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0. prelude

What is the subject of of Plane Curves all about? The answer is
surprisingly involved and will take a while to develop, but to fix ideas
let’s start with a provisional definition of our objects of study.

Definition 0.1. A real plane curve is a set of the form

C = {(x, y) ∈ R2 : f(x, y) = 0}
where f(x, y) is a polynomial. C is said to be the ‘zero-set’ of f .

Having said that, the obvious question is: what sorts of questions do
we study about these curves ? An obvious answer might be: ‘determine
C explicitly’ or perhaps ‘try to draw nice sketches of them, like in
Calculus texts’. Unfortunately, neither of these turns out to be possible,
except for some very special polynomials. So the answer as to what
the ‘right’ questions are to study about curves is not so obvious. To
get a better idea what it might be, one may try to travel back in time
a bit. In an earlier era, high-school students used to spend much time
studying what was called Analytic Geometry. A highlight of this study
was the so-called Classification Theorem of Real conics, one version of
which would run as follows.

c©2004 by Ziv Ran.
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Theorem 0.2. Let f(x, y) be a real quadratic polynomial with zero-set

C = {(x, y) : f(x, y) = 0}
(called a conic). Then there is a substitution of the form

x = a11x
∗ + a12y

∗ + b1

y = a21x
∗ + a22y

∗ + b2

with a11a22 − a12a21 6= 0, and a constant c 6= 0, such that if g(x∗, y∗) =
cf(x, y) denotes the resulting polynomial, then g is one, and only one
(depending on f) of the following (with zero-set in parentheses)

• (nondegenerate type)
– (hyperbola) (x∗)2 − (y∗)2 − 1
– (parabola) x∗ − (y∗)2

– (circle) (x∗)2 + (y∗)2 − 1
• (degenerate type)

– (line-pair) (x∗)2 − (y∗)2

– (double line) (x∗)2

– (point) (x∗)2 + (y∗)2

• (empty) (x∗)2 + (y∗)2 + 1 ¤

The proof of this theorem as given in old texts is perhaps not par-
ticularly interesting and will not be discussed at this time (some parts
of it are subsumed in results we shall develop later). But the statement
nonetheless is interesting and may serve as a prototype for what we
call a Classification Theorem in Algebraic Geometry, and encapsulates
some of the important themes for our course and for the subject as a
whole.

• Under study is a class of objects with both an algebraic and a
geometric aspect (viz. polynomials of degree 2 and their zero-
sets). This is essentially, but not exactly, a subclass of the class
of plane curves as defined previously; the algebraic data of the
polynomial are included as well as the curve.

• We set up a notion of equivalence between objects, which tells
us when two of them are are to be considered ‘essentially the
same’ (viz. when one polynomial can be transformed to the
other by a substitution as above).

• Finally, we state a classification of our class of objects, which
means that we provide a particular list of objects (preferably
finite – in our case containing just 7 objects), and state that any
object in our class is equivalent to one (and only one) object on
the list.
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• As a broad theme, we like to talk- and draw- Geometry; but
when it comes to precise statements and calculations, Algebra
seems to be the way to go. What is the precise relation between
the Algebra and Geometry ? e.g. does a (nondegenerate) conic
have a uniquely determined equation ?

This type of results and questions are a prototype and goal of much
of what one is trying to do in Algebraic Geometry and in this course.
The classes of objects considered usually are rather more complex than
conics, so considerable work is required before one can get anywhere
near a classification; certainly, there will be more than enough work to
keep us busy this quarter.

As a warmup for our discussion of polynomials in 2 variables, we
start with the 1-variable case.

1. Inhomogeneous polynomials and the affine line

We can talk about polynomials with coefficients that are rational,
real, or complex. To save some writing, let’s introduce an ad-hoc defi-
nition.

Definition 1.1. A concrete field F is either the rational numbers Q,
the real numbers R, or the complex numbers C.

What’s important about a concrete field F is that the usual arith-
metic operations (addition, subtraction, multiplication and division)
make sense for its elements (as long as we don’t divide by zero, of
course!). Though we don’t need this here, there is an abstract alge-
braic notion of ‘field’ of which these are all examples; another example
is the ‘binary field’ F2 = {0, 1}, indeed polynomials with F2 coefficients
have many important applications, e.g. in coding theory. The natural
numbers N or the integers Z are not a field because, e.g. we cannot al-
ways divide two integers and get another. Z is an example of a number
system called a ring; later, polynomials with ring coefficients will play
an important role in what we do, but that is a rather more involved
story than the case of field coefficients, to which we’ll stick for now.

