137 NOTES, PART 3: ALGEBRA SKETCH

Z. RAN

1. RINGS AND POLYNOMIAL FACTORIZATION

The general strategy for studying a plane curve C given by a polynomial equation f(x, y) = 0 is to view f as a polynomial in y, say, with coefficients which are polynomials in x:

$$f(x,y) = a_n(x)y^n + \dots + a_1(x)y + a_0(x)$$

Thus we view f as a family $\{f(a, y) : a \in \mathbb{A}^1\}$ of 'ordinary' polynomials in y, one for each $a \in \mathbb{A}^1$. Geometrically, this corresponds to projecting

$$\pi: C \to \mathbb{A}^1$$

C to the x-axis and viewing C as made up of a family of cycles $\pi^{-1}(a) = \operatorname{Zeros}(f(a, y) \text{ for } a \in \mathbb{A}^1$. Making good on this idea requires studying polynomials in 1 variable with coefficients that are something more general than elements of one of our fields \mathbb{F} ; indeed the coefficients need to be something at least as general as elements of $\mathbb{F}[x]$. It turns out that the right sort of structure of the set of coefficients is that of *ring*. Our next aim, then, is to present a condensed, but largely self-contained sketch of the necessary topics from ring theory. A more complete account is given in courses such as Math 171-2, and of course also in textbooks such as those used in those courses (e.g. Fraleigh-Beauregard). It would be a good idea to have a copy of such a text handy as we go through this portion of the course.

A group is by definition an abstract algebraic system consisting of a (nonempty) set G of elements, together with an operation denoted *, satisfying a suitable set of axioms, as follows

- * is associative;
- * admits a neutral element, denoted e;
- every element $a \in G$ admits an inverse with respect to *.

If the group operation * is commutative, G is said to be a commutative or abelian group. Examples of groups include \mathbb{F}^n , \mathbb{Z} (both

Date: March 19, 2006.

^{©2004} by Z. Ran.

abelian), with operation + and neutral element 0; GL_n , PGL_n , Aff_n (non-abelian) with operation composition or matrix multiplication and neutral element the identity.

A ring is by definition an abstract algebraic system consisting of a (nonempty) set R of elements, together with two operations named 'plus' and 'times', denoted $+, \cdot$, satisfying axioms as follows

- Under +, R forms an abelian group with neutral element denoted 0;
- \cdot is associative;
- the appropriate distributive laws hold, linking + and \cdot .

Two other properties not part of the general definition of a ring, but which we shall always assume unless explicitly mentioned otherwise are

- commutativity: is commutative;
- unitarity: · admits a neutral element, denoted 1.

Examples of rings:

- Perhaps the most important example for our purposes is $\mathbb{F}[x]$, the ring of polynomials with coefficients in \mathbb{F} , with the usual addition and multiplication operations. Similarly, we have a polynomial ring in any number n of variables, denoted $\mathbb{F}[x_1, ..., x_n]$
- Of course \mathbb{F} itself is a ring, as is the ring of integers \mathbb{Z} .
- For any natural number m > 1 there is a ring denoted \mathbb{Z}_m or $\mathbb{Z}/(m)$ of residue classes modulo m of integers.

A ring is said to be an *integral domain* if the product of nonzero elements is nonzero. A *field* is an integral domain such that every nonzero element admits a multiplicative inverse. Important examples of fields, besides the concrete fields $\mathbb{F} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ we've worked with before, include the fields $\mathbb{F}(x)$ of rational functions with coefficients in \mathbb{F} , i.e.

$$\mathbb{F}(x) = \{r(x) = f(x)/g(x) : f, g \in \mathbb{F}[x]\}.$$

The following result is no more than an abstraction of fraction arithmetic from middle school

Proposition 1.1. Given an integral domain D, there exists a field K containing D, called the field of fractions of D, which consists of elements of the form $a/b, a, b \in D, b \neq 0$.

For example, the field of fractions of \mathbb{Z} is of course \mathbb{Q} ; the field of fractions of $\mathbb{F}[x]$ is $\mathbb{F}(x)$, the field of rational functions.

Now given a ring R, we can construct another ring denoted R[x] of polynomials in x with coefficients in R. Similarly for $R[x_1, ..., x_n]$. At least some of the important properties of ordinary polynomials carry over to this generality:

 $\mathbf{2}$

Theorem 1.2. (Division algorithm) Let D be an integral domain, $f, g \in D[x]$ polynomials with $g \neq 0$.

