
137 NOTES, PART 2:
THE AFFINE AND PROJECTIVE PLANES

Z. RAN

1. The affine plane

Our aim now is to begin to extend the constructions we discussed
for the case of 1 dimension, i.e. the line and 1-variable polynomials,
to the 2-dimensional case. To start with, the affine plane A2

F or A2 is
just a copy of F2 (the difference is that F2 is viewed as a vector space
while A2 is a ‘geometric’ object). We note that A2 admits a set (in
fact, a group) of affine transformations defined as follows: let C be an

invertible 2x2 matrix and ~b ∈ F2 a 2-vector. Then define

T = TC,~b

by

(1) T (x1, x2) = C

[
x1

x2

]
+

[
b1

b2

]
.

We call C and ~b the linear and translation parts of T , respectively.
The 3x3 matrix

(2) M = M(C,~b) =




1 0 0
b1 c11 c12

b2 c21 c22




is called the augmented matrix of T . We shall see more of this when we
discuss projective transformations, but for now we notice that M can
be used to simplify the ‘action rule’ of T as follows: write T (x1, x2) =
(y1, y2). Then

(3)




1
y1

y2


 = M




1
x1

x2


 .

The following is easy to see:
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Exercise 1.1. (i) Prove that if T1, T2 are affine transformations with
respective augmented matrices M1,M2, then the augmented matrix of
T1 ◦ T2 is M1M2.

(ii) Prove that

M(C,~b)M(C ′, ~b′) = M(CC ′,~b + C~b′).

(iii) Deduce that the composition of two affine transformations, and the
inverse of an affine transformation, are affine.

Thus, the collection of all affine transformations of A2 is a group,
denoted Aff2(F) or Aff2.

Exercise 1.2. (i) Prove that for any affine transformation T and any
line

L = {(x1, x2) : a0 + a1x1 + a2x2 = 0},
the inverse image

T−1(L) = {p : T (p) ∈ L}
is another line and determine its equation.

(ii) Deduce that in this situation T (L) is a line as well
(iii) Prove that if L1, L2 are parallel lines, then so are T (L1), T (L2)

and conversely.

Exercise 1.3. (i) Prove that given any 3 non-collinear points P, Q, R ∈
A2, there exists a unique affine transformation T such that T (e1) =
P, T (e2) = Q, T (0, 0) = R. Here as usual e1 = (1, 0), e2 = (0, 1).

(ii) Conclude that for any 2 pairs of non-collinear points P,Q, R,
P ′, Q′, R′, there exists a unique affine transformation T such that T (P ) =
P ′, T (Q) = Q′, T (R) = R′.

The ‘polynomial’ side of the story is much more involved and will
occupy us for quite some time, starting shortly. For now let’s just dis-
cuss a few basic notions. We will deal with polynomials in 2 variables
x1, x2 with coefficients in our field F. The set of all these polynomials
forms an F-vector space, denoted F[x1, x2]; in fact, F[x1, x2] is what’s
called a ring or F-algebra, because it makes sense to multiply polyno-
mials besides adding them. The set of polynomials of degree ≤ m is a
vector subspace (but not a subring) of F[x1, x2] that we will denote by
F [x1, x2]m].

Exercise 1.4. Prove that the dimension of F[x1, x2]m] as F-vector space

is
(

m+2
2

)
.

As before, it is important to consider the action of affine transfor-
mations on polynomials. Thus let T = TC,~b be an affine transformation
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and f ∈ F[x1, x2] a polynomial. We define a polynomial g = T ∗(f) by

g(x1, x2) = f(T (x1, x2)) = f(c11x1 + c12x2 + b1, c21x1 + c22x2 + b2).

Some important properties of this operation are

• If T1, T2 are affine, then

(T1 ◦ T2)
∗(f) = T ∗

2 (T ∗
1 (f)).

• deg(T ∗f) = deg(f).

As in the 1-variable case, two polynomials f, g are said to be affine
equivalent if there exists an affine transformation T such that T ∗(f) =
cg for some c ∈ Fx = F \ {0}. As before, this is an equivalence relation
on polynomials, whose equivalence classes are also called affine orbits.
Some important properties of this operation are

Lemma 1.1. If T1, T2 are affine, then

(T1 ◦ T2)
∗(f) = T ∗

2 (T ∗
1 (f)),(4)

deg(T ∗
1 f) = deg(f)(5)

Proof. We prove the second equation. The inequality ≤ is obvious.
Applying the same reasoning to the polynomial T ∗

1 (f) and the affine
transformation T−1

1 yields

deg((T−1
1 )∗(T ∗

1 (f))) ≤ deg((T1)
∗f).

