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Abstract

This paper is one of a series of papers in which we generalize our results
in [Guan 2003] on the equivalence of existence of Calabi extremal metrics to
the geodesic stability for any type I compact complex almost homogeneous
manifolds of cohomogeneity one. In this paper, we actually carry all the results
in [Guan 2003] to the type I cases. As requested by earlier referees of this
series of papers, in this third part, we shall first give an updated description of
the geodesic principles and the classification of compact almost homogeneous
Kähler manifolds of cohomogeneity one. Then, we shall give a proof of the
equivalence of the geodesic stability and the negativity of the integral in the
first part. The major tool is from [Guan 1999]. Finally, we shall address the
relation of our result to Ross-Thomas version of Donaldson’s K-stability. One
should easily see that their result is a partial generalization of our integral
condition in the first part. And we shall give some further comments on the
Fano manifolds with the Ricci classes. In Theorem 4, we give a result of Nadel
type. We define the strictly slope stability. In our case, it is stronger than Ross-
Thomas slope stability. We strengthen two Ross-Thomas results in Theorem 5
and 6. The similar proofs of the results other than the existence for the type
II cases are more complicated and will be done in [Guan 2012+a].
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1. Introduction

This paper is one of a series of papers in which we finished the project of the exis-
tence of extremal metrics in any Kähler class on any compact almost homogeneous
manifolds of cohomogeneity one.
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In [Guan 2011a], [Guan 2011b] we proved that for the type I compact almost
homogeneous Kähler manifolds of cohomogeneity one, the existence of Calabi ex-
tremal metrics is the same as the negativity of a topological integral. We also proved
in [Guan 2011b] that for any two Káhler metrics in the Mabuchi moduli space of
Kähler metrics there is a smooth geodesic connecting them. That is, the geodesic
principle I is true for these manifolds.

As in [Guan 2003], the major tool is from [Guan 1999]. Although the problem of
existence of the extremal metrics can be reduced to an ordinary differential equation
for our manifolds, the problem of the existence of the geodesics has two variables.
Thanks to the Legendre transformation that we can carry it out for the type I
manifolds. But for a general type II manifolds, this method does not work any
more. And we need a new method, which will be carried out in [Guan 2012+a].

Even for the Kähler Einstein equation, our method in [Guan 2011a] is different
from [Guan-Chen 2000]. We used a semisimple method in [Guan 2011a]. One no-
tices that our exponential map there is not the one for the geodesics. No geodesic
in that situation could have infinite length. It was well-known for many years,
there were many nonsmooth solutions for even a real homogeneous Monge-Ampére
equations. In [Chen-Tian 2008] Professor Chen gave some example which looks like
nonsmooth solution for one dimensional toric case, i.e., CP 1. He also mentioned
earlier it to me 1999 in Princeton. Mabuchi also mentioned it to me in Pisa Italy
2004. However, we already solved the smoothness question for the toric manifolds in
[Guan 1999]. In this simple case, his own method should also produce the smooth
solution, see [Guan-Phong 2012]. The content of this note was presented in the
AMS meeting in Pomona California May 2008. Recently, L. Lempert and L. Vi-
vas claimed (also mentioned by the referee) that they found a counterexample for
our geodesic principle I on torus. However, their examples are not very explicit
and not published yet. We are not able to check their examples in this paper. As
we know that there is no much equivariant geometry on the torus. The geodesic
problem was trivial on the torus. However, see also [Feng 2012]. We checked that
all the geodesic principles hold on compact cohomogeneity one Kähler manifolds.
We conjucture that the geodesic principles hold for all the spherical manifolds. We
take them as working principles in our research. For our safety, we just require that
every thing is analytic. For example, for any analytic initial value in the tangent
space of the equivariant Mabuchi moduli space at a given metric, there is a geodesic
ray. That is, the geodesic principle I is not really needed for the geodesic stability.
In [Guan-Chen 2000], there are some possible obstructions emerged that I worked
alone and eventually treated them in [Guan 2002], which led to the strictly slope
stability. After a long run, we are able to overcome all the difficulties. To solve
the extremal metrics cases, we have to deal with a fourth order ordinary differen-
tial equation, which in our cases is fortunately reduced to a second order nonlinear
equation and was successfully treated.

All the solutions we find in the cohomogeneity one cases are not explicit except
those in [Guan 1995a] and [Guan 2007].

In this paper, we shall prove that the negativity of the integral is actually the
same as the geodesic stability.
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A classification which we refer to in this paper can be found in [Gu3 section 12].

Here we shall describe our updated Geodesic Stability Principles. We conclude
these principles by following the cumulation of other people’s observations and the
evidences from our examples. See [Guan 2003]. We do not assume that these prin-
ciples due to us completely, in particular the first principle.

In [Mabuchi 1986], motivated by the Donaldson’s functional in the vector bundle
case, Mabuchi defined a functional on the Mabuchi moduli space of the Kähler
metrics (see also a conjecture therein). It was later on modified independently
by several people to fit the situation of Calabi extremal metrics (see [Guan 1999],
[Guan-Chen 2000] etc.) on the equivariant Mabuchi moduli space of Kähler metrics,
which we call the modified Mabuchi functional.