Another important fact about concrete fields (and fields in general)
F is that the basic theory of linear algebra, including vector spaces,
bases, dimension, matrices, linear transformations ... makes sense tak-
ing scalars in F (to specify that a given set V is a vector space with
scalars in F we call V a vector space over F). This is because all
this linear algebra only uses the formal properties of the arithmetical
operations.
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Here right away is an important example of a vector space. Denote by
F[x] the set of polynomials with coefficients in F, i.e. formal expressions
of the form

f(x) = anxn + ... + a1x + a0, a0, ..., an ∈ F, n ∈ N
If an 6= 0, we call it the leading coefficient of f and call n the degree of
f . Then F[x] is a vector space over F. It has a basis of the form 1, x, ...

This basis is infinite, and that might be problematic. So we are led
to look at finite-dimensional subspaces of F[x]. Let F[x]n denote the set
of polynomials of degree n or less, i.e. all expressions as in the above
display, for fixed n ∈ N (whether an 6= 0 or not). F[x]n forms a vector
space with (’standard’) basis 1, x, x2, ..., xn; therefore it has dimension
n + 1. Besides the standard basis, F[x]n has many others, for example
1, x− a, (x− a)2, ..., (x− a)n, for any a ∈ F.

Exercise 1.1. Prove that 1, x− a, (x− a)2, ..., (x− a)n, for any a ∈ F,
is a basis of F[x]n.

Our objective is to study the algebra/geometry interplay. The ‘ge-
ometry’ of a polynomial is, essentially, its set of zeros, so the geometric
counterpart of F[x] is F. More precisely, it is conceptually important
to take a copy of F and denote it by A1

F. We call this the affine line
over F, and think of it as a purely geometric object (unlike F which
as its arithmetic operations). The zeros of a polynomial will consist of
a finite set of points (the zeros), each with a well-defined multiplicity.
To formalize this, consider a formal symbol [p] for each p ∈ A1

F and let
Z(A1

F) be the set of formal sums of the form

z =
m∑

i=1

ni[pi]

with ni ∈ Z (positive or negative). Such a sum z is called a cycle; its
degree is by definition

∑
ni. If all ni ≥ 0, z is said to be a positive or

effective cycle and the set of all of these is denoted by Z(A1
F)+ . The

we can define an important mapping called the cycle map

Z = ZF : F[x] \ {0} → Z(A1
F)+

by the rule that for any nonzero polynomial f(x),

ZF(f) =
m∑

i=1

ni[pi]

where p1, ..., pm are the zeros of f in F and for each i, ni is the multi-
plicity of pi.
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One nice property of ZF is its compatibility with multiplication of
polynomials:

(1) ZF(fg) = Z(f) + Z(g).

Example 1.2. • ZQ(x2 − 4) = [2] + [−2];
• ZQ(x3 − x2) = 2[0] + [1],
• ZQ(x2 + 4) = 0; ZC(x

2 + 4) = [2i] + [−2i] (where i =
√−1.)

This last example shows ZF depends on the field F! It also shows
that, in general, we cannot recover f from its zero-cycle ZF(f).
We cannot, that is, unless we insist on taking F = C; that is due to
the following important classical result

Theorem 1.3. (Fundamental Theorem of Algebra) Every nonconstant
in C[x] has at least one root in C.

Exercise 1.2. Project: Look up an elementary proof of this theorem
somewhere (internet, the book ‘What is Mathematics by Courant/Robbins
or...) and present it.

Another, stronger way to formulate this is:

Theorem 1.4. Every polynomial f ∈ C[x] can be expressed in the form

(2) f(x) = c

m∏
i=1

(x− bi)
ni , c, bi ∈ C

Note that if f is nonzero of degree n, then a 6= 0 and
∑

ni = n. This
implies that Z(f) is a cycle of degree n (same as f), and that f can be
recovered from Z(f) (up to constant multiple, of course). In fact, we
can set up an inverse mapping to Z,

W : Z(A1
C)+ → C[x]

defined by

W (
∑

ni[bi]) =
∏

(x− bi)
ni .

Then it is immediate (in fact, for any F) that

Z ◦W (
∑

ni[bi]) =
∑

ni[bi]

and that

W ◦ Z(c
m∏

i=1

(x− bi)
ni) =

m∏
i=1

(x− bi)
ni

In particular, when F = C, any polynomial f factors as in (2), and
therefore W and Z together yield a 1-1 correspondence between, on
the one hand, nonzero polynomials, up to scalar multiple (or what is
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the same monic polynomials), and on the other hand, cycles. Thus, we
have essentially a complete mirror correspondence between the algebra
of polynomials and the geometry of cycles– provided we work over C.
This correspondence does not work overQ or R, which provides a major
motivation for choosing C for scalars.

Exercise 1.3. Show that the Z−W correspondence can be extended to a
correspondence between rational functions and (not necessarily positive)
cycles by defining, for f, g polynomials

Z(f/g) = Z(f)− Z(g);

W (
m∑

i=1

ni[bi]−
m′∑
i=1

n′i[b
′
i]) =

m∏
i=1

(x− bi)
ni

m′∏
i=1

(x− b′i)
n′i

, ni, n
′
i ≥ 0.