However, by the first equation,

(T−1
1 )∗(T ∗

1 (f)) = (T1 ◦ T−1
1 )∗(f) = f

therefore
deg(f) ≤ deg((T ∗

1 )(f))

so they are equal. ¤
As in the 1-variable case, two polynomials f, g are said to be affine

equivalent if there exists an affine transformation T such that T ∗(f) =
cg for some c ∈ F× = F \ {0}. As before, this is an equivalence relation
on polynomials, whose equivalence classes are also called affine orbits.
The zero-set of a polynomial is defined as before as

(6) ZerosF(f) = {(x1, x2) ∈ A2
F : f(x1, x2) = 0}

The zero-sets of two affine equivalent polynomials are affine equivalent,
in fact

(7) T (ZerosF(T
∗(f))) = ZerosF(f).

A subset C ⊂ A2
F of the form C = ZerosF(f), for some polynomial f is

called an affine plane curve.
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Example 1.2. Some low-degree examples:
m = 1: A nonconstant linear polynomial has the form

f(x1, x2) = u0 + u1x1 + u2x2

where (u1, u2) 6= (0, 0); i.e. letting ~u denote the column vector (u0, u1, u2)
T ,

we can write
f(x1, x2) = ~uT~x = 〈~u · ~x〉.

It is easy to check that if T = TC,~b has augmented matrix M , then
T ∗f = v0 + v1x1 + v2x2 where

~v = MT~u

(considering ~u,~v as column vectors). Indeed

T ∗f(x1, x2) = ~uT (M~x) = (~uT M)~x

= (~uT (MT )T )~x = (MT~u)T~x

= ~vT~x

From this it is easy to see that any two nonconstant linear polynomials
are affine equivalent. Or more geometrically, any two lines in A2 are
affine equivalent.

Exercise 1.5. Let (L1, L2), (M1,M2) be pairs of lines in A2.

(1) Prove that if either
• L1 ‖ L2 and M1 ‖ M2 or
• L1 ∦ L2 and M1 ∦M2

then (L1, L2) is affine equivalent to (M1,M2).
(2) Prove that if L1 ‖ L2 but M1 ∦ M2 then (L1, L2) and (M1,M2)

are not affine equivalent.

m = 2: Here we are essentially discussing the classification of (affine)
conics, mentioned earlier. This depends on the field F. If F = R, the
orbits are

(1) circles x2
1 + x2

2 − 1
(2) hyperbolas x1x2 − 1
(3) parabolas x2

1 − x2 = 0
(4) line-pair x1x2

(5) double line x2
1

(6) point x2
1 + x2

2

(7) empty x2
1 + x2

2 + 1

If F = C, cases 1, 2 and 7 are equivalent, as are 4 and 6, and there are
just 4 orbits.

The proof is a bit tedious, but can be streamlined somewhat from
the viewpoint of projective equivalence (see below).
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Exercise 1.6. Prove that Cases (1), (2), (7) above are equivalent over
C but not over R.

2. The projective plane

The basic definitions are just as in the case of the projective line.
Consider the 3-dimensional vector space F3 with coordinates X0, X1, X2,
and define P2

F, or P2 when F is understood, to be the set of 1-dimensional
vector subspaces (or lines through the origin) in F3. Since specifying
a 1-dimensional subspace ` of F3 is the same as specifying a nonzero
vector in F3 up to proportionality, we can identify P2 with the set of
proportionality classes [X0, X1, X2] where (X0, X1, X2) 6= (0, 0, 0) ∈ F3.
Let

π : F2 \ {~0} → P2
F

be the obvious (tautological) map sending v to [v]. For P = [X0, X1, X2] ∈
P2, the vector (X0, X1, X2) is said to be a lift or representative of P .
Set

L0 = {[0, X1, X2] : (X1, X2) 6= (0, 0)} ⊂ P2.

Then L0 may be identified in an obvious way with P1
F and we call it

the line at infinity in P2. Why? Set

U0 = P2
F \ L0 = {[X0, X1, X2] : X0 6= 0} = {[1, x1, x2] : (x1, x2) ∈ A2

F}
Thus, U0, which is known as the finite plane can be identified naturally
with A2

F. Geometrically, U0 is the set of lines through the origin which
are not contained in the plane X0 = 0; such a line will meet the plane
X0 = 1 in a unique point, and therefore U0 can be identified with the
set of points on the plane X0 = 1.

