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Z. RAN

1. Rings and polynomial factorization

The general strategy for studying a plane curve C given by a poly-
nomial equation f(x, y) = 0 is to view f as a polynomial in y, say, with
coefficients which are polynomials in x:

f(x, y) = an(x)yn + ... + a1(x)y + a0(x)

Thus we view f as a family {f(a, y) : a ∈ A1} of ’ordinary’ polynomials
in y, one for each a ∈ A1. Geometrically, this corresponds to projecting

π : C → A1

C to the x-axis and viewing C as made up of a family of cycles π−1(a) =
Zeros(f(a, y) for a ∈ A1. Making good on this idea requires studying
polynomials in 1 variable with coefficients that are something more
general than elements of one of our fields F; indeed the coefficients
need to be something at least as general as elements of F[x]. It turns
out that the right sort of structure of the set of coefficients is that
of ring. Our next aim, then, is to present a condensed, but largely
self-contained sketch of the necessary topics from ring theory. A more
complete account is given in courses such as Math 171-2, and of course
also in textbooks such as those used in those courses (e.g. Fraleigh-
Beauregard). It would be a good idea to have a copy of such a text
handy as we go through this portion of the course.

A group is by definition an abstract algebraic system consisting of a
(nonempty) set G of elements, together with an operation denoted ∗,
satisfying a suitable set of axioms, as follows

• ∗ is associative;
• ∗ admits a neutral element, denoted e;
• every element a ∈ G admits an inverse with respect to ∗.

If the group operation ∗ is commutative, G is said to be a commu-
tative or abelian group. Examples of groups include Fn, Z (both
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abelian), with operation + and neutral element 0; GLn, PGLn, Affn

(non-abelian) with operation composition or matrix multiplication and
neutral element the identity.

A ring is by definition an abstract algebraic system consisting of a
(nonempty) set R of elements, together with two operations named
’plus’ and ’times’, denoted +, ·, satisfying axioms as follows

• Under +, R forms an abelian group with neutral element de-
noted 0;

• · is associative;
• the appropriate distributive laws hold, linking + and ·.

Two other properties not part of the general definition of a ring, but
which we shall always assume unless explicitly mentioned otherwise are

• commutativity: · is commutative;
• unitarity: · admits a neutral element, denoted 1.

Examples of rings:

• Perhaps the most important example for our purposes is F[x],
the ring of polynomials with coefficients in F, with the usual ad-
dition and multiplication operations. Similarly, we have a poly-
nomial ring in any number n of variables, denoted F[x1, ..., xn]

• Of course F itself is a ring, as is the ring of integers Z.
• For any natural number m > 1 there is a ring denoted Zm or
Z/(m) of residue classes modulo m of integers.

A ring is said to be an integral domain if the product of nonzero ele-
ments is nonzero. A field is an integral domain such that every nonzero
element admits a multiplicative inverse. Important examples of fields,
besides the concrete fields F = Q,R,C we’ve worked with before, in-
clude the fields F(x) of rational functions with coefficients in F, i.e.

F(x) = {r(x) = f(x)/g(x) : f, g ∈ F[x]}.
The following result is no more than an abstraction of fraction arith-
metic from middle school

Proposition 1.1. Given an integral domain D, there exists a field
K containing D, called the field of fractions of D, which consists of
elements of the form a/b, a, b ∈ D, b 6= 0.

For example, the field of fractions of Z is of course Q; the field of
fractions of F[x] is F(x), the field of rational functions.

Now given a ring R, we can construct another ring denoted R[x] of
polynomials in x with coefficients in R. Similarly for R[x1, ..., xn]. At
least some of the important properties of ordinary polynomials carry
over to this generality:
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Theorem 1.2. (Division algorithm) Let D be an integral domain,
f, g ∈ D[x] polynomials with g 6= 0.

(i) There exist q, r ∈ D[x], a 6= 0 ∈ D with deg(r) < deg(g) such
that af = qg + r.