Principle I. For any two Kähler metrics in a given Kähler class, there is a
unique (smooth) geodesic in the Mabuchi moduli space of Kähler metrics connecting
them.

This principle has been tested for toric bundles in [Guan 1999]. We also found
that the same method applies to the Kähler metrics on the type I compact almost
homogeneous Kähler manifolds of cohomogeneity one in [Guan 2003], [Guan 2011b]
(see also [Guan 2007]). It seems to us that there is not any complete geodesic
except the ones induced by the holomorphic vector fields. In [Chen 2000], X. X.
Chen proved the existence of an unique C1,1 solution in general.

We shall concentrate on the maximal geodesic rays. It turns out that the ma-
jority of the maximal geodesic rays are of finite length (this is different from holo-
morphic vector bundle theory on vector bundles, Cf. [Kobayashi 1987] p.197 and
also from the picture showed in [Semmes 1991] p.544). The maximal geodesic rays
with infinite length are very special with some strong convex property, which we
call “effective” maximal geodesic rays. The direction of the effective geodesic rays
at each metric might form a convex cone C.

Principle II. The limit metrics of the maximal geodesics are concentrations;

A. Finite ray: cone concentration—partial concentration.

B. Infinite ray: blow up caused by some subvarieties outside a compact set—
complete concentration outside the compact set, the metric on this compact set does
not change.

We call the limit of the ratio of the modified Mabuchi functional the General-

ized Futaki Invariants of the maximal geodesic rays. The generalized Futaki
invariant is positive infinite for finite ray, i.e., the only interesting generalized Futaki
invariants come from the effective maximal geodesic rays.

The second principle is based on our work on the toric manifolds and the coho-
mogeneity one manifolds, see [Guan 2003], [Guan 2007] for examples.

For all the examples we considered in this paper the Mabuchi equivariant moduli
space is flat (see [Guan 1999]), this is similar to the vector bundle case and is not
true in general (see [Mabuchi 1987]). For two maximal geodesic rays, the generalized
Futaki invariants might be the same if there is a curve connecting the beginning
points such that there is a parallel vector field along this curve which connects the
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two tangent vectors at these two points. This observation make the definition of the
generalized Futaki invariants independent of the initial Kähler metrics.

The generalized Futaki invariants define a function of the effective geodesic cone
which is probably a linear function FM,ω, which is continuous on certain given
Banach space. Therefore, F can be defined on the closure C̄ of the effective cone C
in the Banach space. We call the F |C̄ the Generalized Futaki Invariant Functional
or simplely the Generalized Futaki Invariant . There is a seminorm || ||∗ which is
locally equivalent to the given norm except on some subvarieties and is zero on the
functions induced by the holomorphic vector fields.

Principle III. There is a unique extremal metric in a given Kähler class up to
the automorphism group if and only if the Kähler class is geodesic stable, i.e., with
positive generalized Futaki invariant which is bounded below by the given seminorm.

The next principle came a little bit later than the other ones, Therefore, in many
of our papers, we shall call this principle the fourth principle and the next the third
principle instead.

In general, the Mabuchi moduli space might not be flat. We might have some
way to relate the Futaki invariants for two infinite maximal geodesic rays starting
from different points. Let γi(t), i = 1, 2 be two maximal geodesic rays. We say that
they have the same infinite points if

d(γ1, γ2) = sup
t∈[0,+∞)

d(γ1(t), γ2(t))

is finite. Then we have (see also [Guan 2007] Remark 4):

Principle IV. The Futaki invariants of two maximal geodesic rays with the same
infinite point are the same.

In the last section, we shall see that our stability in this case is the same as a
version of the slope stability which is stronger than that in [Ross-Thomas 2006].

2. The Preliminary

Here we summarize some known results about the compact complex almost-
homogeneous manifolds of cohomogeneity one. In this paper, we only consider
manifolds with a Kähler structure. For earlier results one might check with
[Akhiezer 1983] and [Huckleberry 1982].

We call a compact complex manifold an almost homogeneous manifold if its
complex automorphism group has an open orbit. We say that a manifold is of
cohomogeneity one if the maximal compact subgroup has a (real) hypersurface orbit.
In [Guan-Chen 2000] and [Guan 2003], we reduced the compact complex almost
homogeneous manifolds of cohomogeneity one into three types of manifolds.

We denote the manifold by M and let G be a complex subgroup of its automor-
phism group which has an open orbit on M .

Let us assume first thatM is simply connected. Let the open orbit beG/H, K be
the maximal connected compact subgroup of G, L be the generic isotropic subgroup
of K, i.e., K/L be a generic K orbit. We have [Guan-Chen 2000] Theorem 1:
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Proposition 1. If G is not semisimple, then M is a completion of a C∗ bundle
over a projective rational homogeneous space.

If a compact almost homogeneous Kähler manifold is a completion of a C∗ bun-
dle over a product of a torus and a projective rational homogeneous space, we call it
a manifold of type III . We have dealt with this kind of manifolds in our dissertation
[Guan 1995a], [Guan 1995b]. There always exists an extremal metric in any Kähler
class. Recently, we generalized this existence result to a family of metrics, which
connects the extremal metric in [Guan 1995a] and the generalized quasi-einstein
metric [Guan 1995b], called the extremal-soliton metrics in [Guan 2007]. The exis-
tence of the extremal-soliton is the same as the geodesic stability with respect to a
generalized Mabuchi functional.