Now again as in the case of P1, there is nothing special about infinity:
indeed we can define

Li = {[X0, X1, X2] : Xi 6= 0}, Ui = P2 \ Li

and these are exactly analogous to L0, U0, and can be identified respec-
tively with P1,A2.

Example 2.1. One nice thing about the case F = R is that we can
make an explicit ‘topological’ model of P2

R, as follows. Note that any
representative v of P ∈ P2

R can be scaled by the length ‖v‖, therefore P
admits precisely 2 representatives v = (x, y, z) with x2+y2+z2 = 1, i.e.
with v ∈ S2, the unit sphere in R3. In other words, the map π : S2 → P2

R
is 2:1. We can say that P2

R is obtained from S2 by identifying antipodal
pairs. Let

Hε = {(x, y, z) ∈ S2 : z ≥ −ε}
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(i.e a small thickening of the upper hemisphere). Then π(Hε) = P2
R.

Let ‘cut up’ Hε further in

D = {(x, y, z) ∈ S2 : z ≥ ε}, B = {(x, y, z) ∈ S2 : −ε ≤ z ≤ ε}
Then π maps D 1-1 to its image R ⊂ P2

R and maps B 2-1 to a Möbius
strip M ⊂ P2

R. Thus

P2
R = R ∪M

is a union of a disc and a Möbius strip, joined along the circle that is
the boundary of R and of M .

Thus, to make a paper-and-glue model of P2
R, take a Möbius strip of

radius r and a disc of radius 2r (sic!) and glue along boundary (this
will require making some further cuts, but that is the fault of our 3-
dimensional world that cannot accommodate a model of P2

R without
self-intersection (this has to do with the fact that P2

R is a so-called
nonorientable (1-sided) closed surface).

For F = C, the projective plane has 4 real dimensions and is essen-
tially undrawable topologically (indeed, it is topologically rather so-
phisticated); we will nonetheless draw it ‘geometrically’ as a 2-dimensional
plane with the coordinate lines indicated.

Again as in the case of P1, it makes sense to talk about zero sets
of homogeneous polynomials in P2: indeed if F ∈ F[X0, X1, X2]m is a
homogeneous polynomial of degree m then

F (λX0, λX1, λX2) = λmF (X0, X1, X2)

so given a point P ∈ P2 and any two representative v, v′ of P , F (v) = 0
iff F (v′) = 0. Therefore it makes sense to say that P is a zero of F and
write F (P ) = 0 if F (v) = 0 for one or any representative v of P . The set
of all zeros of F in P2 is denoted Zeros(F ). A subset C ⊂ P2 of the form
Zeros(F ) for some homogeneous polynomial F is called a projective
plane curve and it is the sort of object this course is all about. We
defer for now the important question of multiplicities. It is important
to note that a homogeneous polynomial in 3 or more variables will
not, in general, split into linear factors (unlike in the 2-variable case).
This explains why, going up from 1 to 2 dimensions, the theory of plane
curves is much more complicated than that of polynomials in 1 variable
(or that of homogenous polynomials in 2 variables, which is more or
less the same).

Note that for a projective curve C = Zeros(F ), the intersection C0 =
C ∩ U0, called the affine or finite part of C, may be identified with a
subset of A2, under the usual identification of U0 with A2. As such, C0
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is none other than the zero-set of the dehomogenization

f(x1, x2) = deh(F ) = F (1, x1, x2).

Classically, given a projective curve C = Zeros(F ) and the correspond-
ing affine curve C0 = C ∩ U0 = Zeros(f), C0 is called the finite part of
C while C ∩L0 = C \C0 is known as the set of asymptotes of C0 or the
set of points at infinity belonging to C0 (though they are not actually
on C0, but are limiting positions of OP where O is the origin and P is
a point on C0 going out to infinity). Note that if we write

f = fm + fm−1 + ... + f1 + f0

, with fi homogenous of degree i, then C∩L0 is the zero-set of fm(X1, X2).