(ii) if g is monic (more generally, if the leading coefficient of g has
a multiplicative inverse in D), then we can take a = 1, so f = qg + r.

Proof. Write

f = anx
n + ... + a0, g = bmxm + ... + b0, an, bm 6= 0.

We use induction on n = deg(f). If n < m, we can take q = 0, r =
f, a = 1 and we’re done. Else, let

f ′ = bmf − anxn−mg

and note that deg(f ′) < n. By induction, we can write

a′f ′ = q′g + r′, deg(r′) < m

Plugging in, we get

a′bmf = (q′ + anaxn−m)g + r′.

Moreover, if g is monic, i.e. bm = 1, we can by induction take a′ = 1
so we are done. The case bm invertible is similar. ¤

Exercise 1.1. Carry out the division algorithm for the following poly-
nomials f, g over the respective domains D:

(1) f = 4x3 − 2x2 + 5x− 3, g = x2 + x + 1, D = Z
(2) f = x5 + 5x3 + 3x2 + 2, g = x2 + 4x + 5, D = Z
(3) Same f,g, as previous 2 items, D = Z/7.

The division algorithm admits an important refinement as follows.

Theorem 1.3. (gcd algorithm) Let K be a field and f, g ∈ K[x]. Then
there exists h ∈ K[x] such that

(i) h|f, g;
(ii) there exist A,B ∈ K[x] such that h = Af + Bg;
(iii) any polynomial k dividing f and g divides h.

Because of property (iii), h is called the greatest common divisor of
f, g.

Proof. First, we note that (i) and (ii) imply (iii): because if f = ku, g =
kv then h = (Au + Bv)k. Now to construct h, start by dividing f by
g:

(1) f = q1g + r1, deg(r1) < deg(g).
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For notational consistency, it will be convenient to set r0 = g, r−1 = f.
If r1 = 0, then g|f and we can just take h = g. Else, divide g by r1:

(2) g = q2r1 + r2, deg(r2) < deg(r1).

If r2 = 0, it is easy to see that we can take h = r1. Else, we next divide
r1 by r2:

(3) r1 = q3r2 + r3, deg(r3) < deg(r2)

...

(4) ri = qi+2ri+1 + ri+2, deg(ri+2) < deg(ri+1)

...

Since the degrees keep dropping, the process must stop eventually. Let
p be smallest so that rp+1 = 0, i.e.

...

(5) rp−2 = qprp−1 + rp

(6) rp−1 = qp+1rp.

Set h = rp Thus h|rp−1. From the last display, we see that h|rp−2 as
well. Continuing backwards, we see that h|ri for all i, hence h|g and
then finally h|f as well, which shows (i). To show (ii), write

h = rp = rp−2 − qprp−1

= rp−2 − qp(rp−3 − qp−1rp−2)

= −qprp−3 + (1 + qpqp−1)rp−2

...

= ∗ri + ∗ri+1

...

= Af + Bg

¤
Exercise 1.2. Carry out the gcd algorithm for the following polynomi-
als f, g over the respective fields F:

(1) f = x4 − x2 − 2, g = x3 + x2 + x + 1,F = Q
(2) f = x3 + 1, g = x + 2,F = Q
(3) Same f, g as in previous 2 items, F = Z/5.

Corollary 1.4. If K is a field, f, g, h ∈ K[x], f is irreducible and
f |gh, then either f |g or f |h.
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Proof. Suppose f - g. Since f is irreducible the gcd of f and g must
be 1, therefore

1 = Af + Bg

as in the Theorem. Therefore

h = Afh + Bgh.

As f |gh it foollows that f |h. ¤

Definition 1. Let D be an integral domain, a, b, c ∈ D.

• a is said to be a unit in D if a has a multiplicative inverse in
D.

• a is said to divide b, a|b, if b = ca for some c ∈ D. If c is a
unit, a and b are said to be associates in D.

