137 NOTES, PART 3: ALGEBRA SKETCH

Z. RAN

1. Rings and polynomial factorization

The general strategy for studying a plane curve C given by a polynomial equation $f(x, y)=0$ is to view f as a polynomial in y, say, with coefficients which are polynomials in x :

$$
f(x, y)=a_{n}(x) y^{n}+\ldots+a_{1}(x) y+a_{0}(x)
$$

Thus we view f as a family $\left\{f(a, y): a \in \mathbb{A}^{1}\right\}$ of 'ordinary' polynomials in y, one for each $a \in \mathbb{A}^{1}$. Geometrically, this corresponds to projecting

$$
\pi: C \rightarrow \mathbb{A}^{1}
$$

C to the x-axis and viewing C as made up of a family of cycles $\pi^{-1}(a)=$ $\operatorname{Zeros}\left(f(a, y)\right.$ for $a \in \mathbb{A}^{1}$. Making good on this idea requires studying polynomials in 1 variable with coefficients that are something more general than elements of one of our fields \mathbb{F}; indeed the coefficients need to be something at least as general as elements of $\mathbb{F}[x]$. It turns out that the right sort of structure of the set of coefficients is that of ring. Our next aim, then, is to present a condensed, but largely self-contained sketch of the necessary topics from ring theory. A more complete account is given in courses such as Math 171-2, and of course also in textbooks such as those used in those courses (e.g. FraleighBeauregard). It would be a good idea to have a copy of such a text handy as we go through this portion of the course.

A group is by definition an abstract algebraic system consisting of a (nonempty) set G of elements, together with an operation denoted *, satisfying a suitable set of axioms, as follows

- $*$ is associative;
- * admits a neutral element, denoted e;
- every element $a \in G$ admits an inverse with respect to $*$.

If the group operation $*$ is commutative, G is said to be a commutative or abelian group. Examples of groups include $\mathbb{F}^{n}, \mathbb{Z}$ (both

[^0]abelian), with operation + and neutral element $0 ; \mathrm{GL}_{n}, \mathrm{PGL}_{n}, \mathrm{Aff}_{n}$ (non-abelian) with operation composition or matrix multiplication and neutral element the identity.

A ring is by definition an abstract algebraic system consisting of a (nonempty) set R of elements, together with two operations named 'plus' and 'times', denoted,$+ \cdot$, satisfying axioms as follows

- Under,$+ R$ forms an abelian group with neutral element denoted 0;
- . is associative;
- the appropriate distributive laws hold, linking + and \cdot.

Two other properties not part of the general definition of a ring, but which we shall always assume unless explicitly mentioned otherwise are

- commutativity: • is commutative;
- unitarity: • admits a neutral element, denoted 1.

Examples of rings:

- Perhaps the most important example for our purposes is $\mathbb{F}[x]$, the ring of polynomials with coefficients in \mathbb{F}, with the usual addition and multiplication operations. Similarly, we have a polynomial ring in any number n of variables, denoted $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Of course \mathbb{F} itself is a ring, as is the ring of integers \mathbb{Z}.
- For any natural number $m>1$ there is a ring denoted \mathbb{Z}_{m} or $\mathbb{Z} /(m)$ of residue classes modulo m of integers.
A ring is said to be an integral domain if the product of nonzero elements is nonzero. A field is an integral domain such that every nonzero element admits a multiplicative inverse. Important examples of fields, besides the concrete fields $\mathbb{F}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$ we've worked with before, include the fields $\mathbb{F}(x)$ of rational functions with coefficients in \mathbb{F}, i.e.

$$
\mathbb{F}(x)=\{r(x)=f(x) / g(x): f, g \in \mathbb{F}[x]\} .
$$

The following result is no more than an abstraction of fraction arithmetic from middle school

Proposition 1.1. Given an integral domain D, there exists a field K containing D, called the field of fractions of D, which consists of elements of the form $a / b, a, b \in D, b \neq 0$.

For example, the field of fractions of \mathbb{Z} is of course \mathbb{Q}; the field of fractions of $\mathbb{F}[x]$ is $\mathbb{F}(x)$, the field of rational functions.