Show that Z, W are well-defined, mutually inverse maps between Z(A1
C)

and the set of nonzero complex rational functions up to constant factor.
Moreover, for any rational functions F, G, we have

Z(FG) = Z(F ) + Z(G).

2. Affine substitutions

There is much more structure to F[x] than just vector space: e.g.
polynomials can be multiplied, not only added, and this gives F[x] a
structure known in abstract algebra as ring - more on this later. We
now discuss another important structural element, motivated by our
brief discussion of the classification of conics, which has to do with
substitutions. Starting on the ‘geometric side’, let us consider two
copies of A1

F with respective coordinates x, x′, and denote them by
A1

x,A1
x′ . For any pair of scalars a, b ∈ F, we can define a mapping

T = T(a,b) : A1
x → A1

x′

x′ = T (x) = ax + b.

Of course, the same formula also defines a mapping from A1
x to itself.

Whenever a 6= 0, T admits an inverse T−1 given by x = x′/a− b/a, i.e.

(Ta,b)
−1 = T1/a,−b/a.

Such a mapping Ta,b (with a 6= 0) is known as an affine transformation
(of A1, known as the affine line). We have just seen that the inverse of
an affine transformation is affine; it’s also true that the composition of
two affine transformations is affine.

Exercise 2.1. Prove this.
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On the algebra side, T corresponds to a mapping going the other
way

T ∗ : F[x′] → F[x],

T ∗(f(x′)) = f(ax + b)(= f(T (x))).

Again, the same formula also defines a mapping from F[x] to itself. The
assignment T 7→ T ∗ is what’s called a contravariant operation, which
means that for a pair of affine transformations T1, T2, we have

(T2 ◦ T1)
∗ = T ∗

1 ◦ T ∗
2

(recall that T2 ◦ T1 means apply T1 first, then T2).

Exercise 2.2. Prove this.

Another simple property is that, for any two polynomials f, g, we
have

T ∗(fg) = T ∗(f)T ∗(g).

Now two polynomials f, g are said to be affine equivalent if there is an
affine transformation T and a nonzero constant c ∈ F such that

f = cT ∗(g).

Exercise 2.3. (i) Prove that for any F, any polynomial in F[x] of
degree 1 is affine equivalent to g(x) = x.

(ii) Prove that if F = C, any f ∈ F[x] of degree 2 is affine equivalent
either to x2 − x or to x2 but not to both.

(iii) Prove that if F = R, any f ∈ F[x] of degree 2 is affine equivalent
to precisely one of x2 − x, x2 + 1 or x2 (hint: complete the square...)

How does affine equivalence relate to zeros ? Note that if f = cT ∗(g)
and [p] ∈ A1

F is a zero of f , then f(p) = cg(T (p)) = 0, therefore [T (p)]
is a zero of g. For example, if g = x− u then

f := T ∗(g) = ax + b− u = a(x− (
1

a
u− b/a))

so

p :=
1

a
u− b/a = T−1(u)

is the unique zero of f and indeed T (p) = u is the unique zero of g.
Now for a general polynomial g and its zero u, we can write

g = (x− u)ng1,

where n is the multiplicity of u and g1(u) 6= 0. Then for f = cT ∗(g) we
can write

f = (x− p)nf1
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where f1 = cT ∗(g1), so f1(p) 6= 0. Therefore, the multiplicity of p as
zero of f equals that of u as zero of g. It follows that the cycles of f
and g are nicely related: if

ZF(f) =
∑

ni[pi]

then
ZF(g) =

∑
ni[T (pi)].

To encode this kind of relation on cycles we may may define an ‘action’
of an affine tranformation T on cycles by

T (
∑

ni[pi]) =
∑

ni[T (pi)].

Then two cycles
∑

ni[pi],
∑

mj[qj] are said to be affine equivalent if
there is an affine transformation T such that∑

mj[qj] = T (
∑

ni[pi]).

So we get the nice statement that that two affine equivalent polynomials
have affine equivalent cycles.