• a is said to be reducible if a = bc with b, c both nonunits. If a
is not reducible and not a unit, we say it is irreducible.

• D is said to be factorial if any nonzero nonunit a ∈ D can be
written as

a = a1 · · · ar

with a1, ..., ar irreducible, and this expression is essentially unique:
if also

a = b1 · · · bs

with b1, ..., bs irreducible, then after some permutation, each ai

is associate to bi.

For example, the Fundamental Theorem of Arithmetic states that
the ring of integers is factorial. It is a fairly easy consequence of Cor.
1.4 that for any field K, the polynomial ring K[x] is factorial, but below
we shall prove a much stronger result: for any factorial domainD, the
polynomial ring D[x] is factorial. Working towards that proof will
occupy us for some time. Our general strategy will be to consider the
fraction field K of D. Then elements of D[x] are also in K[x], and may
be factored as such. We then try to study the denominators involved,
to deduce from a factorization in K[x] one in D[x]. In this study, the
notion of content of a polynomial in D[x] will play a large role.

Note that for any factorial domain D and nonzero elements a, b,∈ D,
a and b have a greatest common divisor c ∈ D, uniquely determined up
to associates: c is just the product of all irreducible elements appearing
in the irreducible factorization of both a and b, with each such element
q appearing with an exponent that is the minimum of its exponents in
a and b. For example in D = Z, the gcd of 2 · 3352 and −3 · 55 is ±352.
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Similarly, given any collection (even infinite) of nonzero elements
a1, a2, ... ∈ D, there is a greatest common divisor c ∈ D of these
elements, and c is uniquely determined up to associates.

Lemma 1.5. Let D be an integral domain, a ∈ D and f ∈ D[x]. Then
a|f in D[x] iff a divides every coefficient of f .

From now on, we denote by D a factorial domain. By definition, the
content, denoted c(f), of a polynomial f = anx

n + ...+a1x+a0 ∈ D[x]
is the gcd in D of a0, ..., an. c(f) is well defined up to an invertible
factor, i.e. up to associates. f is said to be primitive if if its content is
(associate to) 1. For any f ∈ D[x], we can factor out the content and
write f in the form

f = c(f)f1

where f1 ∈ D[x] in primitive, called the primitive part of f . For exam-
ple, 4 + 6x = 2(2 + 3x) so 4 + 6x has content ±2 and primitive part
±(2 + 3x).

Note that if f is primitive and f = gh, g, h ∈ D[x] then

f = c(g)g1c(h)h1,

therefore c(g)c(h)|f . Since f is primitive, c(g) and c(h) must be units,
so that g, h are primitive. Thus a factor of a primitive polynomial is
primitive.

Lemma 1.6. Let a, b, c ∈ D with a irreducible. If a|bc then either a|b
or a|c.
Proof. By assumption, there exists d ∈ D with

ad = bc.

Let’s factor b, c, d in irreducible factors:

d = d1 · · · dr, b = b1 · · · bs, c = c1 · · · ct.

Thus,

ad1 · · · dr = b1 · · · bsc1 · · · ct

By uniqueness of the decomposition, we have that a must be associate
to one of the factors on the right, i.e bi or ci for some i. But then a|b
or a|c. ¤
Theorem 1.7. (Gauss’ Lemma) Suppose a ∈ D is irreducible and a|fg
where f, g ∈ D[x]. Then either a|f or a|g.
Proof. Write

f = b0 + ... + bnxn, g = c0 + ... + cmxm.
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Arguing by contradiction, suppose a - f, a - g. Let p, q be smallest so
that

a - bp, a - cq.