Now given a ring R, we can construct another ring denoted $R[x]$ of polynomials in x with coefficients in R. Similarly for $R\left[x_{1}, \ldots, x_{n}\right]$. At least some of the important properties of ordinary polynomials carry over to this generality:

Theorem 1.2. (Division algorithm) Let D be an integral domain, $f, g \in D[x]$ polynomials with $g \neq 0$.
(i) There exist $q, r \in D[x], a \neq 0 \in D$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ such that $a f=q g+r$.
(ii) if g is monic (more generally, if the leading coefficient of g has a multiplicative inverse in D), then we can take $a=1$, so $f=q g+r$.

Proof. Write

$$
f=a_{n} x^{n}+\ldots+a_{0}, g=b_{m} x^{m}+\ldots+b_{0}, a_{n}, b_{m} \neq 0
$$

We use induction on $n=\operatorname{deg}(f)$. If $n<m$, we can take $q=0, r=$ $f, a=1$ and we're done. Else, let

$$
f^{\prime}=b_{m} f-a_{n} x^{n-m} g
$$

and note that $\operatorname{deg}\left(f^{\prime}\right)<n$. By induction, we can write

$$
a^{\prime} f^{\prime}=q^{\prime} g+r^{\prime}, \operatorname{deg}\left(r^{\prime}\right)<m
$$

Plugging in, we get

$$
a^{\prime} b_{m} f=\left(q^{\prime}+a_{n} a x^{n-m}\right) g+r^{\prime} .
$$

Moreover, if g is monic, i.e. $b_{m}=1$, we can by induction take $a^{\prime}=1$ so we are done. The case b_{m} invertible is similar.

Exercise 1.1. Carry out the division algorithm for the following polynomials f, g over the respective domains D :
(1) $f=4 x^{3}-2 x^{2}+5 x-3, g=x^{2}+x+1, D=\mathbb{Z}$
(2) $f=x^{5}+5 x^{3}+3 x^{2}+2, g=x^{2}+4 x+5, D=\mathbb{Z}$
(3) Same f, g, as previous 2 items, $D=\mathbb{Z} / 7$.

The division algorithm admits an important refinement as follows.
Theorem 1.3. (gcd algorithm) Let K be a field and $f, g \in K[x]$. Then there exists $h \in K[x]$ such that
(i) $h \mid f, g$;
(ii) there exist $A, B \in K[x]$ such that $h=A f+B g$;
(iii) any polynomial k dividing f and g divides h.

Because of property (iii), h is called the greatest common divisor of f, g.

Proof. First, we note that (i) and (ii) imply (iii): because if $f=k u, g=$ $k v$ then $h=(A u+B v) k$. Now to construct h, start by dividing f by g :

$$
\begin{equation*}
f=q_{1} g+r_{1}, \operatorname{deg}\left(r_{1}\right)<\operatorname{deg}(g) \tag{1}
\end{equation*}
$$

For notational consistency, it will be convenient to set $r_{0}=g, r_{-1}=f$. If $r_{1}=0$, then $g \mid f$ and we can just take $h=g$. Else, divide g by r_{1} :

$$
\begin{equation*}
g=q_{2} r_{1}+r_{2}, \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}\left(r_{1}\right) . \tag{2}
\end{equation*}
$$

If $r_{2}=0$, it is easy to see that we can take $h=r_{1}$. Else, we next divide r_{1} by r_{2} :

$$
\begin{gather*}
r_{1}=q_{3} r_{2}+r_{3}, \operatorname{deg}\left(r_{3}\right)<\operatorname{deg}\left(r_{2}\right) \tag{3}\\
\ldots \tag{4}\\
r_{i}=q_{i+2} r_{i+1}+r_{i+2}, \operatorname{deg}\left(r_{i+2}\right)<\operatorname{deg}\left(r_{i+1}\right)
\end{gather*}
$$

Since the degrees keep dropping, the process must stop eventually. Let p be smallest so that $r_{p+1}=0$, i.e.

$$
\begin{gather*}
r_{p-2}=q_{p} r_{p-1}+r_{p} \tag{5}\\
r_{p-1}=q_{p+1} r_{p} . \tag{6}
\end{gather*}
$$