Example 2.2. • m = 1: if F is homogeneous linear, the zero-
set is naturally called a (projective) line. We can write F =
u0X0+u1X1+u2X2 with the u’s not all zero. If, say, u0 6= 0, then
projection to the X1, X2 coordinates gives a 1-1, onto mapping
L := Zeros(F ) → P1, we we can identify L with P1; similarly
in case u1 or u2 6= 0. Thus any line is ‘intrinsically the same as’
(or as we shall say, projectively isomorphic to) P1.

• m = 2 Let’s consider the real conics we saw above in Example
1.2. They homogenize respectively to
(1) X2

1 + X2
2 −X2

0

(2) X1X2 −X2
0

(3) X2
1 −X0X2

(4) X1X2

(5) X2
1

(6) X2
1 + X2

2 + X2
0

Note that in cases (1) and (6), the equation restricted on the line at
infinity L0 ' P1 gives the irreducible quadratic with real zeros X2

1 +X2
2 ;

in cases (3) and (5), restriction on L0 gives a square X2
1 .

Next we discuss projective transformations of the plane. Analogously
as in the case of P1, we can define for any nonsingular 3x3 matrix M
with entries in F a transformation

T = TM : P2
F → P2

F

by

T ([X0, X1, X2]) = [Y0, Y1, Y2],


Y0

Y1

Y2


 = M




X0

X1

X2



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Comparing (1), we see that if we identify the affine plane A2 with the
subset U0 ⊂ P2, any affine transformation TC, ~B is a projective one TM

where M is the augmented matrix M(C,~b). In fact, this T takes the
line at infinity L0 to itself.

In fact, we claim that any projective transformation T = TM taking
L0 to itself is affine, in other words M is, up to scalar, of the form (2).
Indeed, note that P = T [0, 1, 0], Q = T [0, 0, 1] are just the second and
third columns of M , respectively. Since P,Q ∈ L0 have 0th component
= 0, we have that m01 = m02 = 0. Now m00 6= 0 because M is
nonsingular. Therefore up to scalar, M is of the form (2).

There are, of course, plenty of projective transformations that are
not affine.

Exercise 2.1. Give the matrix of a projective transformation that takes
the line at infinity X0 = 0 to the line X1 = 0 and the ‘origin’ [1, 0, 0]
to the point [0, 0, 1] on the line at infinity.

Exercise 2.2. (i) Prove that if M is a nonsingular 3x3 matrix such
that TM is the identity, then M is a scalar matrix.

(ii) Conclude that if M1,M2 are nonsingular 3x3 matrices such that
TM1 = TM2 then M2 = cM1 for some nonzero scalar c.

We denote by GL3(F) the set of all nonsingular 3x3 matrices with
entries in F and by PGL3(F) the set of all projective transformations of
P2
F. By the last exercise, there is a surjective (onto) mapping GL3(F) →

PGL3(F) such that 2 matrices M1,M2 ∈ GL2(F) have the same image
in PGL3(F) iff they are proportional.

What is the analogue of Proposition 1-4.5 for the plane ? Let’s
indulge in a little ‘count of parameters’, a favorite technique of classical
algebraic geometers. A projective transformation T is given by a 3x3
matrix, but scaling doesn’t matter, so effectively T depends on 3× 3−
1 = 8 parameters. Each point in P2 requires 2 parameters. So roughly
speaking, we can expect to find T taking 4 = 8/2 given points to 4
given points. This idea obviously needs some refinement: T necessarily
takes a line to a line, so if we start with a collinear quadruple of points,
T can only take them to another collinear quadruple; similarly with a
quadruple that contains a collinear triple. It turns out, interestingly,
that this is the only ‘obstruction’. First let’s make a definition:

Definition 1. A collection of distinct points P1, ..., Pn ∈ P2 is said to
be in general position if no 3 of them are collinear.

Now let’s set up some notation: e0 = [1, 0, 0], e1 = [0, 1, 0], e2 =
[0, 0, 1], f = [1, 1, 1].
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Proposition 2.3. Given 4 distinct points in general position P0, ..., P3 ∈
P2, there exists a unique projective transformation T such that

T (ei) = Pi, i = 0, 1, 2, T (f) = P3.

Proof. Let’s write T = TM with M a 3x3 matrix to be determined,
and represent Pi, i = 0, 1, 2 by a column vector denoted pi. Then
the condition T (ei) = Pi simply means that the ith column of M is
proportional to pi. Thus, letting P be the matrix with columns p0, p1, p2

these 3 conditions mean that

M = PD

for some diagonal matrix D, corresponding to a vector

d = [d0, d1, d2], d0d1d2 6= 0.