Then the coefficient dp+q of xp+q in fg can be written as follows

dp+q = (b0cp+q + ... + bp−1cq+1) + bpcq + (bp+1cq−1 + ... + bp+qc0

By assumption a divides b0, ..., bp−1, therefore a divides the first term
in parentheses above. Similarly. a divides the last term in parenthe-
ses. By assumption again, a divides dp+q. Therefore a|bpcq. But this
contradicts the last Lemma. ¤

Theorem 1.8. Let K be the fraction field of D and f ∈ D[x] irre-
ducible. Then f is irreducible in K[x].

Proof. Suppose

f = g′h′

where g′, h′ ∈ K[x] are non-constant. Take a, b ∈ D such that

g := ag′, h := bh′ ∈ D[x]

(i.e. a, b are ’common denominators’ for f, g respectively). Let d = ab.
Then

df = gh

Let e be an irreducible factor of d. Then e|gh. Therefore by Gauss’
Lemma, e|g or e|h. We may assume the former. Then let g1 = g/e ∈
D[x], h1 = h, d1 = d/e, so we have

d1f = g1f1.

Continuing in this way, we may ’peel off’ all irreducible factors of d
and eventually reach an equality

f = gkhk

with gk, hk ∈ D[x] nonconstant. This shows f is reducible in D[x]. ¤

Theorem 1.9. Suppose f, g, h ∈ D[x], f is irreducible and f |gh. Then
f |g or f |h.

Proof. If f ∈ D this is just Gauss’ Lemma. So suppose f is noncon-
stant, hence not a unit in K[x]. By the previous result, f is irreducible
in K[x]. Therefore by Cor. 1.4, either f |g or f |h in K[x]. Suppose
f |h, so that h = fk, k ∈ K[x]. Let a ∈ D be a common denominator
for the coefficients of k, i.e ak ∈ D[x]. Thus

ah = afk.
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Let e ∈ D be an irreducible factor of a. Since e divides f(ak) and f is
irreducible, e divides ak. So let a1 = a/e ∈ D, k1 = ak/e ∈ D[x]. Then

a1h = fk1.

Continuing to peel off factors of e as in the proof of the previous result,
we get eventually

h = fkn

so that f |h in D[x]. The case f |g is similar. ¤

Theorem 1.10. If D is factorial then so is D[x]

Proof. We claim first that any nonzero f ∈ D[x] is a product of irre-
ducible elements. Write f = c(f)f1 with f1 primitive. As c(f) ∈ D
and D is factorial, c(f) is a product of irreducibles. As for f1, if it is ir-
reducible, we are done. If not, write f1 = f2f3, f2, f3 ∈ D[x] non-units.
As f1 is primitive, f2, f3 cannot be constant, therefore both of them
have degree < deg(f1). By an induction on the degree, we may assume
both f2 and f3 are products of irreducibles, hance so is f = c(f)f2f3.

For uniqueness of the decomposition, suppose

f1 · · · fr = g1 · · · gs

with f1, ...gs ∈ D[x] irreducible. As g1|f1 · · · fr, Theorem ? implies that
g1|fi for some i. Renumbering, we may assume g1|f1 and since both are
irreducible it follows that they are associate, i.e. f1 ∼ g1. Cancelling
them off, we get

f2 · · · fr ∼ g2 · · · gs

and we may continue the argument with g2 in place of g1. Eventually,
we conclude that up to renumbering, each gi and fi are associate, which
proves uniqueness.

¤

Proposition 1.11. Suppose f, g ∈ D[x] have a nonconstant common
factor in K[x]. Then f, g have a common factor in D[x].

Proof. We may assume f, g have no nonunit common factor in D (else,
factor out this factor). By assumption, there exists h ∈ K[x] non-
constant such that h|f, g in K[x]. Clearing denominators, we find
h1 ∈ D[x] which we may assume is primitive, and a ∈ D such that

h1|af, ag

in D[x]. Let’s decompose h1 in irreducible factors:

h1 = p1 · · · pk.
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As h1 primitive, each pi is nonconstant. Because pi|af , pi must divide
f for each i. Similarly, pi|g for each i. Therefore f, g have nonconstant
common factors in D[x]. ¤
Proposition 1.12. Suppose f, g ∈ K[x] have degree m,n, respectively.
Then f, g have a nonconstant common factor in K[x] iff there exist
u, v ∈ K[x] of degrees at most n − 1,m − 1 respectively, such that
uf + bg = 0.

