
137 NOTES, PART 4:
STUDY’S LEMMA AND APPLICATIONS

Z. RAN

1. Study’s Lemma

As it turns out, the resultant is the key that opens many doors in
the study of plane curves. As a first application, we will show that a
plane curve ’essentially’ determines its equation. In fact, we will prove
a rather more general result. First a definition. A field k is said to
be algebraically closed if every nonconstant polynomial in k[x] has at
least one root. The standard example of an algebraically closed field is
the field C of complex numbers (thanks to the Fundamental Theorem
of Algebra). An important fact whose proof goes back to Euclid is the
following:

Theorem 1.1. Any algebraically closed field is infinite.

Proof. If k is a finite field, k = {a1, ..., an}, then

f(x) = (x− a1) · · · (x− an) + 1

has no roots in k, so k is not algebraically closed. ¤
Exercise 1.1. Modify the above argument to prove

(i) there are infinitely many prime numbers in Z;
(ii) for any field k (even finite), there are infinitely many non-

associate irreducible polynomials in k[x].

Theorem 1.2. (Study’s Lemma) Let k be an algebraically closed field,
f, g ∈ k[x1, ..., xn] polynomials with f irreducible. Assume

(1) Zerosk(f) ⊆ Zerosk(g).

Then
f |g.

The idea of the proof is based on projection, i.e. the resultant with re-
spect to, say, xn. Assuming, for contradiction, that f - g, the resultant
r = r(g, f) with respect to xn will be nonzero. We can then find a point
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a. = (a1, ..., an−1) such that r(a.) 6= 0. This means f(a., xn), g(a., xn)
have no common factor. But that is absurd: by algebraic closedness
f(a., xn) has some zero in xn and by (1) that zero is also a zero of
g(a., xn). This contradiction will prove the theorem.

Turning to the details, we start with

Lemma 1.3. Let D be an infinite integral domain and h ∈ D[x1, ..., xn]
a nonzero polynomial. Then there exist a1, ..., an ∈ D such that

h(a1, ..., an) 6= 0.

Proof. Proof of Lemma: If n = 1 this follows from the fact that h has
only finitely many zeros (even in K, the fraction field in D), while D
is infinite. For general n we use induction. Write h as

h(x1, ..., xn) = b0 + b1xn + ... + brx
r
n,

b0, ..., br ∈ D[x1, ..., xn−1], br 6= 0.

By induction, there exist a1, ..., an−1 ∈ D such that br(a1, ..., an−1 6= 0.
Then

h(a1, ..., an−1, xn) ∈ D[x]

is not the zero polynomial, therefore there exists an ∈ D such that
h(a1, ..., an) 6= 0, as claimed.

¤

Remark 1.1. If D is finite, there do exist nonzero polynomials h ∈
D[x] such that the value h(a) = 0 for all a ∈ D. For example D =
Z2 = {0, 1}, h(x) = x2 + x.

Proof. (of Study’s Lemma): Permuting variables, we may assume xn

occurs in f , i.e. f 6∈ k[x1, ..., xn−1]. Write

f = b0 + b1xn + ... + bmxm
n ,

where

b0, ..., bm ∈ k[x1, ..., xn−1], bm 6= 0,m > 0.

Now suppose, to start with, that g does not involve xn, i.e. g ∈
k[x1, ..., xn−1]. By the lemma, choose a1, ..., an−1 ∈ k such that

br(a1, ..., an−1)g(a1, ..., an−1) 6= 0.

Then

deg(f(a1, ..., an−1, xn)) = r > 0

so this is a nonconstant polynomial. As k is algebraically closed, there
exists an ∈ k such that f(a1, ..., an) = 0, therefore g(a1, ..., an) =
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g(a1, ..., an−1) = 0 by our hypothesis Zeros(f) ⊆ Zeros(g). This is a
contradiction. Thus, g is nonconstant as polynomial of xn. Write

g = e0 + ... + ejx
j
n,

e0, ..., ej ∈ k[x1, ..., xn−1], ej 6= 0, j > 0

Now consider f, g as polynomials in xn with coefficients in
D = k[x1, ..., xn−1]. Because f is irreducible in k[x1, ..., xn], it has no
factors besides itself and elements of k. Therefore, as element of D[xn],
f has no factor besides itself which has degree > 0 in xn. Consequently,
if f - g, then f, g have no common factor in D[xn] of positive degree in
xn, therefore by Theorem 2.1 of Part 3, the resultant

r = r(f, g) = rm,j(f, g; xn) ∈ k[x1, ..., xn−1]

is nonzero. Therefore

bmejr 6= 0.