(i) There exist $q, r \in D[x], a \neq 0 \in D$ with $\deg(r) < \deg(g)$ such that af = qg + r.

(ii) if g is monic (more generally, if the leading coefficient of g has a multiplicative inverse in D), then we can take a = 1, so f = qg + r.

Proof. Write

$$f = a_n x^n + \dots + a_0, g = b_m x^m + \dots + b_0, a_n, b_m \neq 0.$$

We use induction on $n = \deg(f)$. If n < m, we can take q = 0, r = f, a = 1 and we're done. Else, let

$$f' = b_m f - a_n x^{n-m} g$$

and note that $\deg(f') < n$. By induction, we can write

$$a'f' = q'g + r', \deg(r') < m$$

Plugging in, we get

$$a'b_m f = (q' + a_n a x^{n-m})g + r'.$$

Moreover, if g is monic, i.e. $b_m = 1$, we can by induction take a' = 1 so we are done. The case b_m invertible is similar.

Exercise 1.1. Carry out the division algorithm for the following polynomials f, g over the respective domains D:

(1) $f = 4x^3 - 2x^2 + 5x - 3, g = x^2 + x + 1, D = \mathbb{Z}$

(2)
$$f = x^5 + 5x^3 + 3x^2 + 2, g = x^2 + 4x + 5, D = \mathbb{Z}$$

(3) Same f,g, as previous 2 items, $D = \mathbb{Z}/7$.

The division algorithm admits an important refinement as follows.

Theorem 1.3. (gcd algorithm) Let K be a field and $f, g \in K[x]$. Then there exists $h \in K[x]$ such that

(i) h|f,g;(ii) there exist $A, B \in K[x]$ such that h = Af + Bg;(iii) any polynomial k dividing f and g divides h.

Because of property (iii), h is called the *greatest common divisor* of f, g.

Proof. First, we note that (i) and (ii) imply (iii): because if f = ku, g = kv then h = (Au + Bv)k. Now to construct h, start by dividing f by g:

(1)
$$f = q_1 g + r_1, \deg(r_1) < \deg(g).$$

For notational consistency, it will be convenient to set $r_0 = g$, $r_{-1} = f$. If $r_1 = 0$, then g|f and we can just take h = g. Else, divide g by r_1 :

(2)
$$g = q_2 r_1 + r_2, \deg(r_2) < \deg(r_1).$$

If $r_2 = 0$, it is easy to see that we can take $h = r_1$. Else, we next divide r_1 by r_2 :

• • •

(3)
$$r_1 = q_3 r_2 + r_3, \deg(r_3) < \deg(r_2)$$

(4)
$$r_i = q_{i+2}r_{i+1} + r_{i+2}, \deg(r_{i+2}) < \deg(r_{i+1})$$

Since the degrees keep dropping, the process must stop eventually. Let p be smallest so that $r_{p+1} = 0$, i.e.

• • •

. . .

(5)
$$r_{p-2} = q_p r_{p-1} + r_p$$

(6)
$$r_{p-1} = q_{p+1}r_p$$

Set $h = r_p$ Thus $h|r_{p-1}$. From the last display, we see that $h|r_{p-2}$ as well. Continuing backwards, we see that $h|r_i$ for all *i*, hence h|g and then finally h|f as well, which shows (i). To show (ii), write

$$h = r_p = r_{p-2} - q_p r_{p-1}$$

= $r_{p-2} - q_p (r_{p-3} - q_{p-1} r_{p-2})$
= $-q_p r_{p-3} + (1 + q_p q_{p-1}) r_{p-2}$
...
= $*r_i + *r_{i+1}$
...
= $Af + Bg$

Exercise 1.2. Carry out the gcd algorithm for the following polynomials f, g over the respective fields \mathbb{F} :

- (1) $f = x^4 x^2 2, g = x^3 + x^2 + x + 1, \mathbb{F} = \mathbb{Q}$ (2) $f = x^3 + 1, g = x + 2, \mathbb{F} = \mathbb{Q}$
- (3) Same f, g as in previous 2 items, $\mathbb{F} = \mathbb{Z}/5$.

Corollary 1.4. If K is a field, $f, g, h \in K[x]$, f is irreducible and f|gh, then either f|g or f|h.