Proof. ⇒: if h is a nonconstant common factor of f, g, then

g

h
f − f

h
g = 0

so we can just take u = g/h, v = −f/h.
⇐: if uf = −vg and f has no common factor with g, then f must

divide v, which is impossible because deg(v) < deg(f). ¤
Corollary 1.13. Let f, g ∈ D[x] with D factorial. Then f, g have a
nonconstant factor in D[x] iff there exist u, v ∈ K[x] of degrees at most
n− 1,m− 1 respectively, such that uf + bg = 0.

2. The resultant

Let f = a0 +a1x+ ...+amxm, g = b0 + b1x+ ...+ bnxn ∈ D[x], where
D is an factorial domain whose fraction field we denote by K. Define
the resultant matrix of f, g, denoted

R = Rm,n(f, g)

as the following (m + n)× (m + n)-matrix:

(7) R =




a0 ... am 0 ... 0
0 a0 ... am ... 0

...
a0 ... am

b0 ... bn 0 ... 0
0 b0 ... bn ... 0

...
b0 ... bn




Thus, the first n rows of R contain the coefficient vector of f , gradually
shifting rightward, and similarly for the last m rows and the coefficient
vector of g. The resultant (or resultant determinant is the element of
D defined by

(8) r(f, g) = rm,n(f, g; x) := det(R).

To simplify notation, we will omit the m,n subscripts or the ; x designa-
tion when understood (e.g. when m,n are exactly equal to the degrees
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of f, g, respectively). Note that r(f, g) may be viewed as a polyno-
mial with Z coefficients in in the coefficients a0, ..., bn which themselves
may be viewed as indeterminates (i.e. formal symbols). So there is no
loss of generality in taking our domain D to be the polynomial ring
Z[a0, ..., bn] with a0, ..., bn indeterminates.

To explain the special shape of R and the meaning of r(f, g), let
us denote by Vi the K-vector space of all polynomials of degree < i
with coefficients in K. As we know, Vi is an i-dimensional vector space
with standard basis 1, ..., xi−1. Given i, j, we can define another vector
space, denoted Vi ⊕ Vj by

Vi ⊕ Vj = {(u, v) : u ∈ Vi, v ∈ Vj}.
The vector space structure of Vi⊕Vj is such that (u, v) = (u, 0)+(0, v).
Then Vi ⊕ Vj is a vector space with basis

B = ((1, 0), (x, 0), ..., (xi−1, 0), (0, 1), (0, x), ..., (0, xj−1)).

Thus, Vi ⊕ Vj is a vector space of dimension i + j. Now, returning to
our polynomials f, g, define a map

N(f, g) : Vn ⊕ Vm → Vm+n,

by

(9) N(f, g)(u, v) = uf + vg.

N(f, g) is clearly a linear transformation, and note that both its source
and target have the same dimension (that is, m + n). Then

R(f, g) is the transpose of the matrix of N(f, g) with respect to the
basis B of Vn ⊕ Vm and the standard basis of Vm+n.

Now the theory of determinants tells us:
r(f, g) = 0 iff R(f, g) is a singular matrix iff the nullspace ker(N(f, g))

is a nonzero subspace.
We now invoke Cor 1.13 which tells us that ker(N(f, g)) is nonzero

precisely when f, g have a nonconstant common factor in D[x] (or
equivalently, in K[x]). We have proven:

Theorem 2.1. Two polynomials f, g ∈ D[x] of degrees m, n exactly, re-
spectively, have a common factor of positive degree in D[x] iff they have
a common factor of positive degree in K[x] iff the resultant r(f, g) =
rm,n(f, g) = 0.