More recently in [Guan 2012], we even generalized the extremal-solitons to the
generalized extremal solitons, which also include Nakagawa’s generalized Kähler-
Ricci solitons [Nakagawa 2011] as a special case. We proved the existence of both
generalized extremal-soltons and the generalized Kähler-Ricci solitons on these man-
ifolds. In a forthcoming paper [Guan 2012+b], we proved the existence of the so
called m-extremal metrics on these manifolds.

In general, if M is a compact almost homogeneous Kähler manifold and O is
the open orbit, then D = M − O is a proper closed submanifold. Moreover, D
has at most two components. We call each component of D an end. If D has two
components (or one component), we say M is an almost homogeneous manifold with
two ends (or one end). We have [Huckleberry 1982] Theorem 3.2:

Proposition 2. If M is a compact almost homogeneous Kähler manifolds with
two ends, then M is a manifold of type III.

Therefore, we only need to deal with the case with one end. In [Guan-Chen 2000],
we treated the first example, i.e., the blowup of the diagonal of the product of two
copies of CPn. We treated another series in [Guan 2003]. We treated much more
of them in [Guan 2011b] and [Guan 2009], [Guan 2011c], etc.. Again, in the case
of M being simply connected, we only need to take care of the case in which G is
semisimple. IfG is semisimple andM has two G orbits, one open and one closed, and
moreover if the closed orbit is a complex hypersurface, there are two possibilities.
Let K,L be the Lie algebras of K,L. Then the centralizer of L in K is a direct sum
of the center of L and a Lie subalgebra A with A being either one dimensional or a
3-dimensional Lie algebra su(2). If A is one dimensional, we call M a manifold of
type I . If A is su(2), we call M a manifold of type II .

In general, if the closed orbit has a higher codimension, we can always blow
up the closed orbit to obtain a manifold M̃ with a hypersurface end. we call the
manifold M a manifold of type I (or II) if M̃ is of type I (or II).

There is a special case of the type II manifolds. If the open orbit is a Ck bundle
over a projective rational homogeneous manifold, we call M an affine type manifold
(not to be confused with the closed complex submanifolds of Cm).

Then we have (see [Guan 2003] section 12):

Proposition 3. Any compact almost homogeneous Kähler manifold M of co-
homogeneity one is an Aut0(M) equivariant fibration over a product of a rational
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projective homogeneous manifold Q and a complex torus T with a fiber F . There-
fore, M can be regarded as a fiber bundle over T with a simply connected fiber M1.
One of following holds:

(i) M is a manifold of type III.
(ii) M1 is of type II but not affine.
(iii) M1 is affine.
(iv) M1 is of type I.

We say that M is a manifold of type I (or type II, affine) if M1 is a manifold of
type I (or type II, affine).

We actually can also obtain a structure of the M1 bundle over T from
[Huckleberry 1982]. We only need to understand the bundle structure for the open
orbit. By [Huckleberry 1982] Corollary 4.4 we have that the bundle structure is
a product unless when we apply Proposition 3 to M̃ F = Qk. In the latter case,
there is an unbranched double covering M̄ of M such that the bundle structure is a
product. We have:

Proposition 4. The M1 bundle over T is a product except in the case with
which the open orbit is a F0 bundle over Q× T such that F0 is in the second, sixth
and eighth cases in [Akhiezer 1983] p.67. In the latter cases, the M1 bundle has an
unbranched double covering which is a product of M1 and T .

In [Guan 2011a], [Guan 2011b], we dealt with the type I cases.
One updated remark is that since we are dealing with the Kähler metrics it

is more convenient to separate the type II case into two cases in [Guan 2009] and
[Guan 2011c]. We call the cases in [Guan 2009] (and the papers between [Guan 2009]
and [Guan 2003]) the type IV cases. They are the affine cases such that the group
π(GF ), the restriction of the subgroup GF of G fixing a given fiber F , is not of type
A. Therefore, one might also call them the non-type-A type II cases. All of them
are Fano.

One might call the rest (in [Guan 2011c]) of the type II cases the new type II
cases (or simply the type II cases). They are those type II cases such that π(GF ) is
of type A. Therefore, one might also call them the type-A type II cases.

This note is a continuation of the first part and the second part of this paper
[Guan 2011a], [Guan 2011b]. We shall carry all the notations here.

3. The Complex Structures of the Type I Almost Ho-

mogeneous Manifolds

In this section, we shall deal with the complex structure of the type I almost homo-
geneous manifolds. We retain the notations in [Guan 2011a], [Guan 2011b]. Let us
recall some basic notations of the Lie algebras.

Let G be the complex Lie group action and S be the connected complex Lie
subgroup acting on a given fiber. According to [Guan 2003] p.283 Theorem 12.1(ii),
a compact complex almost homogeneous manifold of cohomogeneity one is type I if
and only if the fiber F is one of (1) the second and third case with n ≥ 3, (2) the
fourth case, (3) the eight and ninth cases, (4) the fifth case in [Akhiezer 1983] p.67.
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The fiber F in (4) has S = π(GF ) = F4, so G = F4 = S, that is, M = F is
homogeneous. Therefore, every Kähler class of M has a metric with constant scalar
curvature. So, we do not need to do anything with (4).

