137 NOTES, PART 3:
ALGEBRA SKETCH

Z. RAN

1. RINGS AND POLYNOMIAL FACTORIZATION

The general strategy for studying a plane curve C' given by a poly-
nomial equation f(x,y) = 0 is to view f as a polynomial in y, say, with
coefficients which are polynomials in x:

flzy) = an(x)y™ + ... + a1 (x)y + ag(x)

Thus we view f as a family {f(a,y) : @ € A'} of ’ordinary’ polynomials
in y, one for each a € A'. Geometrically, this corresponds to projecting
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C to the z-axis and viewing C' as made up of a family of cycles 77 1(a) =
Zeros(f(a,y) for a € A'. Making good on this idea requires studying
polynomials in 1 variable with coefficients that are something more
general than elements of one of our fields F; indeed the coefficients
need to be something at least as general as elements of F[z]. It turns
out that the right sort of structure of the set of coefficients is that
of ring. Our next aim, then, is to present a condensed, but largely
self-contained sketch of the necessary topics from ring theory. A more
complete account is given in courses such as Math 171-2, and of course
also in textbooks such as those used in those courses (e.g. Fraleigh-
Beauregard). It would be a good idea to have a copy of such a text
handy as we go through this portion of the course.

A group is by definition an abstract algebraic system consisting of a
(nonempty) set G of elements, together with an operation denoted x,
satisfying a suitable set of axioms, as follows

e x is associative;
e x admits a neutral element, denoted e;
e every element a € G admits an inverse with respect to .

If the group operation * is commutative, GG is said to be a commu-
tative or abelian group. Examples of groups include F", Z (both
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abelian), with operation + and neutral element 0; GL,, PGL,, Aff,
(non-abelian) with operation composition or matrix multiplication and
neutral element the identity.

A ring is by definition an abstract algebraic system consisting of a
(nonempty) set R of elements, together with two operations named
'plus’ and ’times’, denoted +, -, satisfying axioms as follows

e Under +, R forms an abelian group with neutral element de-
noted 0;
e - is associative;
e the appropriate distributive laws hold, linking 4+ and -.
Two other properties not part of the general definition of a ring, but
which we shall always assume unless explicitly mentioned otherwise are

e commutativity: - is commutative;
e unitarity: - admits a neutral element, denoted 1.

Examples of rings:

e Perhaps the most important example for our purposes is F[z],
the ring of polynomials with coefficients in F, with the usual ad-
dition and multiplication operations. Similarly, we have a poly-
nomial ring in any number n of variables, denoted F[xy, ..., x,,]

e Of course F itself is a ring, as is the ring of integers Z.

e For any natural number m > 1 there is a ring denoted Z,, or
Z/(m) of residue classes modulo m of integers.

A ring is said to be an integral domain if the product of nonzero ele-
ments is nonzero. A field is an integral domain such that every nonzero
element admits a multiplicative inverse. Important examples of fields,
besides the concrete fields F = Q, R, C we’ve worked with before, in-
clude the fields F(z) of rational functions with coefficients in F, i.e.

F(x) = {r(z) = f(x)/g(x) : f,g € Flz]}.
The following result is no more than an abstraction of fraction arith-
metic from middle school

Proposition 1.1. Given an integral domain D, there exists a field
K containing D, called the field of fractions of D, which consists of
elements of the form a/b,a,b € Db # 0.

For example, the field of fractions of Z is of course Q; the field of
fractions of F[z] is F(z), the field of rational functions.

Now given a ring R, we can construct another ring denoted R[z| of
polynomials in x with coefficients in R. Similarly for R[xy, ..., z,]. At
least some of the important properties of ordinary polynomials carry
over to this generality:
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Theorem 1.2. (Division algorithm) Let D be an integral domain,
f,g € D|x] polynomials with g # 0.

(i) There exist q,r € D[z],a # 0 € D with deg(r) < deg(g) such
that af = qg +r.

(i) if g is monic (more generally, if the leading coefficient of g has
a multiplicative inverse in D), then we can take a =1, so f = qg + .

Proof. Write
f=a "+ ...+ a9, g =bpx™ + ...+ by, an, by, # 0.