Note that P is nonsingular because its columns are linearly indepen-
dent: a linear dependence relation between p0, p1, p2 is precisely the
same thing as a line containing the points P0, P1, P2! Is remains to ac-
count for the last condition T (f) = P3. Note that Df = d, so to achieve
Mf = PDf = p3 it suffices to set d = P−1p3– provided, that is, that
this vector has all coordinates 6= 0. Suppose, say, that d0 = 0. Then
d, e1, e2 are linearly dependent. Applying P , it follows that p3, p1, p2

are linearly dependent, i.e. P3, P1, P2 are collinear, which contradicts
our general position hypothesis. Thus, d0d1d2 6= 0 and our projective
transformation T = TM exists.

To show uniqueness, suppose TM1 , TM2 both take e0, e1, e2, f to
P0, ..., P3. Let M = M−1

1 M2. Then TM fixes e0, e1, e2, f . Now analyzing
the condition that T (ei) = ei, i = 0, 1, 2 as above, we see that it is
equivalent to M being a diagonal matrix, say with entries d0, d1, d2.
But then T (f) = [d0, d1, d2]. Since this equals f , we conclude that M
is a scalar c, therefore M2 = cM1 and TM1 = TM2 .

¤

Corollary 2.4. If P0, ..., P3 are in general position and so are Q0, ..., Q3,
there is a unique projective transformation T such that T (Pi) = Qi, i =
0, ..., 3.

Exercise 2.3. Prove that, given points P0, ..., P3 ∈ P2, the existence of
T as in Prop 2.3 implies they are in general position.

Next note that as before, given a nonsingular matrix M and a homo-
geneous polynomial F of degree m, we can define another such poly-
nomial T ∗

M(F ) by

T ∗
M(F )( ~X) = F (M ~X).
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Changing M by a multiplicative scalar c will only change T ∗
M(F ) by

the multiplicative factor cm so does not change the zero-set. Two ho-
mogeneous polynomials F,G are said to be projectively equivalent if
G = T ∗

M(F ) for some nonsingular matrix M .

Example 2.5. m = 1: Note that any homogeneous polynomial of
degree 1 has the form

`u(X) = u0X0 + u1X1 + u2X2 = uT X

where u is the nonzero column vector [u0, u1, u2]. Thus, there is a 1-1
correspondence between linear polynomials `u and vectors u.

Lemma 2.6. Two linear polynomials `u, `v have the same line L as
zero-set iff u, v are proportional.

Proof. ’If’ is obvious. For ’only if’, we may assume by permuting coor-
dinates that L does not contain [e2] = [0, 0, 1]. This means u2 6= 0 6= v2

so we may as well assume u2 = v2 = 1. Then a parametrization of
L = Zeros(`u) is given by

P1 → P2

[t0, t1] 7→ [[t0, t1,−u0t0 − u1t1].

Since this this is also a parametrization of Zeros(`v) it follows that

v0t0 + v1t1 − u0t0 − u1t1 = (v0 − u0)t0 + (v1 − u1)t1 ≡ 0,

so v0 = u0, v1 = u1 and we are done. ¤

Thus, there is a 1-1 correspondence between the set of lines in P2
F and

the set of points in another copy of P2
F, known as the dual projective

plane, denoted P2∗
F . Moreover, the action of projective transformations

on P2 yields a dual action on P2∗: if F (X) = uT X, then

(T ∗
MF )(X) = F (MX) = uT (MK) = uT (MT )T X = (MT u)T X.

Therefore T ∗
M(F ) is the line with coefficient vector MT u.

Exercise 2.4. Show that any two nonzero homogenous polynomials of
degree 1 are projectively equivalent.

Now because P2∗ is essentially ‘just another copy of P2, what we
prove about P2 is generally valid for P2∗ as well, and sometimes this
has an interesting interpretation in terms of the original P2. In fact,
one can set up a sort of ‘dictionary’ between P2 and P2∗: some entries
in the dictionary are as follows
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P2 P2∗

point line
line point

k points on a line k lines through a point

Continuing with this dictionary, we may say that a collection of lines
L1, ..., Ln ⊂ P2 is in general position if no 3 of them are concurrent;
this is the same as saying that, as points in P2∗, L1, ..., Ln are in general
position.