In [Guan 2011a], we look at three special possible fiber cases [Akhiezer 1983]
p.67 first:

(1) F = F (OPn): The third case in [Akhiezer 1983] p.67 with n ≥ 3. F =
CPn. S = π(GF ) = SO(n,C) with regarding CPn as a completion of Cn. The
corresponding compact rank one symmetric space is the real n dimensional real
projective space. It has an equivariant branched double covering Qn of the second
case. We denote the latter case by F (OQn).

(2) F = F (Grk): The fourth case with a standard S = Sp(k,C) action on the
manifold F = Gr(2k, 2). The corresponding compact rank one symmetric space is
the quarterion projective space.

(3) F = F (Spp7): The ninth case with an S = Spin(7,C) action on F = CP 7.
This is the restriction of (1) with n + 1 = 8 to the complex Lie subgroup
Spin(7,C). It has an equivariant branched double covering Q7 of the eighth case.
In [Guan 2011a], we also denote the latter case by F (Spq7) and denote both of them
by F (Sp7) whenever there is no confusion.

In [Guan 2011a], we defined a certain basis of the Lie algebra α, Fα and Gα for
positive roots α. And we considered a fixed point p0 and its orbit ps generated by a
semisimple element −iH in the Lie algebra. Let T be the tangent vector of ps and
p∞ be the limit point in the closed orbit.

In the case (1), we obtained:

Proposition 5. For F (OPn) and F (OQn), along ps we have:

J(Fe1+ei ± Fe1−ei) = −(tanh s)∓1(Ge1+ei ±Ge1−ei)

(and JFe1 = −(tanh s)Ge1). We also have that

Fei±ek = Gei±ek = 0

(and Fei = Gei = 0) for i > 1. In particular, at p∞, JFα = −Gα for α 6= ei ± ek
(and ei) 1 < i < k.

In the case of (2), we obtained:

Proposition 6. For F (Grk), we have

JFα1
= −(tanh 2s)Gα1

,

J(F2e1 ± F2e2) = −(tanh 2s)∓1(G2e1 ∓G2e2),

J(Fe1−ek ±Ge2−ek) = −(tanh s)∓1(Ge1−ek ± Fe2−ek),

J(Fe1+ek ±Ge2+ek) = −(tanh s)∓1(Ge1+ek ± Fe2+ek).

Fα = Gα = 0
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for
α = e1 + e2, ei − ek, 2ei, ei + ek

with i > 2.
At p∞, we have Fα = Gα = 0 if α = e1 + e2, 2ei, ei ± ek, i > 2; and JFα = Gα

if α = 2e2, e2 ± ek. Otherwise JFα = −Gα.

Before we consider the isolated case (3), we can look at the general cases in which
G 6= S = π(GF ) ⊂ Aut(F ), where GF is the subgroup that acts on the fiber F and
π : GF → Aut(F ) is the induced map from GF to Aut(F ). As in [Akhiezer 1983], G
is semisimple, UG = H is the 1-subgroup. There is a parabolic subgroup P = SS1R
with S, S1 semisimple and R solvable such that UG = US1R where U = H ∩ S is
a 1-subgroup of S. The manifold is a fibration over G/P with the completion of
P/UG = S/U as the isotropic open orbit of the almost homogeneous fiber. In this
case, the root system of S is a subsystem of the root system of G. In the Lie algebra
of G, we also have some other Fα, Gα outside S. Let K be a maximal connected
compact Lie subgroup of G and L be the isotropic subgroup of K at a generic orbit.
Let K,L be the corresponding Lie algebras. The tangent space of G/UG along ps is
decomposed into irreducible L representations. These Fα, Gα are in the complement
representation of the Lie algebra S of S. JFα = −Gα (mod S) as it is in the tangent
space of G/P . Therefore, we have JFα = −Gα for any α which is not in the root
system of S.

If S is B2, G can be Bn, Cn, F4. If S is B3, G can be Bn, F4. If S is C3, G can
be Cn, F4. If S is Bn with n > 3, G can only be Bm+n. If S is Cn with n > 3, then
G can be Cn+m. The case of B2 action which has an isotropic group of SO(4,C)
generated by roots ±e1±e2 is exactly the same as the case of Sp(2,C) action, which
has an isotropic subgroup of Sp(1,C)× Sp(1,C) generated by ±2e1,±2e2.

We have a few more possibilities. If S = Dk, k > 3, G can only be Dn, n > 3
or En n > k. If S = D3, that is an A3, G can be An n > 2, Bn, n > 3, Cn n > 3,
Dn n > 2 and En. If S = D2, G can be any simple group or product of simple
groups other than G2.

We then treated the isolated case (3) of the Spin(7,C) action on CP 7 in
[Guan 2011a]. This case is the restriction of the case (1) with an G = S = SO(8,C)
action to the Spin(7,C) action induced by the spinor representation.

We obtained:

Proposition 7. For F (Sp7), we have

J(
√
2Fhi

± Fhj+hk
) = −(tanh

√
3

2
s)∓1(

√
2Ghi

±Ghj+hk
)

and
JH = −T,

Fei−ej = Gei−ej = 0 0 < i < j < 4.