We use induction on n = deg(f). If n < m, we can take ¢ = 0,r =
f,a =1 and we’re done. Else, let

[ =buf —ax" Mg
and note that deg(f’) < n. By induction, we can write
df'=qg+r,deg(r’) <m
Plugging in, we get
d'bnf = (¢ + apax™™)g+ 1.
Moreover, if ¢ is monic, i.e. b, = 1, we can by induction take a’ = 1

so we are done. The case b,, invertible is similar. ]

Exercise 1.1. Carry out the division algorithm for the following poly-
nomials f, g over the respective domains D:

(1) f=4a® -2 +bx -3, g=a*+2+1,D=1
(2) f=a+523+322+2,g=a+42+5D =17
(3) Same f,g, as previous 2 items, D = Z/7.

The division algorithm admits an important refinement as follows.

Theorem 1.3. (gcd algorithm) Let K be a field and f, g € K[x]. Then
there exists h € K[| such that

(i) hlf, g;
(1) there exist A, B € K|z| such that h = Af + Byg;
(#1i) any polynomial k dividing f and g divides h.

Because of property (iii), h is called the greatest common divisor of

[ 9

Proof. First, we note that (i) and (ii) imply (iii): because if f = ku, g =
kv then h = (Au + Bv)k. Now to construct h, start by dividing f by
g:

(1) [ =qg+7r1,deg(r1) < deg(g).
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For notational consistency, it will be convenient to set 1o = g,7_1 = f.
If 7y = 0, then g|f and we can just take h = g. Else, divide g by ri:

(2) g = qor1 + 12, deg(ry) < deg(ry).

If ro = 0, it is easy to see that we can take h = r. Else, we next divide
r1 by ro:

(3) T = q3rg + 13, deg(rs) < deg(ra)

(4) i = QivaTip1 + Tigo, deg(riye) < deg(rip1)

Since the degrees keep dropping, the process must stop eventually. Let
p be smallest so that 1,1 =0, i.e.

(5) Tp—2 = QpTp—1 +Tp

(6) Tp—1 = qp+17p-
Set h = r, Thus h|r,_1. From the last display, we see that h|r, o as
well. Continuing backwards, we see that h|r; for all ¢, hence h|g and
then finally A|f as well, which shows (i). To show (ii), write
h=ry=rp2—qrpa
=Tp-2 — @p(rp—3 — Gp—17p-2)

= —qpTp-3 + (1+ QpQp—1)Tp—2
= KTy + kT

— Af + By
O

Exercise 1.2. Carry out the gcd algorithm for the following polynomi-
als f, g over the respective fields IF:

(1) f=at—2? -2, g=a3+22+2+1,F=Q

(3) Same f,qg as in previous 2 items, F = Z/5.

Corollary 1.4. If K is a field, f,g,h € Klz|, f is irreducible and
flgh, then either flg or flh.
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Proof. Suppose f 1 g. Since f is irreducible the ged of f and g must
be 1, therefore

1=Af+ Byg
as in the Theorem. Therefore
h = Afh+ Bgh.
As f|gh it foollows that f|h. O

Definition 1. Let D be an integral domain, a,b,c € D.

e a is said to be a unit in D if a has a multiplicative inverse in
D.

e a is said to divide b, alb, if b = ca for some ¢ € D. If cis a
unit, a and b are said to be associates in D.

e a is said to be reducible if a = be with b, c both nonunits. If a
1s not reducible and not a unit, we say it us irreducible.

e D is said to be factorial if any nonzero nonunit a € D can be
written as

a=ay---a,

with ay, ..., a, 1rreducible, and this expression is essentially unique:
if also

a=b b,

with by, ..., bs irreducible, then after some permutation, each a;
18 associate to b;.

For example, the Fundamental Theorem of Arithmetic states that
the ring of integers is factorial. It is a fairly easy consequence of Cor.
1.4 that for any field K, the polynomial ring K [z] is factorial, but below
we shall prove a much stronger result: for any factorial domainD, the
polynomial ring Dl[z] is factorial. Working towards that proof will
occupy us for some time. Our general strategy will be to consider the
fraction field K of D. Then elements of D|[z| are also in K|[z], and may
be factored as such. We then try to study the denominators involved,
to deduce from a factorization in K[z] one in D[z]. In this study, the
notion of content of a polynomial in D[z]| will play a large role.

Note that for any factorial domain D and nonzero elements a, b, € D,
a and b have a greatest common divisor ¢ € D, uniquely determined up
to associates: cis just the product of all irreducible elements appearing
in the irreducible factorization of both a and b, with each such element
q appearing with an exponent that is the minimum of its exponents in
a and b. For example in D = Z, the ged of 2- 3252 and —3-5° is 352,
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Similarly, given any collection (even infinite) of nonzero elements
a,as, ... € D, there is a greatest common divisor ¢ € D of these
elements, and c is uniquely determined up to associates.