Exercise 2.4. Prove that if F = C, then two polynomials f, g are
affine equivalent if and only if their cycles are. (Hint: ‘only if’ has
been shown above; for ‘if’, suppose f, g are polynomials such that
T (ZC(f)) = ZC(g). Then f and T ∗(g) have the same cycle, therefore
are proportional by the Z −W correspondence in §1)
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3. Compactification: the projective line

Everyone with visual experience is familiar with the situation of a
point on a line ‘moving out to infinity’. As mathematicians, we would
like to shrug off the metaphysical or mythical qualities of ‘infinity’ and
make it part of our framework. As a hint for how to do so, consider in
the affine plane F2 the fixed vertical line H given by x = 1, which may
be identified in an obvious way with A1

F. For any point Pc = (1, c) ∈ H,
we have a unique line through the origin containing it, that is the line
La with equation y = cx (or, if c 6= 0, x = y/c). This line is always
non-vertical, and conversely any non-vertical line through the origin
has this form. So we can identify A1

F with the set of non-vertical lines
through the origin in the plane. As Pa moves ‘out toward infinity’ a
goes to ∞ and our line La simply approaches the vertical line x = 0.
So if we want to incorporate infinity into our affine line A1 simply by
identifying A1 with the set of all non-vertical lines through the origin
and letting infinity be the vertical line. This leads naturally to the
projective line P1 = P1

F which is the set of all lines (vertical or not)
through the origin.

A bit more formally, consider the 2-dimensional vector space F2.
Any 1-dimensional subspace of F2 has a basis consisting of 1 nonzero
vector (a, b), and two vectors generate the same subspace iff they are
proportional. We denote by [a, b] the equivalence class of a nonzero
vector (a, b) with respect to proportionality; thus [a, b] = [a′, b′] iff
there is a nonzero constant c ∈ F such that a′ = ca, b′ = cb. We call
(a, b) a representative (or a set of homogeneous coordinates) of [a, b].
We denote by P1 = P1

F the collection of all these equivalence classes.
Note that if a 6= 0 then [a, b] = [1, b/a]; if a = 0 then b 6= 0, hence
[a, b] = [0, 1]. Therefore the subset U0 ⊂ P1 consisting of all [a, b] with
a 6= 0 can be identified with the line H we saw above (hence with A1),
and the only other point in P1 is [0, 1], which we naturally refer to as
the ‘point at infinity’ or ∞. Thus

P1 = U0 ∪ {∞}.
If we similarly let

U1 = {[a, b] = [a/b, 1] : b 6= 0} = {[c, 1] : c ∈ F},
then we can naturally identify U1 with the horizontal line y = 1 in the
plane, hence again with A1, and we have

P1 = U1 ∪ {[1, 0]}.
Thus, ∞ = [0, 1] and the point [1, 0] are entirely analogous, and we
have demystified infinity. More on this later.
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Example 3.1. 1. F = R. For P = [a, b] ∈ P1, a2 + b2 > 0 so scaling
(a, b) by

√
a2 + b2, then by ±1 we get a representative of P of the form

(a, b) with a2 + b2 = 1, a ≥ 0, i.e. on the right half of the unit circle,
that is

S+ = {(a, b) : a2 + b2 = 1} = {(
√

1− b2, b) : b ∈ [−1, 1]}.
Two points on this semicircle are always non-proportional except [0, 1] =
[0,−1]. To account for this single exception, write

a = cos(θ), b = sin(θ)

and map (a, b) to

(cos(2θ), sin(2θ) = (a2 − b2, 2ab) = (1− 2b2, 2
√

1− b2b) = (u, v).

This mapping wraps the semicircle S+ over an entire unit circle

S = {u2 + v2 = 1}
and establishes a 1-1 correspondence between P1

R and the unit circle S.
An explicit inverse mapping is given by

S → P1
R

(u, v) 7→ [
1 + u

2
,

v√
2 + 2u

], u 6= −1

(−1, 0) 7→ [0, 1]

This explains why Physicists like to talk about P1
R as ‘curling up’ the

real line (Mathematicians usually prefer ‘compactification’).
2. A somewhat more involved computation establishes a 1-1 corre-

spondence between P1
C and the unit sphere in R3, bases on stereographic

projection from the north pole (0, 0, 1).

It is convenient to represent a variable point of P1 as [X0, X1] and
call X0, X1 homogeneous coordinates on P1. Of course, X0, X1 are only
defined up to proportionality, they are not well-defined functions– but
their ratios are. More precisely x10 = X1/X0 is a well-defined function
on U0 (which becomes just the usual x coordinate, under our identifica-
tion of U0 with A1). Likewise, x01 = X0/X1 is a well-defined function
on U1 (which on U1 ∩ U0 becomes 1/x). This also gives us a hint as
to how to extend the ‘geometry of polynomials’ from the affine to the
projective setting: viz. use homogeneous polynomials.

Now let’s digress briefly to discuss homogeneous polynomials in some
generality, as they will play an important role in our study. A poly-
nomial F ∈ F[X0, ..., Xn] is said to be homogeneous of degree d if it
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is a linear combination of monomials Xm0
0 · · ·Xmn

n whose weight, (i.e.
degree) which by definition is m0 + ... + mn, equals d.

Proposition 3.2. A polynomial F is homogeneous of degree d iff

F (tX0, ..., tXn) = tdF (X0, ..., Xn).