Set $h=r_{p}$ Thus $h \mid r_{p-1}$. From the last display, we see that $h \mid r_{p-2}$ as well. Continuing backwards, we see that $h \mid r_{i}$ for all i, hence $h \mid g$ and then finally $h \mid f$ as well, which shows (i). To show (ii), write

$$
\begin{array}{r}
h=r_{p}=r_{p-2}-q_{p} r_{p-1} \\
=r_{p-2}-q_{p}\left(r_{p-3}-q_{p-1} r_{p-2}\right) \\
=-q_{p} r_{p-3}+\left(1+q_{p} q_{p-1}\right) r_{p-2} \\
\cdots \\
=* r_{i}+* r_{i+1} \\
\cdots \\
=A f+B g
\end{array}
$$

Exercise 1.2. Carry out the gcd algorithm for the following polynomials f, g over the respective fields \mathbb{F} :
(1) $f=x^{4}-x^{2}-2, g=x^{3}+x^{2}+x+1, \mathbb{F}=\mathbb{Q}$
(2) $f=x^{3}+1, g=x+2, \mathbb{F}=\mathbb{Q}$
(3) Same f, g as in previous 2 items, $\mathbb{F}=\mathbb{Z} / 5$.

Corollary 1.4. If K is a field, $f, g, h \in K[x], f$ is irreducible and $f \mid g h$, then either $f \mid g$ or $f \mid h$.

Proof. Suppose $f \nmid g$. Since f is irreducible the gcd of f and g must be 1, therefore

$$
1=A f+B g
$$

as in the Theorem. Therefore

$$
h=A f h+B g h .
$$

As $f \mid g h$ it foollows that $f \mid h$.
Definition 1. Let D be an integral domain, $a, b, c \in D$.

- a is said to be a unit in D if a has a multiplicative inverse in D.
- a is said to divide $b, a \mid b$, if $b=c a$ for some $c \in D$. If c is a unit, a and b are said to be associates in D.
- a is said to be reducible if $a=b c$ with b, c both nonunits. If a is not reducible and not a unit, we say it is irreducible.
- D is said to be factorial if any nonzero nonunit $a \in D$ can be written as

$$
a=a_{1} \cdots a_{r}
$$

with a_{1}, \ldots, a_{r} irreducible, and this expression is essentially unique: if also

$$
a=b_{1} \cdots b_{s}
$$

with b_{1}, \ldots, b_{s} irreducible, then after some permutation, each a_{i} is associate to b_{i}.

For example, the Fundamental Theorem of Arithmetic states that the ring of integers is factorial. It is a fairly easy consequence of Cor. 1.4 that for any field K, the polynomial ring $K[x]$ is factorial, but below we shall prove a much stronger result: for any factorial domain D, the polynomial ring $D[x]$ is factorial. Working towards that proof will occupy us for some time. Our general strategy will be to consider the fraction field K of D. Then elements of $D[x]$ are also in $K[x]$, and may be factored as such. We then try to study the denominators involved, to deduce from a factorization in $K[x]$ one in $D[x]$. In this study, the notion of content of a polynomial in $D[x]$ will play a large role.

Note that for any factorial domain D and nonzero elements $a, b, \in D$, a and b have a greatest common divisor $c \in D$, uniquely determined up to associates: c is just the product of all irreducible elements appearing in the irreducible factorization of both a and b, with each such element q appearing with an exponent that is the minimum of its exponents in a and b. For example in $D=\mathbb{Z}$, the gcd of $2 \cdot 3^{3} 5^{2}$ and $-3 \cdot 5^{5}$ is $\pm 35^{2}$.

Similarly, given any collection (even infinite) of nonzero elements $a_{1}, a_{2}, \ldots \in D$, there is a greatest common divisor $c \in D$ of these elements, and c is uniquely determined up to associates.

Lemma 1.5. Let D be an integral domain, $a \in D$ and $f \in D[x]$. Then $a \mid f$ in $D[x]$ iff a divides every coefficient of f.

From now on, we denote by D a factorial domain. By definition, the content, denoted $c(f)$, of a polynomial $f=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in D[x]$ is the gcd in D of $a_{0}, \ldots, a_{n} . c(f)$ is well defined up to an invertible factor, i.e. up to associates. f is said to be primitive if if its content is (associate to) 1. For any $f \in D[x]$, we can factor out the content and write f in the form

$$
f=c(f) f_{1}
$$

where $f_{1} \in D[x]$ in primitive, called the primitive part of f. For example, $4+6 x=2(2+3 x)$ so $4+6 x$ has content ± 2 and primitive part $\pm(2+3 x)$.