Exercise 2.5. Prove that any 2 quadruples on lines in general position
are projectively equivalent. (Hint: emulate the proof of Prop 4 above,
or use its statement)

A convenient way to express the relation between P2 and P2∗ is by
means of the incidence correspondence: let

I = {(P,L) : P ∈ L}
= {([X0, X1, X2], [u0, u1, u2]) : u0X0 + u1X1 + u2X2 = 0} ⊂ P2 × P2∗

This is the set of pairs (point, line) such that the point lies on the line.
From its equation description, I is completely symmetric in u and X.
We have a diagram

I
↙ p1 p2 ↘

P2 P2∗

The following result is already some indication of the ’complete’ nature
of the projective plane:

Proposition 2.7. Any two lines in P2 intersect.

Proof. Consider two lines L,M with equations uT .X = 0, vT .X = 0.
Their intersection comes from the solutions to a system of 2 homoge-
neous linear equations in the 3 unknowns X0, X1, X2. By linear algebra,
such a system always admits a nonzero solution, and this yields a point
in L ∩M. ¤

In fact, much more is true, for example

Proposition 2.8. If F = C, any line in P2 meets any curve.

Proof. Let L be a line and C = Zeros(F ) a curve. There exists a pro-
jective transformation T such that T (L) is the line with equation X2.
Then T (C) = Zeros(G) for some homogeneous polynomial G. So it suf-
fices to prove that G has a zero of the form [X0, X1, 0], (X0, X1) 6= (0, 0).
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But G(X0, X1, 0) is a homogenous polynomial in X0, X1 (possibly zero),
therefore by the fundamental theorem of algebra it is a product of linear
factors, hence always admits a zero. ¤

3. conics

Here we give a general discussion of homogeneous quadratic polyno-
mials. It will be convenient to start with a more general notion. Let
V be a finite-dimensional F-vector space, and f : V → F a function.
We will say that f is a homogeneous function or a form of degree m if,
given any collection of elements v1, ..., vk ∈ V , the functions g : Fk → F
given by

g(x1, ..., xk) = f(x1v1 + ... + xkvk)

is a homogeneous polynomial of degree m in x1, ..., xk.

Proposition 3.1. There is a 1-1 correspondence between quadratic
forms q on V and symmetric bilinear forms

b : V × V → F

given by

q = φ(b), q(v) = b(v, v),(8)

b = ψ(q), b(u, v) =
1

2
(q(u + v)− q(u)− q(v)).(9)

Proof. To start with, it is clear that, given a symmetric bilinear from b,
the function q = φ(b) is indeed a quadratic form. Next, we claim that
given q quadratic, b = ψ(q) is bilinear, symmetric. Indeed symmetry
is obvious from the definition, so to prove bilinearity is a matter of
proving

b(u + u′, v) = b(u, v) + b(u′, v),(10)

b(ru, v) = rb(u, v), r ∈ F.(11)

Let

f(x0, x1, x2) = q(x0u + x1u
′ + x2v)

By assumption, this is a homogeneous quadratic form in x, hance has
the form

f(x0, x1, x2) = a0x
2
0 + a1x

2
1 + a2x

2
2 + 2c01x0x1 + 2c12x1x2 + 2c02x0x2

Plugging into the formula defining b, we see that

c01 = b(u, u′), c02 = b(u, v), c12 = b(u′, v).
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On the other hand, again by plugging into the defining formula, we
have

b(u + u′, v) =
1

2
(q(u + u′ + v)− q(u + u′)− q(v))

=
1

2
(f(1, 1, 1)− f(1, 1, 0)− f(0, 0, 1)) =

1

2
((a0 + ... + 2c02)− (a0 + a1 + 2c01)− a2)

= c02 + c12 = b(u, v) + b(u′, v)

The proof of (5) is similar. Now we claim that for any symmetric
bilinear form b and any quadratic form q, we have that

ψ(φ(b)) = b(12)

φ(ψ(q)) = q(13)

We will prove (9) as the proof of (8) is similar and simpler. Given q,
ψ(q) = b is defined by ? and then q′ = φ(b) is defined by

q′(u) = b(u, u) =
1

2
(q(2u)− 2q(u)) = q(u)

by homogeneity of q. ¤

Now if q is a quadratic form on V and B = (v1, ..., vn) is a basis of
V , there is defined a quadratic form qB on Fn by

(14) qB(x1, ..., xn) = q(x1v1 + ... + xnvn)

Note that if V = Fn, then B corresponds to a nonsingular matrix A
with columns v1, ..., vn and then, with the notation introduced earlier,

qB = T ∗
A(q)

is a quadratic form projectively equivalent to q.