Proof. Suppose $f \nmid g$. Since f is irreducible the gcd of f and g must be 1, therefore

$$1 = Af + Bg$$

as in the Theorem. Therefore

$$h = Afh + Bgh.$$

As f|gh it foollows that f|h.

Definition 1. Let D be an integral domain, $a, b, c \in D$.

- a is said to be a unit in D if a has a multiplicative inverse in D.
- a is said to divide b, a|b, if b = ca for some $c \in D$. If c is a unit, a and b are said to be associates in D.
- a is said to be reducible if a = bc with b, c both nonunits. If a is not reducible and not a unit, we say it is irreducible.
- D is said to be factorial if any nonzero nonunit $a \in D$ can be written as

$$a = a_1 \cdots a_r$$

with $a_1, ..., a_r$ irreducible, and this expression is essentially unique: if also

$$a = b_1 \cdots b_s$$

with $b_1, ..., b_s$ irreducible, then after some permutation, each a_i is associate to b_i .

For example, the Fundamental Theorem of Arithmetic states that the ring of integers is factorial. It is a fairly easy consequence of Cor. 1.4 that for any field K, the polynomial ring K[x] is factorial, but below we shall prove a much stronger result: for any factorial domainD, the polynomial ring D[x] is factorial. Working towards that proof will occupy us for some time. Our general strategy will be to consider the fraction field K of D. Then elements of D[x] are also in K[x], and may be factored as such. We then try to study the denominators involved, to deduce from a factorization in K[x] one in D[x]. In this study, the notion of content of a polynomial in D[x] will play a large role.

Note that for any factorial domain D and nonzero elements $a, b \in D$, a and b have a greatest common divisor $c \in D$, uniquely determined up to associates: c is just the product of all irreducible elements appearing in the irreducible factorization of both a and b, with each such element q appearing with an exponent that is the minimum of its exponents in a and b. For example in $D = \mathbb{Z}$, the gcd of $2 \cdot 3^3 5^2$ and $-3 \cdot 5^5$ is $\pm 35^2$.

Z. RAN

Similarly, given any collection (even infinite) of nonzero elements $a_1, a_2, \ldots \in D$, there is a greatest common divisor $c \in D$ of these elements, and c is uniquely determined up to associates.

Lemma 1.5. Let D be an integral domain, $a \in D$ and $f \in D[x]$. Then a|f in D[x] iff a divides every coefficient of f.

From now on, we denote by D a factorial domain. By definition, the *content*, denoted c(f), of a polynomial $f = a_n x^n + ... + a_1 x + a_0 \in D[x]$ is the gcd in D of $a_0, ..., a_n$. c(f) is well defined up to an invertible factor, i.e. up to associates. f is said to be *primitive* if if its content is (associate to) 1. For any $f \in D[x]$, we can factor out the content and write f in the form

$$f = c(f)f_1$$

where $f_1 \in D[x]$ in primitive, called the primitive part of f. For example, 4 + 6x = 2(2 + 3x) so 4 + 6x has content ± 2 and primitive part $\pm (2 + 3x)$.

Note that if f is primitive and $f = gh, g, h \in D[x]$ then

$$f = c(g)g_1c(h)h_1,$$

therefore c(g)c(h)|f. Since f is primitive, c(g) and c(h) must be units, so that g, h are primitive. Thus a factor of a primitive polynomial is primitive.

Lemma 1.6. Let $a, b, c \in D$ with a irreducible. If a|bc then either a|b or a|c.

Proof. By assumption, there exists $d \in D$ with

$$ad = bc.$$

Let's factor b, c, d in irreducible factors:

(

$$d = d_1 \cdots d_r, b = b_1 \cdots b_s, c = c_1 \cdots c_t$$

Thus,

$$ad_1 \cdots d_r = b_1 \cdots b_s c_1 \cdots c_t$$

By uniqueness of the decomposition, we have that a must be associate to one of the factors on the right, i.e b_i or c_i for some i. But then a|b or a|c.

Theorem 1.7. (Gauss' Lemma) Suppose $a \in D$ is irreducible and a|fg where $f, g \in D[x]$. Then either a|f or a|g.