Lemma 1.5. Let D be an integral domain, a € D and f € D]x|. Then
alf in Dlz] iff a divides every coefficient of f.

From now on, we denote by D a factorial domain. By definition, the
content, denoted c(f), of a polynomial f = a,z"+ ...+ a1z +ag € D[z]
is the ged in D of aqg,...,a,. c(f) is well defined up to an invertible
factor, i.e. up to associates. f is said to be primitive if if its content is
(associate to) 1. For any f € D[z], we can factor out the content and
write f in the form

= C(f)fl

where f; € D[x] in primitive, called the primitive part of f. For exam-
ple, 4 + 6x = 2(2 + 3x) so 4 + 6x has content +2 and primitive part
+(2 + 3z).
Note that if f is primitive and f = gh, g, h € D[z] then
f=clg)gic(h)hy,

therefore c¢(g)c(h)|f. Since f is primitive, ¢(g) and ¢(h) must be units,
so that g, h are primitive. Thus a factor of a primitive polynomial s
primative.

Lemma 1.6. Let a,b,c € D with a irreducible. If a|bc then either a|b
or alc.

Proof. By assumption, there exists d € D with
ad = bc.
Let’s factor b, ¢, d in irreducible factors:
d=dy---d.,b="0by---bs,c=c1--¢.

Thus,
adl”'dT‘:bl"'bscl"'ct

By uniqueness of the decomposition, we have that a must be associate
to one of the factors on the right, i.e b; or ¢; for some i. But then alb
or alc. O

Theorem 1.7. (Gauss’ Lemma) Suppose a € D is irreducible and a| fg
where f,g € D[x]. Then either a|f or alg.

Proof. Write
f=bo+ ...+ bx",g=co+ ... + cpx™.
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Arguing by contradiction, suppose a 1 f,a 1 g. Let p,q be smallest so
that

afby,afc,.
Then the coefficient d,, of P79 in fg can be written as follows
dpvg = (DoCprg + -+ bp-1Cg41) + bpCq + (bpr1Cg—1 + . + bpgCo

By assumption a divides by, ..., b,—1, therefore a divides the first term
in parentheses above. Similarly. a divides the last term in parenthe-
ses. By assumption again, a divides dp;,. Therefore a|b,c,. But this
contradicts the last Lemma. O

Theorem 1.8. Let K be the fraction field of D and f € Dlz| irre-
ducible. Then f is irreducible in K|x].

Proof. Suppose
f=4gW
where ¢’, h' € K[z] are non-constant. Take a,b € D such that
g:=ag,h:=bh' € D|x]
(i.e. a,b are 'common denominators’ for f, g respectively). Let d = ab.
Then
df = gh
Let e be an irreducible factor of d. Then e|gh. Therefore by Gauss’

Lemma, e|g or e|h. We may assume the former. Then let g; = g/e €
Diz],hy = h,dy = d/e, so we have

dif = g1f1-

Continuing in this way, we may ’peel off” all irreducible factors of d
and eventually reach an equality

[ = grhu
with gg, hy € D[z] nonconstant. This shows f is reducible in D[z]. O

Theorem 1.9. Suppose f,g,h € D[z|, f is irreducible and f|gh. Then
flg or flh.

Proof. If f € D this is just Gauss’ Lemma. So suppose f is noncon-
stant, hence not a unit in K[z|. By the previous result, f is irreducible
in K[z]. Therefore by Cor. 1.4, either f|g or f|h in K[z]. Suppose
flh, so that h = fk,k € K[z]|. Let a € D be a common denominator
for the coefficients of k, i.e ak € D[z]|. Thus

ah = afk.
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Let e € D be an irreducible factor of a. Since e divides f(ak) and f is
irreducible, e divides ak. So let a1 = a/e € D,k = ak/e € D|z]. Then

&1h = fkl

Continuing to peel off factors of e as in the proof of the previous result,
we get eventually

h = fkn
so that f|h in D[z]|. The case f|g is similar. O

Theorem 1.10. If D is factorial then so is D][z]