Proof. ’Only if’ is clear. For ‘if’, we may assume F is nonzero and
write

F = Fm1 + ... + Fmk

with each Fmi
nonzero homogeneous of degree mi and m1 < ... < mk

(this is the so-called ‘homogeneous decomposition’ of F ). Then

tdF (X) = F (tX) = Fm1(tX) + ... + Fmk
(tX)

= tm1Fm1(X) + ... + tmkFmk
(X)

Then the polynomial in t

tdF (X)− tm1Fm1(X)− ...− tmkFmk
(X)

vanishes identically, therefore is coefficients must vanish. This forces
k = 1,m1 = d, so F is homogenous of degree d ¤

Another way to characterize homogeneous polynomials is via the
Euler identity

(3)
n∑

i=1

Xi∂F/∂Xi = dF

Proposition 3.3. A polynomial F is homogeneous of degree d iff the
Euler identity (3) holds.

Proof. ‘Only if’ can be proven by inspection on monomials. Another
proof starts with the identity

F (tX0, ..., tXn) = tdF (X0, ..., Xn).

Now differentiate both sides with respect to t, using the chain rule for
the LHS. This yields

∑
Xi

∂F

∂Xi

(tX0, ..., tXn) = dtd−1F (X0, ..., Xn).

Now setting t = 1 yields Euler’s identity.
For ‘if’, suppose F satisfies Euler’s identity and decompose it into

homogeneous parts as above:

F = Fm1 + ... + Fmk
,m1 < ... < mk.
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From the Euler identity we get
∑

i

Xi∂F/∂Xi = dF = dFm1 + ... + dFmk

=
∑
i,j

Xi∂Fmj
/∂Xi =

∑
j

mjFmj

Thus ∑
j

(d−mj)Fmj
= 0

which is only possible if F is homogeneous of degree d. ¤
Next we need the algebraic processes of homogenization and deho-

mogenization of polynomials. Thus, let f ∈ F[x1, ..., xn] be a polyno-
mial of degree ≤ m. The mth homogenization of f is by definition the
homogeneous polynomial

F (X0, ..., Xn) = hogm(f) := Xm
0 f(X1/X0, ..., Xn/X0)

(if f has degree m exactly, we call hogm(f) simply the homogenization
of f and denote it by hog(f)). In the other direction, let us denote
the set of homogeneous polynomials of degree m in X0, ..., Xn with
coefficients in F by F [X0, ..., Xn]m. Given such a polynomial F , its
dehomogenization is by definition

deh(F ) = f(x) = F [1, x1, ..., xn]

This will, in general, be a polynomial of degree ≤ m.

Example 3.4. (i) If f(x) = x− b then

hog(f) = X1 − bX0, hog2(f) = X1X0 − bX2
0 .

If f(x) =
∏d

1(x− bi) then for all m ≥ d,

hogm(f) = Xm−d
0

d∏
i

(X1 − biX0).

(ii) If F (X) = X2
0 + X2

1 then deh(F ) = 1 + x2
1. If F (X) = X2

0X1 then
deh(F ) = x1.

Here are some basic properties of these operations.

Lemma 3.5. (i) If d = deg(f), then hogm(f) = Xm−d
0 h(f) and

deh(hogm(f)) = f, ∀m ≥ d.
(ii) if F is homogeneous of degree m and Xk

0 , k ≥ 0 is the highest
power dividing F , then deh(F ) is of degree m− k and
hogm(deh(F )) = F/Xk

0 .
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Now note that if F is a homogeneous polynomial of degree m and
P ∈ P1 is a point with homogenous coordinates [u, v], then any repre-
sentative of P has the form (u′, v′) = (au, av), a ∈ F∗ := F \ {0} and
F (u′, v′) = amF (u, v). Therefore, F does not define a function on P1

but F (u, v) = 0 iff F (u′, v′) = 0, so this condition depends only on P
and not on the particular representative. So it makes sense to say that
P is a zero of F if F (u, v) = 0 for any, or every, representative. For
example, if F = uX1 − vX0, then P = [u, v] is a zero of F . Now the
following is easy to prove via homogenizing/dehomogenizing

Lemma 3.6. If P = [u, v] is a zero of F , then uX1 − vX0 divides F .

Proof. Either u 6= 0 or v 6= 0. We assume the former case as the latter
is similar. If u 6= 0, then 0 = F (u, v) = udF (1, v/u) so v/u is a zero of
the dehomogenization

f(x) = F (1, x).

Then (x− v/u)|f so we can write

f(x) = (x− v/u)g(x).

Homogenizing, we get

hog(f) = (X1 − (v/u)X0)hog(g) = (uX1 − vX0)(hog(g)/u).