Now pick c0, ..., cn−1 ∈ k such that

(2) bm(c1, ..., cn−1)ej(c1, ..., cn−1)r(c1, ..., cn−1) 6= 0.

Now

f(c1, ..., cn−1, xn) ∈ k[xn]

is a nonconstant polynomial. k being algebraically closed, this polyno-
mial has at least one zero, say cn. Thus

f(c1, ..., cn) = 0.

by our main assumption (1), we have

g(c1, ..., cn) = 0

as well. Thus xn = cn is a common zero, and xn − cn is a common
factor of the two polynomials

f(c1, ..., cn−1, xn), g((c1, ..., cn−1, xn) ∈ k[xn],

which have respective degrees m, j exactly. Therefore the resultant of
these polynomials is zero. But that resultant is non other than the
result of plugging x1 = c1, ..., xn−1 = cn−1 into r. Therefore

r(c1, ..., cn−1) = 0.

But this contradicts (2). Therefore f |g and we are done. ¤

Corollary 1.4. Let k be an algebraically closed field, f, g ∈ k[x1, ..., xn]
polynomials such that

Zerosk(f) = Zerosk(g).
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Then f, g have the same sets of irreducible factors (not necessarily with
the same multiplicities). If f, g are moreover irreducible, then f, g differ
by a constant in k

Proof. If p is any irreducible factor of f , then Zeros(p) ⊂ Zeros(f) =
Zeros(g), hence by Study, p|g. Similarly, every irreducible factor of g
divides f . ¤

In light of the Cor. we shall define an affine plane curve C of degree
d as the zero-set C = Zeros(f) where f is a polynomial of degree
d without multiple factors; f is said to be an equation for C, and is
uniquely determined by C up to a constant factor, by the Cor. C is said
to be irreducible if its equation is an irreducible polynomial. As we have
seen (as a consequence of the result D factorial ⇒ D[x] factorial), any
polynomial f ∈ C[x, y] is uniquely a product of irreducibles p1 · · · pk.
Since

Zeros(p1 · · · pk) = Zeros(p1) · · ·Zeros(pk)

it follows:

Corollary 1.5. Every affine plane curve C is uniquely expressible as
a union of irreducible curves (called the components of C).
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2. Homogeneous case

D denotes an integral domain.

Proposition 2.1. If F, G ∈ D[X0, ..., Xn], F is homogeneous and G|F ,
then G is homogeneous.

Proof. Write F = GH and decompose G,H in homogeneous compo-
nents:

G = Gk + ... + Gk+l, H = Hr + ... + Hr+s

with Gk, Gk+l, Hr, Hr+s 6= 0. Assume to start with that l, s are both
nozero, i.e. nither G nor H is homogeneous. Then

F = GkHr + ... + Gr+sHk+l

where the first summand is homogeneous of degree k + r and the last
is homogenous of degree k + r + l + s and all other summands are
homogenous with degrees strictly between k+r and k+r+ l+s. Since
F is homogenous, this is a contradiction. Thus at least one of G,H,
say G = Gk, is homogenous.

Then if H is not homogeneous we have

GH = GkHr + ... + GkHr+s

and again we get a contradiction as above. Therefore G,H are ho-
mogenous. ¤

As a consequence of this result, the obvious analogues of Study’s
Lemma and its consequences hold for homogeneous polynomials and
their zero-sets:

Corollary 2.2. (Homogeneous Study’s Lemma) Let k be an algebraically
closed field.

(i) If F, G ∈ k[X0, ...Xn] are homogenous polynomials with F ir-
reducible,such that

ZerosPn(F ) ⊆ ZerosPn(G).

Then F |G.
(ii) If F, G ∈ k[X0, ..., Xn] are homogenous polynomials such that

ZerosPn(F ) = ZerosPn(G).