Proof. Write

$$f = b_0 + \dots + b_n x^n, g = c_0 + \dots + c_m x^m.$$

6

Arguing by contradiction, suppose $a \nmid f, a \nmid g$. Let p, q be smallest so that

$$a \nmid b_p, a \nmid c_q.$$

Then the coefficient d_{p+q} of x^{p+q} in fg can be written as follows

$$d_{p+q} = (b_0 c_{p+q} + \dots + b_{p-1} c_{q+1}) + b_p c_q + (b_{p+1} c_{q-1} + \dots + b_{p+q} c_0)$$

By assumption a divides $b_0, ..., b_{p-1}$, therefore a divides the first term in parentheses above. Similarly. a divides the last term in parentheses. By assumption again, a divides d_{p+q} . Therefore $a|b_pc_q$. But this contradicts the last Lemma.

Theorem 1.8. Let K be the fraction field of D and $f \in D[x]$ irreducible. Then f is irreducible in K[x].

Proof. Suppose

$$f = g'h'$$

where $g', h' \in K[x]$ are non-constant. Take $a, b \in D$ such that

$$g := ag', h := bh' \in D[x]$$

(i.e. a, b are 'common denominators' for f, g respectively). Let d = ab. Then

$$df = gh$$

Let e be an irreducible factor of d. Then e|gh. Therefore by Gauss' Lemma, e|g or e|h. We may assume the former. Then let $g_1 = g/e \in D[x], h_1 = h, d_1 = d/e$, so we have

$$d_1f = g_1f_1.$$

Continuing in this way, we may 'peel off' all irreducible factors of d and eventually reach an equality

$$f = g_k h_k$$

with $g_k, h_k \in D[x]$ nonconstant. This shows f is reducible in D[x]. \Box

Theorem 1.9. Suppose $f, g, h \in D[x]$, f is irreducible and f|gh. Then f|g or f|h.

Proof. If $f \in D$ this is just Gauss' Lemma. So suppose f is nonconstant, hence not a unit in K[x]. By the previous result, f is irreducible in K[x]. Therefore by Cor. 1.4, either f|g or f|h in K[x]. Suppose f|h, so that $h = fk, k \in K[x]$. Let $a \in D$ be a common denominator for the coefficients of k, i.e $ak \in D[x]$. Thus

$$ah = afk.$$

Z. RAN

Let $e \in D$ be an irreducible factor of a. Since e divides f(ak) and f is irreducible, e divides ak. So let $a_1 = a/e \in D, k_1 = ak/e \in D[x]$. Then

$$a_1h = fk_1$$

Continuing to peel off factors of e as in the proof of the previous result, we get eventually

$$h = fk_n$$

so that f|h in D[x]. The case f|g is similar.

Theorem 1.10. If D is factorial then so is D[x]

Proof. We claim first that any nonzero $f \in D[x]$ is a product of irreducible elements. Write $f = c(f)f_1$ with f_1 primitive. As $c(f) \in D$ and D is factorial, c(f) is a product of irreducibles. As for f_1 , if it is irreducible, we are done. If not, write $f_1 = f_2 f_3, f_2, f_3 \in D[x]$ non-units. As f_1 is primitive, f_2, f_3 cannot be constant, therefore both of them have degree $< \deg(f_1)$. By an induction on the degree, we may assume both f_2 and f_3 are products of irreducibles, hance so is $f = c(f)f_2f_3$.

For uniqueness of the decomposition, suppose

$$f_1 \cdots f_r = g_1 \cdots g_s$$

with $f_1, \ldots, g_s \in D[x]$ irreducible. As $g_1|f_1 \cdots f_r$, Theorem ? implies that $g_1|f_i$ for some *i*. Renumbering, we may assume $g_1|f_1$ and since both are irreducible it follows that they are associate, i.e. $f_1 \sim g_1$. Cancelling them off, we get

$$f_2 \cdots f_r \sim g_2 \cdots g_s$$

and we may continue the argument with g_2 in place of g_1 . Eventually, we conclude that up to renumbering, each g_i and f_i are associate, which proves uniqueness.

Proposition 1.11. Suppose $f, g \in D[x]$ have a nonconstant common factor in K[x]. Then f, g have a common factor in D[x].

Proof. We may assume f, g have no nonunit common factor in D (else, factor out this factor). By assumption, there exists $h \in K[x]$ non-constant such that h|f, g in K[x]. Clearing denominators, we find $h_1 \in D[x]$ which we may assume is primitive, and $a \in D$ such that

$$h_1|af,ag$$

in D[x]. Let's decompose h_1 in irreducible factors:

$$h_1 = p_1 \cdots p_k.$$

8

As h_1 primitive, each p_i is nonconstant. Because $p_i|af$, p_i must divide f for each i. Similarly, $p_i|g$ for each i. Therefore f, g have nonconstant common factors in D[x].