Since F is in any case a multiple of hog(f), it follows that uX1 − vX0

divides F . ¤
Corollary 3.7. If F is not the zero polynomial, the number of zeros
of F in P1

F is finite.

The highest power of uX1− vX0 dividing F is called the multiplicity
of P as zero of F and denoted mP (F ). As in the case of A1, we may
define the set of cycles Z(P1

F)+ as the set of formal linear combinations
r∑

i−1

miPi where m1, ..., mr are natural numbers and P1, ..., Pr ∈ P1
F, and

there is a map called the cycle map

Z : F[X0, X1]m → Z(P1
F)+

defined by Z(F ) =
∑
P

mP (F )[P ], the sum being over all zeros P of F .

Let Zm(P1
F)+ ⊂ Z(P1

F)+ denote the set of cycles of degree m. Then
going in the other direction we can try to define a map

W : Zm(P1
F)+ → F[X0, X1]m

by

W (
r∑

i=1

mi[ui, vi]) =
r∏

i=1

(uiX1 − viX0)
mi .
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This is well-defined only up to proportionality, but that is sufficient.
The following homogeneous version of the Fundamental Theorem of
Algebra holds:

Theorem 3.8. If F = C, every homogeneous polynomial F ∈ F[X0, X1]
has the form

F (X0, X1) =
r∏

i=1

(aiX1 − biX0)
mi .

Moreover,
∑

mi is the degree of F and the points
[a1, b1], ..., [ar, br] ∈ P1

C may be taken distinct.

Note that the Theorem implies, for F = C, that Z(F ) and F have
the same degree, so we have shown

Corollary 3.9. Via Z − W , there is a 1-1 correspondence between
the set of nonzero elements in C[X0, X1]m, up to proportionality, and
Zm(P1)+.

Exercise 3.1. Let F ∈ F[X0, X1] be nonzero and f = deh(F ), and
identify U0 ⊂ P1

F with A1
F, thus identifying Z(A1

F) with a subset of
Z(P1

F) known as the set of ‘finite cycles’. Then show that

Z(F ) = Z(f) + m∞[∞]
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4. Projective substitutions

Projective transformations, or substitutions, are no less important
than their affine analogues– and the good news is, they are in some
ways simpler. To see why, let’s go back to our transformation T = T(a,b)

mapping x to ax+b. From our projective ‘perspective’, x is represented
by the point [1, x] ∈ P1, and T maps this to

[
1

ax + b

]
=

[
1 0
b a

] [
1
x

]

Thus, via our projective notation, an affine transformation becomes a
linear one, given by multiplication by the 2 × 2 matrix on the right.
Such a matrix is called affine, and it is always nonsingular provided
a 6= 0. But now notice that if A = [ai,j] is any nonsingular 2×2 matrix,
then we can always define a transformation

T = TA : P1 → P1

by the rule that T ([X0, X1]) = [X ′
0, X

′
1] where

[
X ′

0

X ′
1

]
=

[
a00 a01

a10 a11

] [
X0

X1

]
.

These are known as projective transformations. Note that if we for-
mally set x = X1/X0 then T maps x to

x′ =
a10 + a11x

a00 + a01x
.

Under this guise, these transformation are known as Möbius or fractional-
linear transformations. These have been studied a great deal and they
have many interesting properties. Before discussing some of these, here
is an example.

Example 4.1. Let

A =

[
0 1
1 0

]

Then TA[X0, X1] = [X1, X0]; or in fractional-linear guise, TA takes x
to 1/x. Not surprisingly, this is known as inversion. It interchanges
0 = [1, 0] and ∞ and fixes [1, 1].

Let’s continue with some elementary general facts about projective
transformations:

Lemma 4.2. (i) TAB = TA ◦ TB

(ii) TcI2 is the identity transformation (where I2 is the identity ma-
trix).
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(iii) Conversely, if TA is the identity transformation, then A is a
scalar matrix, i.e. A = cI2 for some c 6= 0.

Let us prove (iii). If A = [aij] is such that TA is the identity, then

A

[
1
0

]
=

[
1
0

]

This means a10 = 0. Similarly, a01 = 0. A being nonsingular, it follows
that a00, a11 are both nonzero. Now use

A

[
1
1

]
=

[
1
1

]

i.e. [
a00

a11

]
=

[
1
1

]

Thus the vectors (a00, a11) and (1, 1) are proportional, so A is a scalar
matrix.

Actually, this proof also establishes the following important fact

Corollary 4.3. Any projective transformation that fixes the three points
′0′ = [1, 0], ‘1′ = [1, 1], ‘∞′ = [1, 0]

is the identity.

Another important consequence is

Corollary 4.4. (i) The composition of any number of projective trans-
formations is projective, as is the inverse of any projective transforma-
tion.

(ii) Given nonsingular matrices A,B, the projective transformations
TA and TB are equal iff A = cB for some scalar c.

