion at the beginning of this section.

Now we restrict our attention to the complex fiber N/H with N = G ∩ NC, which acts
on the fiber as a torus. We have C = CH/H ⊂ N/H0 as an abelian subgroup. Therefore, on
the (complex) Lie algebra (of N/H0) level, we have that Ω0 (the corresponding Hermitian
metrics) is non-negative and

dΩ0

dt
∧ dt = θ ∧ Ω0 = (φ(t))−

1
2 Ω0 ∧ dt,

since all the dt(Jθ), dtαt are zeros on the semi-simple part of H and therefore are zeros on
the fiber according to [12]. That is,

dΩ0

dt
= (φ(t))−

1
2 Ω0.

By the non-negativity and the periodicity, we determine that Ω0 = 0.

Now, we continue the proof of our Theorem 4:
We now have:

Ω = φ(t)θ ∧ Jθ + dtαt(modH).

That is, dtαt has complex rank n − 1. This means that Tits fibration of M in [10] is a map
from M to the rational projective homogeneous space S/C(α∗t ), where α∗t is the dual of
αt through Killing form and C(α∗t ) is the centralizer of α∗t in the semi-simple part S of the
Lie group G (for this construction, see [12] for example). And therefore, the fiber has a
complex-dimensional one, which can only be a complex one-dimensional torus. We obtain
our Theorem 4.

From now on, we assume that G = S.
Furthermore, Jθ = Jtθ = b(t)β ∈ T∗Mt for a constant element β.

dΩ = −φ(t)θ ∧ dt(Jθ) + dt(
dtαt

dt
) ∧ dt = θ ∧ dtαt,

that is,

−(φ(t))
1
2 dt ∧ dt(Jθ) + dt(

dαt

dt
) ∧ dt = (φ(t))−

1
2 dt ∧ dtαt.

Therefore,

−(φ(t))
1
2 dt(Jθ) + dt(

dαt

dt
) = (φ(t))−

1
2 dtαt.

We have
−ϕ(t)b(t)β +

dαt

dt
= (ϕ(t))−1αt,

where ϕ(t) = (φ(t))
1
2 .
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Here, αt, β are the elements in the center of the centralizer of the isotropic subgroup.
Therefore, we have a standard decomposition for this equation with αt = a(t)β + γt:

dγt

dt
= (ϕ(t))−1γt,

−ϕ(t)b(t)β + a′(t)β = (ϕ(t))−1a(t))β.

By the maximal principle, we obtain γt = 0. Therefore, αt = a(t)β.

−(ϕ(t))2b(t) = −ϕ(t)a′(t) + a(t).

Given a positive αt = a(t)β and a φ(t), we could obtain a b(t) (not necessarily nega-
tive).

In the homogeneous case, we could have φ = 1, a(t) = 1, β = −Jθ and therefore,
b(t) = −h(t) = −1. In general, let s be the t for a homogeneous case. Then, Jds = −β. If
θ = k(t)ds, we have Jθ = k(t)J(ds) = −k(t)β. That is, b(t) = −k(t).

a′(t)− (ϕ(t))−1a(t) = −ϕ(t)k(t).

It takes us some simple exercises to determine some interesting periodic φ(t), a(t),
then k(t). For example, one might let φ(t) = 1 for the simplicity. Then we could have:

A. a(t) = 1 − a sin t, then k(t) = a(t)− a′(t) = 1 − a(sin t − cos t);
B. a(t) = 1 − a cos t, then k(t) = 1 − a(cos t + sin t);
C. a(t) = 1 − a(cos t + sin t), k(t) = 1 − 2a sin t.

One might go the other way around. Given a periodic k(t), then find some a(t) with
the same period by solving the equation.

Although this might look complicated, we obtain our Main Theorem anyway. More
precisely, we obtained following:

Theorem 5. Let M be a compact cohomogeneity one locally conformal Kähler manifold. If θ0 = 0,
the manifold itself admits a compact homogeneous locally conformal Kähler structure

Ω = θ ∧ Jθ − d(Jθ)

with θ = ds. The cohomogeneity one locally conformal Kähler structure has the form

Ω′ = Φ(s)θ ∧ dθ − A(s)d(Jθ)

with Φ(s), A(s) positive functions. On the other hand, all the Hermitian metrics in this form are
locally conformal Kähler. In particular, M is cohomogeneity one under the action of the semi-simple
part S of the Lie group, i.e., it has hypersurface orbits. M = N × S1 as a homogeneous space
(but not necessary as a Riemannian manifold) with N the S orbits. The related Kähler metrics are
cohomogeneity one under the S action. Moreover, M is a complex one-dimensional torus bundle
over a projective rational homogeneous space Q = G/K and a finite quotient of a quotient of a C∗

bundle by some action ea with Rea ̸= 0.

Notice that the equation involved ϕ(t), a(t) and k(t) before the statement of this
Theorem is too complicated. To see that there are a lot of cohomogeneity one but not
homogeneous locally conformal Kähler structures, we simply check the Hermitian forms
Ω′ with positive Φ(s) and A(s).

The homogeneous ones correspond to with Φ, A being constants.
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5. Some Further Observations for the Compact Homogeneous or Cohomogeneity One
Locally Conformal Kähler Structures

Our earlier Theorems basically say that the compact cohomogeneity one locally con-
formal Kähler manifolds are exactly the same as complex manifolds as those compact
homogeneous locally conformal Kähler manifolds if the restriction of θ on the generic G
orbit is cohomologous zero.

One observation we had in [7] for the homogeneous case that was not in the earlier
published results in [6] or [8] is the following:

Theorem 6. The compact homogeneous (cohomogeneity one with θ0 = 0) locally conformal Kähler
manifolds are exactly those compact complex manifolds that are compact quotients of a positive
homogeneous C∗ bundle over a projective rational homogeneous space.

Proof. We just notice that −d(Jθ) is positive.

Another observation is the following: If the readers are not very comfortable with our
quotient of positive C∗ bundle structure, one might look at the complex two-dimensional
case first, which was given in the introduction of [7]. Then, take a point q in the base Q of
the Tits fibration

T : M → Q.

According to [12], we have Q = SC/P with SC a complex semi-simple Lie group and
P a parabolic subgroup. A complex subgroup P is a parabolic subgroup if it contains a
Borel subgroup B, i. e., B ⊂ P. A connected complex subgroup is the Borel subgroup if it
contains the maximal Cartan torus and all the corresponding one parameter subgroups
with negative roots. Let L be an SL(2, C) subgroup such that its Borel subgroup BL is in B.
Then, the orbit of L through q induces an L homogeneous rational curve QL on Q. Then
T−1(QL) is a compact locally conformal Kähler submanifold of complex dimension two.
And as illustrated in the introduction of [7], it has a reasonable positive C∗ bundle structure.

In general, we have following:

Theorem 7. Let L ⊂ SC be a complex semi-simple Lie subgroup, if the Borel subgroup BL of L is
in B, the orbit QL of L through q is a rational projective homogeneous subspace of Q. Moreover,
T−1(QL) is a compact locally conformal Kähler submanifold.
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