Proof. We claim first that any nonzero f € Dlz| is a product of irre-
ducible elements. Write f = c(f)f; with f; primitive. As ¢(f) € D
and D is factorial, ¢(f) is a product of irreducibles. As for f, if it is ir-
reducible, we are done. If not, write f; = fafs, fo, f3 € D[x] non-units.
As fy is primitive, fs, f3 cannot be constant, therefore both of them
have degree < deg(f1). By an induction on the degree, we may assume
both fy and f3 are products of irreducibles, hance so is f = ¢(f) fa fs.
For uniqueness of the decomposition, suppose

f1"'fr=91"'gs

with fi,...gs € D[z] irreducible. As g1|f1--- f», Theorem 7 implies that
g1|fi for some i. Renumbering, we may assume ¢;|f; and since both are
irreducible it follows that they are associate, i.e. f; ~ g;. Cancelling
them off, we get

f2"‘fr’\’92"‘gs

and we may continue the argument with gs in place of g;. Eventually,
we conclude that up to renumbering, each g; and f; are associate, which
proves uniqueness.

O

Proposition 1.11. Suppose f,g € Dlz| have a nonconstant common
factor in Klx|. Then f,g have a common factor in D|x].

Proof. We may assume f, g have no nonunit common factor in D (else,
factor out this factor). By assumption, there exists h € K[z| non-
constant such that h|f,¢ in K[z]. Clearing denominators, we find
hy € D[z] which we may assume is primitive, and a € D such that

h1|af7 ag

in D[x]. Let’s decompose h; in irreducible factors:

hi=pi--p.



137 NOTES, PART 3 9

As hy primitive, each p; is nonconstant. Because p;|af, p; must divide
f for each i. Similarly, p;|g for each i. Therefore f, g have nonconstant
common factors in D[z]. O

Proposition 1.12. Suppose f,g € K|z| have degree m,n, respectively.
Then f,g have a nonconstant common factor in Klz| iff there exist
u,v € Klx| of degrees at most n — 1,m — 1 respectively, such that
uf +bg = 0.

Proof. = if h is a nonconstant common factor of f, g, then

9, [
nl 9=
so we can just take u = g/h,v = —f/h.
«<:if uf = —vg and f has no common factor with g, then f must
divide v, which is impossible because deg(v) < deg(f). d

Corollary 1.13. Let f,g € D[z] with D factorial. Then f,g have a
nonconstant factor in D[z| iff there exist u,v € K|[z| of degrees at most
n — 1,m — 1 respectively, such that uf + bg = 0.

2. THE RESULTANT

Let f =ap+ a1z + ...+ apx™, g = b+ bz + ...+ b,a™ € D]z|, where
D is an factorial domain whose fraction field we denote by K. Define
the resultant matriz of f, g, denoted

R = Rm,n(fv g)
as the following (m + n) x (m + n)-matrix:

[ag e Qo 00 07

0 apg ... Ay ... 0

o ag ... Qm

(7) =1y b0 .0
0 by ... b, .. O

L by ... b,

Thus, the first n rows of R contain the coefficient vector of f, gradually
shifting rightward, and similarly for the last m rows and the coefficient
vector of g. The resultant (or resultant determinant is the element of

D defined by

(8) r(f,9) = rma(f, g;2) = det(R).
To simplify notation, we will omit the m,n subscripts or the ; x designa-
tion when understood (e.g. when m,n are exactly equal to the degrees
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of f,g, respectively). Note that r(f,g) may be viewed as a polyno-
mial with Z coefficients in in the coefficients ay, ..., b, which themselves
may be viewed as indeterminates (i.e. formal symbols). So there is no
loss of generality in taking our domain D to be the polynomial ring
Zay, ..., b,] with aq, ..., b, indeterminates.

To explain the special shape of R and the meaning of r(f,g), let
us denote by V; the K-vector space of all polynomials of degree < i
with coefficients in K. As we know, V; is an i-dimensional vector space
with standard basis 1, ..., 2'~!. Given 4, j, we can define another vector
space, denoted V; & V; by

VieV;={(u,v) :ueV,veV;}

The vector space structure of V; @V is such that (u,v) = (u,0)+(0,v).
Then V; @V} is a vector space with basis

B =((1,0),(z,0), .., (1,0, (0,1),(0,2), .., (0,277")).

Thus, V; © V; is a vector space of dimension ¢ + j. Now, returning to
our polynomials f, g, define a map

N(f7g) : Vn@vm - Vm—i—m
by
(9) N(f,9)(u,v) = uf +vg.