Note that if f is primitive and $f=g h, g, h \in D[x]$ then

$$
f=c(g) g_{1} c(h) h_{1},
$$

therefore $c(g) c(h) \mid f$. Since f is primitive, $c(g)$ and $c(h)$ must be units, so that g, h are primitive. Thus a factor of a primitive polynomial is primitive.
Lemma 1.6. Let $a, b, c \in D$ with a irreducible. If $a \mid b c$ then either $a \mid b$ or $a \mid c$.

Proof. By assumption, there exists $d \in D$ with

$$
a d=b c
$$

Let's factor b, c, d in irreducible factors:

$$
d=d_{1} \cdots d_{r}, b=b_{1} \cdots b_{s}, c=c_{1} \cdots c_{t} .
$$

Thus,

$$
a d_{1} \cdots d_{r}=b_{1} \cdots b_{s} c_{1} \cdots c_{t}
$$

By uniqueness of the decomposition, we have that a must be associate to one of the factors on the right, i.e b_{i} or c_{i} for some i. But then $a \mid b$ or $a \mid c$.

Theorem 1.7. (Gauss' Lemma) Suppose $a \in D$ is irreducible and $a \mid f g$ where $f, g \in D[x]$. Then either $a \mid f$ or a $\mid g$.

Proof. Write

$$
f=b_{0}+\ldots+b_{n} x^{n}, g=c_{0}+\ldots+c_{m} x^{m}
$$

Arguing by contradiction, suppose $a \nmid f, a \nmid g$. Let p, q be smallest so that

$$
a \nmid b_{p}, a \nmid c_{q} .
$$

Then the coefficient d_{p+q} of x^{p+q} in $f g$ can be written as follows

$$
d_{p+q}=\left(b_{0} c_{p+q}+\ldots+b_{p-1} c_{q+1}\right)+b_{p} c_{q}+\left(b_{p+1} c_{q-1}+\ldots+b_{p+q} c_{0}\right.
$$

By assumption a divides b_{0}, \ldots, b_{p-1}, therefore a divides the first term in parentheses above. Similarly. a divides the last term in parentheses. By assumption again, a divides d_{p+q}. Therefore $a \mid b_{p} c_{q}$. But this contradicts the last Lemma.

Theorem 1.8. Let K be the fraction field of D and $f \in D[x]$ irreducible. Then f is irreducible in $K[x]$.

Proof. Suppose

$$
f=g^{\prime} h^{\prime}
$$

where $g^{\prime}, h^{\prime} \in K[x]$ are non-constant. Take $a, b \in D$ such that

$$
g:=a g^{\prime}, h:=b h^{\prime} \in D[x]
$$

(i.e. a, b are 'common denominators' for f, g respectively). Let $d=a b$. Then

$$
d f=g h
$$

Let e be an irreducible factor of d. Then $e \mid g h$. Therefore by Gauss' Lemma, $e \mid g$ or $e \mid h$. We may assume the former. Then let $g_{1}=g / e \in$ $D[x], h_{1}=h, d_{1}=d / e$, so we have

$$
d_{1} f=g_{1} f_{1}
$$

Continuing in this way, we may 'peel off' all irreducible factors of d and eventually reach an equality

$$
f=g_{k} h_{k}
$$

with $g_{k}, h_{k} \in D[x]$ nonconstant. This shows f is reducible in $D[x]$.
Theorem 1.9. Suppose $f, g, h \in D[x], f$ is irreducible and $f \mid g h$. Then $f \mid g$ or $f \mid h$.

Proof. If $f \in D$ this is just Gauss' Lemma. So suppose f is nonconstant, hence not a unit in $K[x]$. By the previous result, f is irreducible in $K[x]$. Therefore by Cor. 1.4, either $f \mid g$ or $f \mid h$ in $K[x]$. Suppose $f \mid h$, so that $h=f k, k \in K[x]$. Let $a \in D$ be a common denominator for the coefficients of k, i.e $a k \in D[x]$. Thus

$$
a h=a f k .
$$

Let $e \in D$ be an irreducible factor of a. Since e divides $f(a k)$ and f is irreducible, e divides $a k$. So let $a_{1}=a / e \in D, k_{1}=a k / e \in D[x]$. Then

$$
a_{1} h=f k_{1} .
$$

Continuing to peel off factors of e as in the proof of the previous result, we get eventually