It often happens that we want to apply a resultant criterion to check
for common factors but know only an upper bound on the degrees of
f, g. Then we can use
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Theorem 2.2. Let f, g ∈ D[x] be two polynomials of degrees at most
m,n, respectively. Then rm,n(f, g) = 0 iff either deg(f) < m and
deg(g) < n or f, g have a common factor of positive degree in D[x].

Proof. Use induction on m+n. It suffices to prove that if rm,n(f, g) = 0
but f, g have no common factor, then deg(f) < m and deg(g) < n. By
the previous result, we may assume one of f, g, say f , as degree < m.
Then in (7) we have am = 0. Doing a last-column expansion of the
determinant, we see that

(10) rm,n(f, g) = ±bnrm−1,n(f, g)

By induction, rm−1,n(f, g) 6= 0. Hence bn = 0, i.e. deg(g) < n.
¤

Another way to state this result is the following.

Theorem 2.3. Let f, g ∈ D[x] be two polynomials of degrees at most
m,n, respectively, and set

(11) F = hogm(f), G = hogn(g).

Then rm,n(f, g) = 0 iff F, G have a common factor of positive degree
in D[x].

Proof. We have

(12) F = Xm
0 f(X1/X0), G = Xn

0 g(X1/X0).

Thus X0 is a common factor of F,G iff deg(f) < m and deg(g) < n.
Any common factor of F,G that is not a power of X0 dehomogenizes
to a nonconstant common factor of f, g. Thus our claim follows from
the previous result. ¤

To get a slightly neater statement, we can work directly with ho-
mogenous polynomials and their ’homogenous resultant’, defined as
follows. Let F,G ∈ D[X0, X1] be homogenous polynomials, of degrees
m,n respectively. Then we define the ’homogenous resultant’

(13) r = rh(F, G) = rh(F,G; X0, X1) = det R

where R is the resultant matrix as in 7; in other words,

r = rm,n(f, g)

where f, g are the dehomogenizations of f, g (which, in general, have
degrees ≤ m,≤ n, respectively). Then we have the following .

Theorem 2.4. Two homogenous polynomials F, G ∈ D[X0, X1] have a
nonconstant common factor iff their homogenous resultant rh(F,G) =
0.



12 Z. RAN

Proof. Using the notations of Thm 2.3, we have F = hm(f), G =
hn(g), r = rm,n(f, g), so the result follows from Thm 2.3. Note that
the case deg(f) < m, deg(g) < n corresponds to F, G having common
factor Xk

0 . Any other common factor dehomogenizes to a non-constant
common factor of f, g (we shall prove later that any such common
factor is automatically homogeneous). ¤
Example 2.5. A nice application of resultants is to elimination the-
ory. Thus let (p1(t)/q1(t), p2(t)/q2(t)) be a pair of rational functions.
Together, they yield a ’rational mapping’

φ(t) = (p1(t)/q1(t), p2(t)/q2(t)) : A1 → A2

(defined where q1(t), q2(t) 6= 0). How can we find equations for the
image C of φ?

To this end, consider

f = xq1(t)− p1(t), g = yq2(t)− p2(t) ∈ C[x, y][t].

Then if (x0, y0) ∈ im(φ) then the ’ordinary’ (constant-coefficient) poly-
nomials f(x0, y0, t), g(x0, y0, y) ∈ C[t] have a common zero in t, there-
fore they have a common factor, hence

r(f(x0, y0; t), g(x0, y0, t); t) = r(f, g; t)(x0, y0) = 0.

This means, at least, that C is contained in the zero-set of the polyno-
mial r(x, y) ∈ C[x, y].

As a specific example, consider φ(t) = (t2, t3 − t2). A calculation
yields

(14) r(f, g) = y2 − x2(x− 1).

Exercise 2.1. Prove (14).