Proposition 3.2. Let q be a quadratic form on an n-dimensional F-
vector space V . Then there exists a basis B of V such that

qB = a1x
2
1 + ... + anx

2
n, a1, ..., an ∈ F.

Proof. Use induction on n = dim(V ). If n = 1 the result certainly
holds. For the induction step, assume the result is true for n − 1 and
that q 6= 0. Pick any v1 ∈ V with a1 := q(v1) 6= 0. Let b be the bilinear
form associated to q, and set

V ′ = v⊥1 = {u ∈ V : b(u, v1) = 0}
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This is clearly an (n − 1)-dimensional subspace of V . Applying the
induction hypothesis to the restriction of q on V ′, there is a basis
B′ = (v2, ..., vn) of V ′ such that

qB′ = a2x
2
2 + ... + anx

2
n

in other words,

q(x2v2 + ... + xnvn) = a2x
2
2 + ... + anx

2
n

But now note that for any v ∈ V ′, we have

q(x1v1 + v) = q(x1v1) + q(v)

because b(v1, v) = 0. Therefore

q(x1v1 + x2v2 + ... + xnvn) = a1x
2
1 + a2x

2
2 + ... + anx2

n,

proving the proposition.
¤

Note that by permuting our basis we may always assume that

a1, ..., ar 6= 0, ar+1 = ... = an = 0

for some integer r which is called the rank of q. If r = n q and the
associated bilinear form b are said to be nondegenerate. A basis as in
Proposition 3.2 is called a diagonalizing basis for q. It can be shown
that the rank r coincides with the rank of the linear map

r : V → V ∗

where V ∗ = L(V,F) is the dual vector space, defined by

r(v)(u) = b(u, v)

and in particular, r is independent of the choice of diagonalizing basis
(of which there are, in general, many).

Corollary 3.3. Assumptions as in the previous Proposition. If F = R,
there is a basis B of V such that

qB = ±x2
1 ± ...± x2

r.

Proof. Start with a diagonalizing basis (v1, ..., vn) and for each i such
that ai = q(vi) 6= 0 let

v′i =
√
|ai|

−1
vi.

For each i such that q(vi) = 0 let v′i = vi. Then

q(x1v
′
1 + ... + xnv′n) = q(

x1√
|a1|

v1 + ... +
xr√
|ar|

vr + ... + xnvn)

= a1(
x1√
|a1|

)2 + ... + ar(
xr√
|ar|

)2 = ±x2
1 ± ...± x2

r
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¤
Corollary 3.4. Any real conic in P2

R is projectively equivalent either
to X2

0 + X2
1 + X2

2 (empty) or X2
0 + X2

1 − X2
2 (hyperbola) or X2

1 − X2
2

(line-pair) or X2
1 +X2

2 (single point) or X2
1 (double line). Only the first

two are nondegenerate.

Proof. The rank r can be 3, 2, or so the result is immediate from the
above classification.

¤
Note that in particular the circle (homogeneous equation −X2

0 +X2
1 +

X2
2 ), the hyperbola as above, and the parabola X0X1 + X2

2 are projec-
tively equivalent, despite the fact that their affine (inhomogeneous)
parts are not affine equivalent! The reason behind this is that the 3
curves intersect the line at infinity X0 = 0 differently: for the circle
the intersection is empty with equation X2

1 + X2
2 , for the hyperbola it

is 2 distinct points corresponding to the reducible quadratic X2
1 −X2

2 ,
while for the parabola it is the double-root quadratic X2

2 .
The situation is even simpler for the complex case:

Corollary 3.5. If F = C, there is a basis B of V such that

qB = x2
1 + ... + x2

r.

Proof. Similar to the above, with the square roots, using the fact that
every complex number admits a square root. ¤
Corollary 3.6. Any conic in P2

C is projectively equivalent to X2
0 +X2

1 +
X2

2 (nondegenerate) or X2
1 + X2

2 (line-pair) or X2
2 (double line)

Note that in both the real and complex cases the affine classification
is more complicated than the projective one. This may be explained
by the remark that to specify an affine conic is essentially to specify a
projective conic C plus the position of C relative to a fixed line (which
one may think of as the line at infinity, though, as we’ve seen, in P2

all lines are ‘the same’, i.e. projectively equivalent. This lends support
to the viewpoint that the correct ambient space in which to consider
curves in the projective, rather than the affine plane.