Then F, G have, up to constant factors, the same sets of irre-
ducible factors (not necessarily with the same multiplicities).
If F,G have no multiple factors, then F, G differ by a constant
in k.

(iii) Every projective plane curve C is uniquely expressible as a
union of irreducible curves (called the components of C).
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Proof. We have the tautological projection

π : An+1 \ 0 → Pn

so that for any homogeneous polynomial F ,

ZerosAn+1(F ) = π−1(ZerosPn(F )) ∪ {0}.
In light of this, our assertions follow immediately from the correspond-
ing assertions in the affine case, proved previously. ¤

For any n, the zero-set

C = ZerosPn(F )

of a homogenous polynomial F of degree d without multiple factors
is called a projective hypersurface of degree d with reduced equation F .
The corresponding zero-set

C̃ = ZerosAn+1(F )

is called the affine cone over C. Note that if n = 2, C is just a plane
curve while C̃ ⊂ A3 would more appropriately be called a surface. So
the foregoing proof illustrates the idea that studying a curve sometimes
involves studying other types of geometric objects, like surfaces.

Exercise 2.1. Give another proof of the Homogenous Study’s Lemma
using dehomogenization and homogenization, in lieu of the affine cone.

Theorem 2.3. Let F, G ∈ D[x0, ..., xn] be homogenous polynomials of
degrees s, t, respectively, and let

r = rs,t(F, G, xn) ∈ D[x0, ..., xn−1]

be the resultant of F, G as polynomials of degrees s, t in xn. Then
(i) r is homogenous of degree st.
(ii) If

(3) F (0, ..., 0, 1), G(0, ..., 0, 1) 6= 0.

Then F, G have a nonconstant common factor iff r = 0 .

Proof. Let’s write

F = a0x
s
n + ... + as, G = b0x

t
n + ... + bt

where each ai, bi ∈ D[x0, ..., xn−1] is homogenous of degree i.
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To prove (i) Note

(4) r = det




as ... a0 0 ... 0
0 as ... a0 ... 0

...
as ... a0

bt ... b0 0 ... 0
0 bt ... b0 ... 0

...
bt ... b0




Then

(5) r(ux0, ..., uxn−1) = det




usas ... u0a0 0 ... 0
0 usas ... u0a0 ... 0

...
usas ... u0a0

utbt ... u0b0 0 ... 0
0 utbt ... u0b0 ... 0

...
utbt ... u0b0




Now multiply the 1st row by ut, the 2nd by ut−1 etc. Then the (t+1)st
row by us, the (t + 2)nd by us−1, etc. This yields

us(s+1)/2+t(t+1)/2r = det




us+tas ... u0a0 0 ... 0
0 us+t−1as ... u0a0 ... 0

...
usas ... u0a0

us+tbt ... u0b0 0 ... 0
0 us+t−1bt ... u0b0 ... 0

...
utbt ... u0b0




= u(s+t)(s+t+1)/2r

(because we can factor us+t+1−i from the ith column for i = 1, ..., s + t
and get the matrix whose determinant is r). Therefore
(6)
r(ux0, ..., uxn−1) = u(s+t)(s+t+1)/2−s(s+1)/2−t(t+1)/2r = ustr(x0, ..., xn−1)

so r is homogenous of degree st.
For the proof of (ii), note that a0, b0 are nonzero constants by our

assumption (3) so as polynomials in xn, F,G have degrees exactly s, t
and r is their resultant. So as we have seen, F, G have a nonconstant
common factor in D[x0, ..., xn−1][xn] = D[x0, ..., xn] iff r = 0. ¤
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Theorem 2.4. Any two curves in P2
C intersect.

Proof. We may assume the curves in question have respective homoge-
neous equations F,G of degrees m,n > 0. Applying a suitable projec-
tive transformation, we may assume that

F (0, 0, 1), G(0, 0, 1) 6= 0.