$$
h=f k_{n}
$$

so that $f \mid h$ in $D[x]$. The case $f \mid g$ is similar.
Theorem 1.10. If D is factorial then so is $D[x]$
Proof. We claim first that any nonzero $f \in D[x]$ is a product of irreducible elements. Write $f=c(f) f_{1}$ with f_{1} primitive. As $c(f) \in D$ and D is factorial, $c(f)$ is a product of irreducibles. As for f_{1}, if it is irreducible, we are done. If not, write $f_{1}=f_{2} f_{3}, f_{2}, f_{3} \in D[x]$ non-units. As f_{1} is primitive, f_{2}, f_{3} cannot be constant, therefore both of them have degree $<\operatorname{deg}\left(f_{1}\right)$. By an induction on the degree, we may assume both f_{2} and f_{3} are products of irreducibles, hance so is $f=c(f) f_{2} f_{3}$.

For uniqueness of the decomposition, suppose

$$
f_{1} \cdots f_{r}=g_{1} \cdots g_{s}
$$

with $f_{1}, \ldots g_{s} \in D[x]$ irreducible. As $g_{1} \mid f_{1} \cdots f_{r}$, Theorem ? implies that $g_{1} \mid f_{i}$ for some i. Renumbering, we may assume $g_{1} \mid f_{1}$ and since both are irreducible it follows that they are associate, i.e. $f_{1} \sim g_{1}$. Cancelling them off, we get

$$
f_{2} \cdots f_{r} \sim g_{2} \cdots g_{s}
$$

and we may continue the argument with g_{2} in place of g_{1}. Eventually, we conclude that up to renumbering, each g_{i} and f_{i} are associate, which proves uniqueness.

Proposition 1.11. Suppose $f, g \in D[x]$ have a nonconstant common factor in $K[x]$. Then f, g have a common factor in $D[x]$.

Proof. We may assume f, g have no nonunit common factor in D (else, factor out this factor). By assumption, there exists $h \in K[x]$ nonconstant such that $h \mid f, g$ in $K[x]$. Clearing denominators, we find $h_{1} \in D[x]$ which we may assume is primitive, and $a \in D$ such that

$$
h_{1} \mid a f, a g
$$

in $D[x]$. Let's decompose h_{1} in irreducible factors:

$$
h_{1}=p_{1} \cdots p_{k}
$$

As h_{1} primitive, each p_{i} is nonconstant. Because $p_{i} \mid a f, p_{i}$ must divide f for each i. Similarly, $p_{i} \mid g$ for each i. Therefore f, g have nonconstant common factors in $D[x]$.
Proposition 1.12. Suppose $f, g \in K[x]$ have degree m, n, respectively. Then f, g have a nonconstant common factor in $K[x]$ iff there exist $u, v \in K[x]$ of degrees at most $n-1, m-1$ respectively, such that $u f+b g=0$.
Proof. \Rightarrow : if h is a nonconstant common factor of f, g, then

$$
\frac{g}{h} f-\frac{f}{h} g=0
$$

so we can just take $u=g / h, v=-f / h$.
$\Leftarrow:$ if $u f=-v g$ and f has no common factor with g, then f must divide v, which is impossible because $\operatorname{deg}(v)<\operatorname{deg}(f)$.
Corollary 1.13. Let $f, g \in D[x]$ with D factorial. Then f, g have a nonconstant factor in $D[x]$ iff there exist $u, v \in K[x]$ of degrees at most $n-1, m-1$ respectively, such that $u f+b g=0$.

2. The resultant

Let $f=a_{0}+a_{1} x+\ldots+a_{m} x^{m}, g=b_{0}+b_{1} x+\ldots+b_{n} x^{n} \in D[x]$, where D is an factorial domain whose fraction field we denote by K. Define the resultant matrix of f, g, denoted

$$
R=R_{m, n}(f, g)
$$

as the following $(m+n) \times(m+n)$-matrix:

$$
R=\left[\begin{array}{ccccccc}
a_{0} & & \ldots & a_{m} & 0 & \ldots & 0 \tag{7}\\
0 & a_{0} & \ldots & & a_{m} & \ldots & 0 \\
& & & \ldots & & & \\
b_{0} & & & & b_{0} & a_{0} & \ldots \\
a_{m} \\
0 & b_{0} & \ldots & & b_{n} & \ldots & 0 \\
& & & \ldots & & & \\
& & & & b_{0} & \ldots & b_{n}
\end{array}\right]
$$