Proposition 1.12. Suppose $f, g \in K[x]$ have degree m, n, respectively. Then f, g have a nonconstant common factor in K[x] iff there exist $u, v \in K[x]$ of degrees at most n - 1, m - 1 respectively, such that uf + bg = 0.

Proof. \Rightarrow : if h is a nonconstant common factor of f, g, then

$$\frac{g}{h}f - \frac{f}{h}g = 0$$

so we can just take u = g/h, v = -f/h.

 \Leftarrow : if uf = -vg and f has no common factor with g, then f must divide v, which is impossible because $\deg(v) < \deg(f)$.

Corollary 1.13. Let $f, g \in D[x]$ with D factorial. Then f, g have a nonconstant factor in D[x] iff there exist $u, v \in K[x]$ of degrees at most n-1, m-1 respectively, such that uf + bg = 0.

2. The resultant

Let $f = a_0 + a_1x + \ldots + a_mx^m$, $g = b_0 + b_1x + \ldots + b_nx^n \in D[x]$, where D is an factorial domain whose fraction field we denote by K. Define the *resultant matrix* of f, g, denoted

$$R = R_{m,n}(f,g)$$

as the following $(m+n) \times (m+n)$ -matrix:

(7)
$$R = \begin{bmatrix} a_0 & \dots & a_m & 0 & \dots & 0 \\ 0 & a_0 & \dots & & a_m & \dots & 0 \\ & & \dots & & & & \\ b_0 & \dots & b_n & 0 & \dots & 0 \\ 0 & b_0 & \dots & & b_n & \dots & 0 \\ & & \dots & & & & \\ & & & & & b_0 & \dots & b_n \end{bmatrix}$$

Thus, the first n rows of R contain the coefficient vector of f, gradually shifting rightward, and similarly for the last m rows and the coefficient vector of g. The *resultant* (or *resultant determinant* is the element of D defined by

(8)
$$r(f,g) = r_{m,n}(f,g;x) := \det(R).$$

To simplify notation, we will omit the m, n subscripts or the ; x designation when understood (e.g. when m, n are *exactly* equal to the degrees of f, g, respectively). Note that r(f, g) may be viewed as a polynomial with \mathbb{Z} coefficients in in the coefficients $a_0, ..., b_n$ which themselves may be viewed as indeterminates (i.e. formal symbols). So there is no loss of generality in taking our domain D to be the polynomial ring $\mathbb{Z}[a_0, ..., b_n]$ with $a_0, ..., b_n$ indeterminates.

To explain the special shape of R and the meaning of r(f,g), let us denote by V_i the K-vector space of all polynomials of degree $\langle i$ with coefficients in K. As we know, V_i is an *i*-dimensional vector space with standard basis $1, ..., x^{i-1}$. Given i, j, we can define another vector space, denoted $V_i \oplus V_j$ by

$$V_i \oplus V_j = \{(u, v) : u \in V_i, v \in V_j\}$$

The vector space structure of $V_i \oplus V_j$ is such that (u, v) = (u, 0) + (0, v). Then $V_i \oplus V_j$ is a vector space with basis

$$\mathcal{B} = ((1,0), (x,0), ..., (x^{i-1}, 0), (0,1), (0,x), ..., (0, x^{j-1}))$$

Thus, $V_i \oplus V_j$ is a vector space of dimension i + j. Now, returning to our polynomials f, g, define a map

$$N(f,g): V_n \oplus V_m \to V_{m+n},$$

by

(9)
$$N(f,g)(u,v) = uf + vg.$$

N(f,g) is clearly a linear transformation, and note that both its source and target have the same dimension (that is, m + n). Then

R(f,g) is the transpose of the matrix of N(f,g) with respect to the basis \mathcal{B} of $V_n \oplus V_m$ and the standard basis of V_{m+n} .

Now the theory of determinants tells us:

r(f,g) = 0 iff R(f,g) is a singular matrix iff the nullspace ker(N(f,g)) is a nonzero subspace.

We now invoke Cor 1.13 which tells us that $\ker(N(f,g))$ is nonzero precisely when f, g have a nonconstant common factor in D[x] (or equivalently, in K[x]). We have proven:

Theorem 2.1. Two polynomials $f, g \in D[x]$ of degrees m, n exactly, respectively, have a common factor of positive degree in D[x] iff they have a common factor of positive degree in K[x] iff the resultant $r(f,g) = r_{m,n}(f,g) = 0$.