Proof. (i) For inverses,

TA ◦ TA−1 = TAA−1 = Id

Therefore TA−1 = (TA)−1.
(ii) If TA = TB then

TAB−1 = TATB−1 = TA(TB)−1 = Id

Hence AB−1 = cI2 is scalar so A = cB.
¤

Here is another remarkable property of projective transformations:

Proposition 4.5. Given any 3 distinct points P, Q,R ∈ P1, there is a
unique projective transformation T mapping 0, 1,∞ to P, Q, R in order.
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Proof. First existence. Let’s write P = [p0, p1] etc. Then the vectors
(p0, p1), (q0, q1) are not proportional, so a first try might be the matrix

A1 =

[
p0 r0

p1 r1

]
.

Then TA1 indeed takes 0 to P and ∞ to R. What about Q? Well,
notice that any diagonal matrix D = Diag(d1, d2) with d1d2 6= 0 fixes 0
and ∞, therefore TA1D also takes 0 to P and ∞ to R. Can we find D
such that TA1D also takes 1 to Q? If so, A = A1D solves our problem.
As system of linear equations, this condition reads

A1D

[
1
1

]
=

[
q0

q1

]

(proportionality rather than equality would suffice). As A1 is nonsin-
gular, this is equivalent to

D

[
1
1

]
= A−1

1

[
q0

q1

]

in other words, [
d1

d2

]
= A−1

1

[
q0

q1

]
.

Clearly d1, d2 cannot both be zero. If d1 = 0 then [d1, d2] = ∞ so
we conclude TA1(∞) = Q, whereas by construction TA1(∞) = R, so
Q = R against our assumption P, Q,R distinct. Therefore d1 6= 0 and
similarly, d2 6= 0. Therefore D = Diag(d1, d2) is our solution. This
shows existence.

Uniqueness: suppose A,B are such that TA, TB both take 0, 1,∞ to
the same P,Q, R. Then TA◦(TB)−1 = TAB−1 takes 0, 1,∞ to themselves,
hence it is the identity, so that A,B differ by a scalar and TA = TB.

¤

A special case of this is that no projective transformation other than
the identity can fix more than 3 points.

Corollary 4.6. Given 2 triples of distinct points P, Q, R and P ′, Q′, R′

on P1, there is a unique projective transformation taking P,Q, R to
P ′, Q′, R′ in order.

Proof. If T takes P, Q,R to P ′, Q′, R′, let T1 (resp. T2) take 0, 1,∞
to P, Q,R (resp. P ′, Q′, R′). Then T ◦ T1 takes 0, 1,∞ to P ′, Q′, R′,
so by uniqueness T ◦ T1 = T2. Therefore T = T2 ◦ T−1

1 is uniquely
determined. ¤
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Exercise 4.1. (i) Show that any projective transformation fixing ∞ is
affine.

(ii) Show that any projective transformation fixing 0 and ∞ is diag-
onal (comes from a diagonal matrix)

(iii) Show that any projective transformation interchanging 0 and ∞
is of the form [X0, X1] 7→ [X1, cX0], c 6= 0.

Now given four distinct points P, Q,R, S ∈ P1
F, i.e. a distinct quadru-

ple, let T be the unique projective transformation taking P, Q, R to
0, 1,∞. Then T (S) ∈ P1

F is a point distinct from 0, 1,∞, so it can be
represented in the form [1, λ], λ ∈ F\{0, 1}. λ is called the cross ratio of
P, Q, R, S and denoted [P,Q, R, S]; similarly if x1, ..., x4 ∈ F = A1

F are
distinct, their cross-ratio, denoted [x1, x2, x3, x4], is by definition the
cross-ratio of the corresponding points in P1

F , that is, [1, x1], ..., [1, x4].
As in the proof of Cor. 4.6, we can show:

Corollary 4.7. Two distinct quadruples (x1, ..., x4), , (y1, ..., y4) on P1

are projectively equivalent iff [x1, ..., x4] = [y1, ..., y4]

Exercise 4.2. Compute the cross-ratio [1, 2, 3, 4].

Exercise 4.3. Given λ = [x1, x2, x3, x4], compute [x2, x1, x3, x4],
[x4, x2, x3, x1] and [x1, x4, x3, x2].

Now let’s look over on the algebraic side at the relation of projec-
tive transformations (literally, substitutions) and homogeneous poly-
nomials. For any homogeneous polynomial F ∈ F[X0, X1]m and 2x2
matrix A = [aij], define another such polynomial, denoted T ∗

A(F ) ∈
F[X0, X1]m, by

T ∗
AF (X0, X1) = F (A(X0, X1)) = F (a00X0 + a01X1, a10X0 + a11X1)

Note that by definition, if P ∈ P1 and Q := TA(P ) is a zero of F , then
P is a zero of T ∗

A(F ) and vice versa, in other words, Q is a zero of F
iff T−1

A (Q) is a zero of T ∗
A(F ).