Thus, the first n rows of R contain the coefficient vector of f, gradually shifting rightward, and similarly for the last m rows and the coefficient vector of g. The resultant (or resultant determinant is the element of D defined by

$$
\begin{equation*}
r(f, g)=r_{m, n}(f, g ; x):=\operatorname{det}(R) \tag{8}
\end{equation*}
$$

To simplify notation, we will omit the m, n subscripts or the ; x designation when understood (e.g. when m, n are exactly equal to the degrees
of f, g, respectively). Note that $r(f, g)$ may be viewed as a polynomial with \mathbb{Z} coefficients in in the coefficients a_{0}, \ldots, b_{n} which themselves may be viewed as indeterminates (i.e. formal symbols). So there is no loss of generality in taking our domain D to be the polynomial ring $\mathbb{Z}\left[a_{0}, \ldots, b_{n}\right]$ with a_{0}, \ldots, b_{n} indeterminates.

To explain the special shape of R and the meaning of $r(f, g)$, let us denote by V_{i} the K-vector space of all polynomials of degree $<i$ with coefficients in K. As we know, V_{i} is an i-dimensional vector space with standard basis $1, \ldots, x^{i-1}$. Given i, j, we can define another vector space, denoted $V_{i} \oplus V_{j}$ by

$$
V_{i} \oplus V_{j}=\left\{(u, v): u \in V_{i}, v \in V_{j}\right\} .
$$

The vector space structure of $V_{i} \oplus V_{j}$ is such that $(u, v)=(u, 0)+(0, v)$. Then $V_{i} \oplus V_{j}$ is a vector space with basis

$$
\mathcal{B}=\left((1,0),(x, 0), \ldots,\left(x^{i-1}, 0\right),(0,1),(0, x), \ldots,\left(0, x^{j-1}\right)\right) .
$$

Thus, $V_{i} \oplus V_{j}$ is a vector space of dimension $i+j$. Now, returning to our polynomials f, g, define a map

$$
N(f, g): V_{n} \oplus V_{m} \rightarrow V_{m+n},
$$

by

$$
\begin{equation*}
N(f, g)(u, v)=u f+v g . \tag{9}
\end{equation*}
$$

$N(f, g)$ is clearly a linear transformation, and note that both its source and target have the same dimension (that is, $m+n$). Then
$R(f, g)$ is the transpose of the matrix of $N(f, g)$ with respect to the basis \mathcal{B} of $V_{n} \oplus V_{m}$ and the standard basis of V_{m+n}.

Now the theory of determinants tells us:
$r(f, g)=0$ iff $R(f, g)$ is a singular matrix iff the nullspace $\operatorname{ker}(N(f, g))$ is a nonzero subspace.

We now invoke Cor 1.13 which tells us that $\operatorname{ker}(N(f, g))$ is nonzero precisely when f, g have a nonconstant common factor in $D[x]$ (or equivalently, in $K[x])$. We have proven:

Theorem 2.1. Two polynomials $f, g \in D[x]$ of degrees m, n exactly, respectively, have a common factor of positive degree in $D[x]$ iff they have a common factor of positive degree in $K[x]$ iff the resultant $r(f, g)=$ $r_{m, n}(f, g)=0$.

It often happens that we want to apply a resultant criterion to check for common factors but know only an upper bound on the degrees of f, g. Then we can use

Theorem 2.2. Let $f, g \in D[x]$ be two polynomials of degrees at most m, n, respectively. Then $r_{m, n}(f, g)=0$ iff either $\operatorname{deg}(f)<m$ and $\operatorname{deg}(g)<n$ or f, g have a common factor of positive degree in $D[x]$.

Proof. Use induction on $m+n$. It suffices to prove that if $r_{m, n}(f, g)=0$ but f, g have no common factor, then $\operatorname{deg}(f)<m$ and $\operatorname{deg}(g)<n$. By the previous result, we may assume one of f, g, say f, as degree $<m$. Then in (7) we have $a_{m}=0$. Doing a last-column expansion of the determinant, we see that

$$
\begin{equation*}
r_{m, n}(f, g)= \pm b_{n} r_{m-1, n}(f, g) \tag{10}
\end{equation*}
$$

By induction, $r_{m-1, n}(f, g) \neq 0$. Hence $b_{n}=0$, i.e. $\operatorname{deg}(g)<n$.