N(f,g) is clearly a linear transformation, and note that both its source
and target have the same dimension (that is, m + n). Then

R(f,g) is the transpose of the matriz of N(f,g) with respect to the
basis B of V,, ® Vi, and the standard basis of Vi, ip.

Now the theory of determinants tells us:

r(f,q) = 04ff R(f, g) is a singular matriz iff the nullspace ker(N(f, g))
is a monzero subspace.

We now invoke Cor 1.13 which tells us that ker(N(f, g)) is nonzero
precisely when f, ¢ have a nonconstant common factor in D[z] (or
equivalently, in K[z]). We have proven:

Theorem 2.1. Two polynomials f, g € D|x] of degrees m,n exactly, re-
spectively, have a common factor of positive degree in D]z| iff they have
a common factor of positive degree in K|z| iff the resultant r(f,g) =

Tm,n(f, g) - O

It often happens that we want to apply a resultant criterion to check
for common factors but know only an upper bound on the degrees of
f,g. Then we can use
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Theorem 2.2. Let f,g € D[z] be two polynomials of degrees at most
m,n, respectively. Then 1y,,(f,g9) = 0 iff either deg(f) < m and
deg(g) < n or f,g have a common factor of positive degree in D[z].

Proof. Use induction on m+n. It suffices to prove that if 7, ,(f,g) =0
but f, g have no common factor, then deg(f) < m and deg(g) < n. By
the previous result, we may assume one of f, g, say f, as degree < m.
Then in (7) we have a,, = 0. Doing a last-column expansion of the
determinant, we see that

(10) Tm,n(fa g) = j:bnrmfl,n(fp 9)
By induction, rp,—1,(f,g) # 0. Hence b, =0, i.e. deg(g) < n.

Another way to state this result is the following.

Theorem 2.3. Let f,g € D[z] be two polynomials of degrees at most
m,n, respectively, and set

(11) F =hog,,(f),G = hog,(g).

Then rmn(f,g) = 0 iff F,G have a common factor of positive degree
in D|x].

Proof. We have
(12) F=Xg"f(X1/X0),G = X59(X1/Xo).

Thus Xy is a common factor of F,G iff deg(f) < m and deg(g) < n.
Any common factor of F,G that is not a power of X, dehomogenizes
to a nonconstant common factor of f,g. Thus our claim follows from
the previous result. 0

To get a slightly neater statement, we can work directly with ho-
mogenous polynomials and their ’homogenous resultant’, defined as
follows. Let F,G € D[Xj, X1] be homogenous polynomials, of degrees
m, n respectively. Then we define the Thomogenous resultant’

(13) r=r"(F,G) =r"(F,G; Xo, X;) = det R
where R is the resultant matrix as in 7; in other words,

r= rm,n(fa g)

where f, g are the dehomogenizations of f,g (which, in general, have
degrees < m, < n, respectively). Then we have the following .

Theorem 2.4. Two homogenous polynomials F,G € D[Xy, X;]| have a
nonconstant common factor iff their homogenous resultant r*(F,G) =

0.
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Proof. Using the notations of Thm 2.3, we have F' = h,(f),G =
hi(9),r = rma(f,g), so the result follows from Thm 2.3. Note that
the case deg(f) < m,deg(g) < n corresponds to F,G having common
factor XJ. Any other common factor dehomogenizes to a non-constant
common factor of f, g (we shall prove later that any such common
factor is automatically homogeneous). 0

Example 2.5. A nice application of resultants is to elimination the-
ory. Thus let (p1(t)/q1(t), p2(t)/q2(t)) be a pair of rational functions.
Together, they yield a 'rational mapping’

o) = (p1(t)/ @1 (1), p2(t) /aa(1)) - A — A?
(defined where ¢1(t),q2(t) # 0). How can we find equations for the
image C of ¢7?
To this end, consider
f=zq(t) = pi(t), 9 = ye(t) — p2(t) € Clz, y][t].
Then if (zg,y0) € im(¢) then the 'ordinary’ (constant-coefficient) poly-

nomials f(xo, yo,1), 9(0,Y0,y) € C[t] have a common zero in ¢, there-
fore they have a common factor, hence

r(f(@o,yoi ), g(xo, Yo, t);t) = ([, g; 1) (w0, yo) = 0.
This means, at least, that C' is contained in the zero-set of the polyno-
mial r(z,y) € Clz, y].
As a specific example, consider ¢(t) = (t,> — t?). A calculation
yields
(14) r(f.g) =y* —2*(x - 1).
Exercise 2.1. Prove (14).