At p∞, JFhi
= −Ghi

, JFhj+hk
= −Ghj+hk

, Fhi−hk
= Ghi−hk

= 0.
However, in this case S = B3, G can only be Bn or F4.
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4. The Kähler Structures

In [Guan 2011a], we examined the Kähler structure for the S = SO(n,C) actions
and obtained that for any possible G and S = SO(n,C) we always have Kähler
metric: ω([X,Y ]) = (aH + I, [X,Y ]) with the I in the C center of L and a a
nonpositive function of s.

See [Guan 2011a], section 3.
Therefore, we have the volume formula:

V = −Ma′a2(n−1)
r∏
1

(ai − a)
s∏
1

(bj + a)

(or V = Ma′a2n−1(tanh s)

r∏
1

(ai − a)

s∏
1

(bj + a))

with some positive numbers ai and bj .
Then in [Guan 2011a], we dealt with the Kähler metrics with Sp(k,C) and

Spin(7,C) actions. We have the volume form:

V = Ma′a4k−5(tanh 2s)
r∏
1

(ai − a)
s∏
1

(bj + a)

for the Sp(k,C) actions.
For S = Spin(7,C) action, we obtained the volume form:

V = −Ma′a6
r∏

i=1

(ai − a)

s∏
j=1

((bj + a).

We also observe that ai and bj come in pairs, and bj(i) = ai.
Altogether, we have:

Proposition 8. For the type I case the volume is

V = −Ma′a2m
∏

(a2i − a2) (1)

for the cases S = Dk or Spin(7,C) and

V = Ma′a2m+1(tanh bs)
∏

(a2i − a2)

for the cases S = Bk (or Ck) with b = 1 (or 2), where M and ai are positive
numbers, m are nonnegative integers. We also have that 2m + 1 (or 2m + 2) are
the dimensions of the fiber. Moreover, the vectors in Proposition 5, 6 and 7 are
orthogonal to each other.

Let h = log V , in [Guan 2011a] section 5 (Theorem 2) we obtained:
Proposition 9. If the fiber with the S action is of type I of complex dimension

n, then the function a for the Ricci form ρ is

aρ =
1

2
((log(a′an−1

r∏
1

(a2i − a2)))′ − 2

n−1∑
1

Ni coth 2Nis).
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Moreover, (1) Ni are 1 for S = SO(n+1,C) and (2) 1 except three of them being 2

for S of type Ck, (3)
√
3
2 for the case S = Spin(7,C). Other coefficients come from

the Ricci curvature of G/P which is −(qG/P , [X,Y ]) with qG/P =
∑

α∈∆+−∆P
Hα

with the standard inner product.

Then we calculated the scalar curvature in [Guan 2011a] section 6 (Theorem 3).
We write

V = −Ma′Q̃(a) = −Ma′(−a)n−1Q1(a)g(s)

with g(s) = 1 for S = Dk or Spin(7,C) and g(s) = tanh bs for S = Bk or Ck. We
write Q(a) = (−a)n−1Q1(a) and obtained: ρ ∧ ωN−1 = M((−aρQ(a))′ + p0a

′).

Proposition 10. The scalar curvature is R =
2(−aρQ)′+pa′

−a′Q . Moreover, p(a) =

(−a)n−1p1(a) with p1(a) a polynomial of a and is a positive linear sum of Q1 and
product of degQ1−1 factors of Q1. The contribution of each constant factor kj (i.e.,
the vector Fα such that the corresponding metrics ω(Fα, JFα) = kj is a constant

along ps) is
2kρ,j
kj

for the Q1 factor. The contribution of each ai ± a is 2
aρ,iQ1

qi
.

Therefore, we have

R0 =

∫ −l
0 [(2uρQ)x + p]dx∫ −l

0 Qdx
=

2uρ(−l)Q(−l) +
∫ −l
0 pdx∫ −l

0 Qdx
,

where we let u = −a and l = lims→+∞ a. We also obtained in [Guan 2011a] that
aρ(0) = 0.

5. Geodesic Stability and Existence of the Calabi Ex-

tremal Metrics

In [Guan 2011b] section 2, for any metric we obtained a function Γ(s) such that
−4a = 4u = Γ′ and the geodesic equation is

Γ̈Γ′′ = (Γ̇′)2,

where ′ is the derivative with respect to s the parameter from the manifold and ˙
is the derivative with respect to t the parameter for the geodesic. We obtain the
smooth geodesics and so the uniqueness. Therefore, we might regard U = 4u as g
in [Guan 2011a].

We also have:

4us(+∞) = Γss(+∞) = 0

since u is increasing and bounded by −l (see the end of last section).

We shall apply the method in [Guan 2003] to prove the second and third geodesic
stability principles for all the type I Kähler almost homogeneous manifolds of coho-
mogeneity one.

The proof is parallel to what we have in [Guan 2003] but even simpler (with our
advanced notations).
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Let H be the Legendre transformation of Γ as in [Guan 2003], then a path Γt

represents a geodesic in the Mabuchi moduli space of the equivariant Kahler metrics
in a given Kähler class is a geodesic if and only if Ht is linear on t. We denote h = Ḣ.