Another way to state this result is the following.
Theorem 2.3. Let $f, g \in D[x]$ be two polynomials of degrees at most m, n, respectively, and set

$$
\begin{equation*}
F=\operatorname{hog}_{m}(f), G=\operatorname{hog}_{n}(g) \tag{11}
\end{equation*}
$$

Then $r_{m, n}(f, g)=0$ iff F, G have a common factor of positive degree in $D[x]$.

Proof. We have

$$
\begin{equation*}
F=X_{0}^{m} f\left(X_{1} / X_{0}\right), G=X_{0}^{n} g\left(X_{1} / X_{0}\right) \tag{12}
\end{equation*}
$$

Thus X_{0} is a common factor of F, G iff $\operatorname{deg}(f)<m$ and $\operatorname{deg}(g)<n$. Any common factor of F, G that is not a power of X_{0} dehomogenizes to a nonconstant common factor of f, g. Thus our claim follows from the previous result.

To get a slightly neater statement, we can work directly with homogenous polynomials and their 'homogenous resultant', defined as follows. Let $F, G \in D\left[X_{0}, X_{1}\right]$ be homogenous polynomials, of degrees m, n respectively. Then we define the 'homogenous resultant'

$$
\begin{equation*}
r=r^{h}(F, G)=r^{h}\left(F, G ; X_{0}, X_{1}\right)=\operatorname{det} R \tag{13}
\end{equation*}
$$

where R is the resultant matrix as in 7 ; in other words,

$$
r=r_{m, n}(f, g)
$$

where f, g are the dehomogenizations of f, g (which, in general, have degrees $\leq m, \leq n$, respectively). Then we have the following .
Theorem 2.4. Two homogenous polynomials $F, G \in D\left[X_{0}, X_{1}\right]$ have a nonconstant common factor iff their homogenous resultant $r^{h}(F, G)=$ 0 .

Proof. Using the notations of Thm 2.3, we have $F=h_{m}(f), G=$ $h_{n}(g), r=r_{m, n}(f, g)$, so the result follows from Thm 2.3. Note that the case $\operatorname{deg}(f)<m, \operatorname{deg}(g)<n$ corresponds to F, G having common factor X_{0}^{k}. Any other common factor dehomogenizes to a non-constant common factor of f, g (we shall prove later that any such common factor is automatically homogeneous).

Example 2.5. A nice application of resultants is to elimination theory. Thus let $\left(p_{1}(t) / q_{1}(t), p_{2}(t) / q_{2}(t)\right)$ be a pair of rational functions. Together, they yield a 'rational mapping'

$$
\phi(t)=\left(p_{1}(t) / q_{1}(t), p_{2}(t) / q_{2}(t)\right): \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}
$$

(defined where $q_{1}(t), q_{2}(t) \neq 0$). How can we find equations for the image C of ϕ ?

To this end, consider

$$
f=x q_{1}(t)-p_{1}(t), g=y q_{2}(t)-p_{2}(t) \in \mathbb{C}[x, y][t] .
$$

Then if $\left(x_{0}, y_{0}\right) \in \operatorname{im}(\phi)$ then the 'ordinary' (constant-coefficient) polynomials $f\left(x_{0}, y_{0}, t\right), g\left(x_{0}, y_{0}, y\right) \in \mathbb{C}[t]$ have a common zero in t, therefore they have a common factor, hence

$$
r\left(f\left(x_{0}, y_{0} ; t\right), g\left(x_{0}, y_{0}, t\right) ; t\right)=r(f, g ; t)\left(x_{0}, y_{0}\right)=0
$$

This means, at least, that C is contained in the zero-set of the polynomial $r(x, y) \in \mathbb{C}[x, y]$.

As a specific example, consider $\phi(t)=\left(t^{2}, t^{3}-t^{2}\right)$. A calculation yields

$$
\begin{equation*}
r(f, g)=y^{2}-x^{2}(x-1) \tag{14}
\end{equation*}
$$

Exercise 2.1. Prove (14).

[^0]: Date: March 19, 2006.
 (C) 2004 by Z. Ran.