Example 4.8. Let LP = vX0− uX1 be the linear polynomial (unique
up to constant multiple) with unique zero P = [u, v]. By direct calcu-
lation,

T ∗
A(LP ) = (va00 − ua01)X0 − (−va01 + ua11)X1 = LQ

where
Q = [ua11 − va01,−ua01 + va10] = Tadj(A)(P )

where

adj(A) =

[
a11 −a01

−a10 a00

]
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is the adjoint matrix, which coincides with A−1 up to the scalar det(A),
therefore Tadj(A) = T−1

A .

Now for any nonzero homogeneous polynomial F and point P , we
can write F = Lm

P F1 with F1 nonzero at P and m ≥ 0 equal to the
multiplicity of F at P . Then we get a nice relation between the cycles
associated to F and T ∗

A(F ):

(4) Z(T ∗
A(F )) = TA−1(Z(F ))

where we define, for any matrix B and cycle Z =
∑

mi[Pi],

TB(Z) =
∑

mi[TB(Pi)].

Equivalently,

TA(Z(T ∗
A(F ))) = Z(F ).

Two polynomials F, G ∈ F[X0, X1]m are said to be projectively equiva-
lent over F if G = cT ∗

A(F ) for some 2x2 matrix A and nonzero constant
c ∈ F. This relation is easily seen to be an equivalence relation, and
the equivalence classes are also called projective orbits. Similarly, two
cycles Z,Z ′ are said to be projectively equivalent if there is a projective
transformation TA such that TA(Z) = Z ′.

Corollary 4.9. If F, G are projectively equivalent polynomials, then
Z(F ), Z(G) are projectively equivalent cycles.

Exercise 4.4. If F = C, then two polynomials F, G are projectively
equivalent iff Z(F ), Z(G) are projectively equivalent cycles.

Example 4.10. Some low degree examples:

• m = 1 Here there is clearly just 1 orbit, regardless of F.
• m = 2 Here the nature of the field F begins to play a role. First,

the usual ‘completing the square’ technique shows that any F
is equivalent to G = X2

1 + aX2
0 , a ∈ F. If F = R and a 6= 0, G

is equivalent to X2
1 ± X2

0 and these are inequivalent, therefore
there are precisely 3 orbits. If F = C, X2

1 ±X2
0 are equivalent

(substitute X0 7→
√−1X0), so there are just 2 orbits. If F = Q,

there are infinitely many nonsquares and infinitely many orbits.
• m = 3 Here we will just consider the case F = C. Any cubic F

splits into linear factors F = L1L2L3 with each Li homogeneous
linear with unique zero Pi.

Case 1: Pi distinct. Then there is a projective transformation
TA taking 0, 1,∞ to P1, P2, P3, hence L1, L2, L3 to X1, X1 −
X0, X0, respectively (up to constant factor). Then T ∗

A(F ) =
X0X1(X1 −X0).
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Case 2: P1 = P2 6= P3. Then we can transform 0,∞ to P1, P3

and similarly conclude F is equivalent to X2
1X0.

Case 3: Pi all equal. Then clearly F is equivalent to X3
1 .

Thus in total there are 3 orbits.

Over R, a slightly more complicated analysis. based on the fact that a
real cubic has precisely 1 or 3 real roots, yields 4 orbits: in addition to
3 orbits analogous to the above, there is the orbit of X1(X

2
1 + X2

0 ).

Exercise 4.5. Fill in the details in the above argument classifying or-
bits in R[X0, X1]2 and C[X0, X1]2.

Exercise 4.6. Classify projective equivalence classes in R[X0, X1]3.

As soon as m ≥ 4, the set of projective equivalence classes in F[X0, X1]m
is no longer finite and indeed gets rather complicated. In the simplest
case m = 4,F = C, this set can be identified with the set of equivalence
classes of 4 distinct point in P1

C, and hence with P1
C \ {0, 1,∞}.

Remark. Underlying some of the topics we discussed above is the fact
that the set of all projective transformations of P1

F forms an abstract-
algebraic structure known as a group (studied in courses like 171-2):in
our context this essentially means that compositions and inverses of
projective transformations are themselves projective transformations.
The group of all projective transformations of P1

F is denoted PGL2(F) or
just PGL2. This group is closely related to the group of all nonsingular
2x2 matrices, which is denoted GL2(F) or GL2. Indeed PGL2(F) is the
quotient or factor group of GL2(F) by the (normal) subgroup of scalar
matrices, i.e. F∗I2 (which reflects the fact that two matrices define
the same projective transformation iff they are scalar multiples of each
other.