Recall the R is the scalar curvature, HR its average, Q the volume function
appeared right before the Proposition 10. Applying the scalar curvature formula
in the Proposition 10, we have that with a positive constant C the derivative of
Mabuchi functional is:

−
∫
M

Γ̇(R −HR)ω2n = −C

∫ −l

0
Γ̇(s, t)(2uρQ+

∫
(p−R0Q)du)xdx

= C

∫ −l

0
Ḣ(x, t)(2uρQ−

∫
(R0Q− p)du)xdx

= C(2h(−l)uρ(−l)Q(−l)− 2h(0)uρ(0)Q(0) −R0h(−l)

∫ −l

0
Qdx

+ R0

∫ −l

0
h′(

∫ x

0
Qdu)dx+ h(−l)

∫ −l

0
pdx−

∫ −l

0
h′(

∫ x

0
pdu)dx

− 2

n−1∑
1

∫ −l

0
Ni coth(2Nis)h

′Qdx+

∫ −l

0
h′(log(Qus))sQdx)

= C(R0

∫ −l

0
h′(

∫ x

0
Qdu)dx−

∫ −l

0
h′(

∫ x

0
pdu)dx

− 2

n−1∑
1

Ni

∫ −l

0
coth(2Nis)h

′Qdx+

∫ −l

0
h′(Qus)xdx)

= C(R0

∫ −l

0
h′(

∫ x

0
Qdu)dx−

∫ −l

0
h′(

∫ x

0
pdu)dx

− 2

n−1∑
1

Ni

∫ −l

0
coth(2Nis)h

′Qdx−
∫ −l

0
Qush

′′dx)

= C(R0

∫ −l

0
h′(

∫ x

0
Qdu)dx−

∫ −l

0
h′(

∫ x

0
pdu)dx

− 2

n−1∑
1

Ni

∫ −l

0
coth(2NiHx)h

′Qdx−
∫ −l

0
Q(Hxx)

−1h′′dx).

The changing of sign in the second equality comes from Γ̇(s, t) = −Ḣ(x, t) for the
Legendre transformation as in [Guan 2003].

If h′′ is negative somewhere, then the geodesic is finite and the limit is a cone
metric. The point −l can not be a singular point. At the singular points h′′ is
negative. Therefore, the last term of the right hand side is positive infinite. The
second term from the right hand side is finite if 0 is not a singular point and positive
if 0 is a singular point since in that case h′′(0) < 0 and h′(0) = s(0)−s0(0) = 0, h′ < 0
near 0.

If h′′ is nonnegative, then the geodesic ray is infinite and h′ is increasing. s turns
to infinite at each point with h′ > 0, so coth(2Nis) turns to 1 at such points. It is
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not difficult to see that (Hxx)
−1 turns to zero whenever h′′ is not zero. The limit of

the derivative is:

Theorem 1. For type I compact Kähler almost homogeneous manifolds of co-
homogeneity one, the generalized Futaki invariant of a maximal geodesic ray with a
convex function h is

C(

∫ −l

0
h′(

∫ x

0
(R0Q− p)du− 2

n−1∑
1

NiQ)dx)

with a constant C > 0.

According to [Guan 2011a] (14), this is proportional to the negative of

∫ −l

0
h′gldx.

We notice that all the generalized Futaki invariants of the maximal geodesic rays
do not depend on the initial metrics and they are positive if there is an extremal
metric.

Moreover, if there is a Kähler metric with a constant scalar curvature, then at
the corresponding H0 we have that the slopes of Mabuchi functionals are zeros.
Therefore,

∫ −l

0
[h′[

∫ x

0
(R0Q− p)du− 2

n−1∑
1

NiQ coth(2NiH0,x)]−Q(H0,xx)
−1h′′]dx = 0

for any h.
In general, the slope of the Mabuchi functional is

C

∫ −l

0
Q((2

n−1∑
1

Ni(coth(2NiH0,x)− coth(2NiHx))h
′ + ((H0,xx)

−1 − (Hxx)
−1)h′′)dx

= C

∫ −l

0
Q(4

n−1∑
1

Ni
e2NiH0,x(e2Nith′ − 1)

(e2Ni(H0,x+th′) − 1)(e2NiH0,x − 1)
h′

+ ((H0,xx)
−1 − (Hxx)

−1)h′′)dx.

It turns to

C

∫ −l

0
Q(

n−1∑
1

4Ni

e2NiH0,x − 1
h′ +H−1

0,xxh
′′)dx.

Therefore, using this formula as a hint we can define

||h||2,1∗ =

∫ −l

0
Q(

n−1∑
1

4Ni

e2NiH0,x − 1
|h′|+H−1

0,xx|h′′|)dx

to be the norm of W 2,1
∗ . A calculation shows that this is related to

∫ −l

0
|∆0h|Qdx

12



and also ∫ −l

0
sup{|∂2h(v)|0/|v|0}dV

with dV the volume element. The generalized Futaki functional is positive on the
closure of the effective cone in W 2,1

∗ .
The generalized Futaki functional is positive if and only if they are positive for

h′ = { 1 if x > x0
0 if x ≤ x0

with x0 ∈ [0,−l). These functions h′ correspond to functions of h in W 2,1
∗ which are

the extremal rays of the effective cone. As what we see in the sentence right after
Theorem 1 that this is the same as the partial integral

∫ −l

x0

gldu =

∫ l2

x2
0

fldx < 0

for the gl, fl in [Guan 2011a]. That is the same as the necessary and sufficient
condition in [Guan 2011a] (see (7) and (16) there) for the existence of the Kähler
metrics with constant scalar curvatures.