Given a projective curve C, a homogeneous parametrization of C is
by definition a map

G = (g0, g1, g2) : P1 → P2

where g0, g1, g2 are homogenous polynomials of the same degree with
no common zeros, such that the image of G coincides with C. One nice
consequence of the classification of conics is the following
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Corollary 3.7. Any nondegenerate conic over C admits a homoge-
neous parametrization.

Proof. Consider the conic D with equation X0X1 − X2
2 . The explicit

substitution
X0 7→ X0 + iX1, X1 7→ X0 − iX1

shows that this equation is diagonalizable and nondegenerate. There-
fore any conic is projectively equivalent to D, and it suffices to show
D admits a homogenous parametrization. Indeed consider the map

G : P1 → P2

given by
G(U0, U1) = [U2

0 , U2
1 , U0U1].

Clearly, the image of G is contained in D. Conversely, given a point
P = [a0, a1, a2] ∈ D, either a0 6= 0 or a1 6= 0. If a0 6= 0 then we may
assume a0 = 1 and then a1 = a2

2 and P = G[1, a2]. Similarly if a1 6= 0.
Therefore G maps onto D. In fact, a similar argument shows G is one
to one. ¤
Corollary 3.8. Every projective curve over C intersects every conic.

Proof. Consider a curve V = Zeros(F ) ⊂ P2 where F is homogeneous
of degree m, and a conic C. If C is degenerate (a double line or line
pair our result follows from Prop. 2.7. If C is nondegenerate, it admits
a parametrization by G, Then

F ′ = F ◦G = F (g0(U0, U1), ...)

is homogeneous (in fact, of degree 2m) in U0, U1, hence admits a non-
trivial zero (b0, b1). Then

P = G(b0, b1) ∈ C ∩ V.

¤
The foregoing argument suggests that if V is given by a polyno-

mial of degree m then it will generally meet a conic in 2m points. In
fact, Bézout’s Theorem to be discussed later shows that two projective
curves over C with equations of degree m,n will in general intersect in
mn points, and in particular their intersection is always nonempty. On
the other hand, the analogue of Cor. 3.7 is decidedly false in general
for curves of degree 3 or more, as follows from the next result.

Proposition 3.9. If λ 6= 0, 1, then there are no nonconstant rational
functions f = f(t), g = g(t) such that

f 2 = g(g − 1)(g − λ)
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Note this implies the curve with equation

X0X
2
1 = X2(X2 −X0)(X2 − λX0)

has no homogeneous parametrization.

Proof. Write

f = r/s, g = p/q

with r, s relatively prime and p, q relatively prime polynomials. Then

r2q3 = s2p(p− q)(p− λq)

As r, s are relatively prime, it follows that s2|q3. Similarly, because p, q
are relatively prime, we have q3|s2. Therefore

s2 = aq3, a ∈ C.

Hence

aq = (s/q)2

so q is a square in C[t]. Plugging this into the equation above yields

r2 = ap(p− q)(p− λq)

and the relative primeness of p, q implies that p, q, p − q, p − λq are
all squares. Generally, a pair of polynomials u, v is said to have the
4-square property if there exist 4 distinct, non-proportional, nontrivial
linear combinations au + bv that are squares (in C[t]). Now use:

Lemma 3.10. Let p, q ∈ C[t] be relatively prime with the 4-square
property. Then p, q are constant.

Proof. By contradiction. If false, let p, q be a counterexample (i.e. a
nonconstant relatively prime pair with the 4-square property), such
that M := max(deg(p), deg(q)) is smallest among all counterexamples.
Now linear combinations of p, q correspond 1-1 to points [a, b] ∈ P1. We
may assume 3 of our combinations correspond to the points 0,−1,∞.
Therefore we may assume p, q, p− q, p− λq, λ 6= 1, are squares. Write

p = u2, q = v2.

Thus

max(deg(u), deg(v)) < M.

Now

¤ 3 p− q = (u− v)(u + v)

and as u, v are relatively prime is follows that u− v, u + v are squares.
Then

¤ 3 u2 − λv2 = (u− µv)(u + µv), µ =
√

λ 6= ±1
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and again it follows that u− µv, u + µv are squares. Thus we have the
4 distinct squares u− v, u + v, u−µv, u + µv, so u, v have the 4-square
property. This contradicts minimality of M .

¤
¤