It often happens that we want to apply a resultant criterion to check for common factors but know only an upper bound on the degrees of f, g. Then we can use

137 NOTES, PART 3

Theorem 2.2. Let $f, g \in D[x]$ be two polynomials of degrees at most m, n, respectively. Then $r_{m,n}(f,g) = 0$ iff either $\deg(f) < m$ and $\deg(g) < n$ or f, g have a common factor of positive degree in D[x].

Proof. Use induction on m+n. It suffices to prove that if $r_{m,n}(f,g) = 0$ but f, g have no common factor, then $\deg(f) < m$ and $\deg(g) < n$. By the previous result, we may assume one of f, g, say f, as degree < m. Then in (7) we have $a_m = 0$. Doing a last-column expansion of the determinant, we see that

(10)
$$r_{m,n}(f,g) = \pm b_n r_{m-1,n}(f,g)$$

By induction, $r_{m-1,n}(f,g) \neq 0$. Hence $b_n = 0$, i.e. $\deg(g) < n$.

Another way to state this result is the following.

Theorem 2.3. Let $f, g \in D[x]$ be two polynomials of degrees at most m, n, respectively, and set

(11) $F = \log_m(f), G = \log_n(g).$

Then $r_{m,n}(f,g) = 0$ iff F, G have a common factor of positive degree in D[x].

Proof. We have

(12)
$$F = X_0^m f(X_1/X_0), G = X_0^n g(X_1/X_0).$$

Thus X_0 is a common factor of F, G iff $\deg(f) < m$ and $\deg(g) < n$. Any common factor of F, G that is not a power of X_0 dehomogenizes to a nonconstant common factor of f, g. Thus our claim follows from the previous result.

To get a slightly neater statement, we can work directly with homogenous polynomials and their 'homogenous resultant', defined as follows. Let $F, G \in D[X_0, X_1]$ be homogenous polynomials, of degrees m, n respectively. Then we define the 'homogenous resultant'

(13)
$$r = r^h(F,G) = r^h(F,G;X_0,X_1) = \det R$$

where R is the resultant matrix as in 7; in other words,

$$r = r_{m,n}(f,g)$$

where f, g are the dehomogenizations of f, g (which, in general, have degrees $\leq m, \leq n$, respectively). Then we have the following.

Theorem 2.4. Two homogenous polynomials $F, G \in D[X_0, X_1]$ have a nonconstant common factor iff their homogenous resultant $r^h(F, G) = 0$.

Z. RAN

Proof. Using the notations of Thm 2.3, we have $F = h_m(f), G = h_n(g), r = r_{m,n}(f,g)$, so the result follows from Thm 2.3. Note that the case deg(f) < m, deg(g) < n corresponds to F, G having common factor X_0^k . Any other common factor dehomogenizes to a non-constant common factor of f, g (we shall prove later that any such common factor is automatically homogeneous).

Example 2.5. A nice application of resultants is to elimination theory. Thus let $(p_1(t)/q_1(t), p_2(t)/q_2(t))$ be a pair of rational functions. Together, they yield a 'rational mapping'

$$\phi(t) = (p_1(t)/q_1(t), p_2(t)/q_2(t)) : \mathbb{A}^1 \to \mathbb{A}^2$$

(defined where $q_1(t), q_2(t) \neq 0$). How can we find equations for the image C of ϕ ?

To this end, consider

$$f = xq_1(t) - p_1(t), g = yq_2(t) - p_2(t) \in \mathbb{C}[x, y][t].$$

Then if $(x_0, y_0) \in \operatorname{im}(\phi)$ then the 'ordinary' (constant-coefficient) polynomials $f(x_0, y_0, t), g(x_0, y_0, y) \in \mathbb{C}[t]$ have a common zero in t, therefore they have a common factor, hence

$$r(f(x_0, y_0; t), g(x_0, y_0, t); t) = r(f, g; t)(x_0, y_0) = 0.$$

This means, at least, that C is contained in the zero-set of the polynomial $r(x, y) \in \mathbb{C}[x, y]$.

As a specific example, consider $\phi(t) = (t^2, t^3 - t^2)$. A calculation yields

(14)
$$r(f,g) = y^2 - x^2(x-1).$$

Exercise 2.1. *Prove* (14).