Therefore, we obtain:

Theorem 2. For type I Kähler compact almost homogeneous manifolds of coho-
mogeneity one manifolds, there is a unique extremal metric in a Kähler class on the
manifold up to the automorphism group if and only if the Kähler class is geodesic
stable.

The same method works for some of Kähler classes on type II compact Kähler
almost homogeneous manifolds of cohomogeneity one. But in general, we will use a
different method. A result similar to Theorem 1 and the same result of Theorem 2
are true for general compact almost homogeneous manifolds of cohomogeneity one.
But it take us some more time to publish the related results and proofs. We also
expect that Theorem 2 is true for any Kähler class on any compact Kähler manifold.

Theorem 1 also gives another proof for the stability (the necessary condition)
in [Guan 2011a]. However, the integral itself and its partial integrals do not occur
directly as generalized Futaki invariants of any (smooth) geodesic.

A generalization of our argument is essential to prove the necessary condition for
the type II cases (and the type IV case in [Guan 2009]). However, since we have not
seen any example with a zero value of the integral for the Ricci classes, for all the
known cases so far in [Guan 2009] etc., the corresponding result in the next section
is enough for the necessary part for the Kähler-Einstein case.

6. Geodesic Stability and Strictly Slope Stability

In this section, we shall discuss our result and the strictly slope stability. This is
something also similar to the holomorphic vector bundle case and can be defined on
any Kähler class of any compact Kähler manifolds.
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6.1 To make the things simpler, first we assume that the Kähler class is the
anticanonic class −KM , N be a smooth subvariety and M(N) be the blow-up of M
along N . Let E be the exceptional divisor and e be the largest number such that
−KM − aE > 0 on M(N) with regarding KM as the pullback line bundle for any a
such that 0 < a < e,

m(N) =

∫ e

0
(−KM − (n− dimN)E)(−KM − aE)n−1da,

m =

∫ e

0
(−KM − aE)nda.

We say that M is strictly slope stable if for any subvariety N (not necessary smooth)
which is not a component of the fixed point set of a holomorphic vector field we have
m(N) < m. That is∫ e

0
(a− (n− dimN))E(−KM − aE)n−1da < 0.

Notice that there is only one possible zero for a − (n − dimN), we see that if
m(N)−m < 0 then∫ c

0
(a− (n− dimN))E(−K − aE)n−1da < 0

for any 0 < c < e. That is, when N is smooth, our stability is stronger than Ross-
Thomas’ slope stability in [Ross-Thomas 2006], which only require the inequality for
rational c with 0 < c < e. While our inequality is true for any c with 0 < c ≤ e.
If N is not smooth, we do not know that the slope stability in [Ross-Thomas 2006]
implies these inequalities or not.

And a smooth N destables M only if −KM − (n− dimN)E is ample, therefore,
−K(E) is ample on E if E is smooth, and is kind of ample even if E is singular.
When N is smooth, we see that E is Fano. By [Futaki 1987], we see that N is Fano
also. This is quite similar to the calculation in [Guan 2003], [Guan 2011a].

Actually, when F = CP k or Gr(2k, 2), we have in [Guan 2011b] section 3 that
D(F ) = 2 in the Theorem 15 in [Guan 2011b]. Therefore, for the closed orbit N ,
e = −2−1lρ and the codimension can only be 1 (see [Guan 2011b] section 3). Let
y = −lρ − 2a, then above integral is

∫ −lρ

0
(−2−1(y + lρ)− 1)E(ω + 2−1(y + lρ)E)n−12−1dy

= C

∫ −K(F )

0
(−K(F )−D(F )− y)Qdy

with a positive number C. That is exactly the same condition in the Theorem 15
there.

When F = Qk, D(F ) = 1. Therefore, e = −lρ. Let y = −lρ − a = −K(F ) +
m− 1− a with m = n− dimN . The above integral is
∫ −lρ

0
(−lρ−y−m)E(ω+(y+ lρ)E)n−1dy = C

∫ −K(F )+m−1

0
(−K(F )−D(F )−y)Qdy
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with a C > 0. Again, that is exactly the Theorem 15 in [Guan 2011b].

6.2 In general, for any given Kähler class ω we let

mc(N) =

∫ c

0
(−KM − (n− dimN)E)(ω − aE)n−1da

and

mc =

∫ c

0
(ω − aE)nda

with 0 < c ≤ e and e the largest number such that ω − aE > 0 for 0 < a < e.
We let µc(N) = mc(N)

mc
. If N = M , we let m(M) = (−KM )ωn−1 and µ = m(M)

ωn .
Then the strictly slope stability says that µc(N) − µ < 0 for all 0 < c ≤ e. Similar
obstructions appeared in [Guan 2003]. At that time I was not able to understand
the general meaning of this obstruction and related it to the Ding-Tian generalized
Futaki invariant forcibly. But it was clear in [Guan 2003] it was not the Ding-Tian
generalized Futaki invariant. I also talked on this at Pisa Italy in 2004. Ross-
Thomas [Ross-Thomas 2006] partially generalized this obstruction but without the
strictly part for a smooth N , i.e. they assume that 0 < c < e. Also, they assume
that c is rational, that make their slope stability much weaker. For a nonsmooth
subvariety N , I am not sure that their stability implies these inequality or not. For
our case, our strictly slope stability is equivalent to the existence. But the Ross-
Thomas slope stability is only a necessary condition. Therefore, a Kähler class with
the integral equal to zero when c = e or c irrational would give a counterexample
for the equivalence between the Ross-Thomas slope stability or Donaldson K-stability
and the existence. See also [Guan 2003], [Guan 2007].

It is very easy to check that if KM is the Kähler class and we replace −KM −aE
by KM − aE, let

mc(N) =

∫ c

0
(−KM − (n− dimN)E)(KM − aE)n−1da,

the strictly slope stability means that mc(N) + mc < 0 and holds automatically.
Moreover, if KM = 0, for any Kähler metric ω we replace −KM − aE by ω − aE
and let

mc(N) =

∫ c

0
(−n+ dimN)E(ω − aE)n−1da,

the strictly slope stability means that mc(N) < 0 and holds automatically. These
strengthen the Theorem 5.4 in [Ross-Thomas 2006], which only concerned when N
is smooth and 0 < c < e is rational.

In the following of this section, we want to see that the strictly slope stability is
the same as the existence for type I manifolds.

To make the things simpler, let us take care of the F (OPn) fiber case first. In
our setting, we only need to deal with the case in which N is the closed orbit. In
this case, by [Guan 2011b] section 3 we have dimN = n − 1. Let us calculate the
number e for our case. By [Guan 2011b] section 3 we see that the curvature of the
exceptional divisor has eigenvalues D(CPn) = 2 multiple of the coefficient of u.
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Therefore, ω − aE has the first zero eigenvalues when a = (D(F ))−1(−l). That is,
e = −2−1l.

ωnmc(N)−m(M)mc

=

∫ −l

0
Qdu[

∫ c

0
(−KM )((ω − xE)n−1 − ωn−1)

− E(ω − xE)n−1 −R0((ω − xE)n − ωn)dx].

This is proportional to
∫ c

0
[

∫ x

0
[(n− 1)KME(ω − uE)n−2 + nR0E(ω − uE)n−1]du− E(ω − xE)n−1]dx.

Let y = −l − 2x and v = −l − 2u, d = −l − 2c we obtain that the integral is
proportional to

∫ −l

d
[

∫ −l

y
[(n− 1)KME(ω + 2−1(v + l)E)n−2 + nR0E(ω + 2−1(v + l)E)n−1]dv

− 2E(ω + 2−1(y + l)E)n−1]dy

=

∫ −l

d
hldy.

By taking the derivative twice we have

h′l = −(n− 1)K(E)E(ω + 2−1(y + l)E)n−2 − nR0E(ω + 2−1(y + l)E)n−1.

By the argument in [Guan 2011a] after (14) and in the proof of Lemma 6, we see
that h′l is proportional to g′l there. Therefore, we only need to check for a point 0,
the function hl is right. To prove our conclusion, we only need to check that

hl(0) =

∫ −l

0
[(n− 1)KME(ω+2−1(v+ l)E)n−2 +nR0E(ω+2−1(v+ l)E)n−1]dv = 0

since gl(0) = 0. Notice that nE(ω + 2−1(v + l)E)n−1 is related to ωn there.
The exactly same argument works for the case in which the fiber F = Gr(2k, 2).

For the case in which the fiber F = Qn, we have D(F ) = 1. Therefore, we could
let y = −l − x, v = −l − u, d = −l − c instead and we notice that −K(E) =
−KM − (n− dimN)E. The same proof goes through.

Theorem 3. On a type I compact almost homogeneous manifold of cohomo-
geneity one here is a Kähler metric of constant scalar curvature in a given Kähler
class if and only if the Kähler class is strictly slope stable with respect to the closed
orbit.

This is also true for general compact Kähler almost homogeneous manifolds of
cohomogeneity one. But it take some times for us to publish the detail results and
proofs.

6.3 In the case of Fano manifolds, our discussion at the beginning of this section
(6.1) shows that:
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Theorem 4. Let M be any Fano manifold, if a smooth submanifold N destables
the Ricci class, then N , the blowing-up manifold M(N) of M along N and the
exceptional divisor E are all Fano manifolds.

One could also consider the case that N is a union of smooth submanifolds.
We expect that each of them should be Fano also. Similarly, it should be easy to
obtain some results similar to those of Nadel’s in [Nadel 1990] and to check out the
unstable Fano threefolds.

For the compact Kähler manifolds with a zero or negative first Chern class we
have shown at the beginning of 6.2 that:

Theorem 5. Let M be any compact Kähler manifold with a negative first Chern
class, then the negative Ricci class is strictly slope stable.

Theorem 6. Let M be any compact Kähler manifold with a zero first Chern
class, then any Káhler class is strictly slope stable.

Theorems 4, 5, 6 give a good reason why the Calabi conjecture is true for the
negative and zero case but not true in general for the positive case.
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