This implies that, as polynomials in X2, both F and G are of degree
m,n exactly. Let

R = rm,n(F, G; X2)

be the resultant of F, G with respect to X2. Thus, R ∈ C[X0, X1] is
homogeneous of degree mn > 0 and therefore admits a nontrivial zero
[a0, a1]. Then

(7) 0 = R(a0, a1) = rm,n(F (a0, a1, X2), G(a0, a1, X2), X2)

This means one of two things: either
(i) F (a0, a1, X2) is of degree < m in X2; or
(ii) G(a0, a1, X2) is of degree < n in X2 or
(iii) F (a0, a1, X2) and G(a0, a1, X2) have a common zero X2 = a2.
Of course, in Case (iii) we have our desired common zero [a0, a1, a2]

for F and G. But Case (i) can happen only if F (0, 0, 1) = 0, which
we assumed is not the case; similarly, Case (ii) is impossible too. This
proves the Theorem. ¤
Exercise 2.2. Prove that for any curve C ⊂ P2

k, k algebraically closed,
there are infinitely many points on C and infinitely many points in
P2

k \ C.

Theorem 2.5. (’Litle Bézout’) Let C, D be projective plane curves of
degree m,n, respectively, with no common components. Then

(8) 1 ≤ |C ∩D| ≤ mn

Proof. Let F,G ∈ C[X0, X1, X2] be respective equations for C,D. Then
F, G are homogenous polynomials of degree m,n, respectively with no
nonconstant common factors and our claim is that

(9) 1 ≤ |Zeros(F ) ∩ Zeros(G)| ≤ mn

The first inequality is of course just a restatement of the previous The-
orem. For the second, we follow closely the notations and argument of
that Theorem’s proof. Note that R 6= 0 thanks to our hypothesis that
F, G have no common factors. Since R has degree mn, it follows that
R has at most mn zeros [a0, a1]. The proof shows that any common
zero of F,G must lie on one of the lines

(10) L[a0,a1] = {[a0, a1, ∗]} = Zeros(a1X0 − a0X1)
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where [a0, a1] ∈ Zeros(R). Moreover, neither F nor G can vanish iden-
tically on any of these lines, because they don’t vanish at [0, 0, 1]. This
shows, at the very least, that the number of common zeros of F, G is
finite, and can exceed mn only if F,G have > 1 common zero on one
of the lines L[a0,a1] as above.

Now the last problem is easy to fix: simply restart the proof and
make sure in advance that we choose our coordinates so that the point
[0, 0, 1] does not lie on any of the finitely many lines joining any pair of
common zeros of F, G, since we now know that there are only finitely
many such zeros. This completes the proof. ¤
Corollary 2.6. Let C, D be affine plane curves of degree m,n, respec-
tively, with no common components. Then

(11) |C ∩D| ≤ mn.

Proof. It suffices to note that the projective completions C ′, D′ of C,D
have no common components: indeed the equations for the components
of C ′, D′ are obtained by homogenizing the equations the components
of C, D, so if C ′, D′ had a common componet, its affine part would be
a common component of C, D. ¤
Proposition 2.7. Suppose C,D are projective plane curves, both of
degree n, meeting in exactly n2 points, and that E is an irreducible
curve of degree m < n containing exactly mn points of C ∩ D. Then
there exists a curve A of degree m−n containing the remaining n(n−m)
points of C ∩D.

Proof. Let F,G, H be respective equations of C, D, E; thus F, G have
no multiple factors and H is irreducible. Since E is infinite, we can
find a point P = [a, b, c] ∈ E \ C ∩D. Set

λ = −G(a, b, c), µ = f(a, b, c), B = λF + µG.

Then B(a, b, c) = 0 and B also vanishes on C ∩D. Then Zeros(B)∩E
has at least mn + 1 points. Therefore B and H have a common factor,
and since H is irreducible, it follows that H|B, i.e. B = HK for
some homogeneous polynomial K of degree n − m. Since B vanishes
on C ∩ D, those points of C ∩ D not on E = Zeros(H) must lie on
A = Zeros(K). ¤
Remark 2.1. Analyzing the above proof, we see that it is still valid
when E = E1 ∪ E2 with E1, E2 irreducible and there exists a point
P ∈ E1 ∩ E2 \ C ∩ D. This is because we can still define B as above
using P and conclude, as above, that each of the equations H1, H2 of
E1, E2 divides B. Since H1, H2 are distinct irreducibles, it follows that
H1H2|B and we can conclude as above.
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Exercise 2.3. Fill in the details in the above remark

An obvious special case of this is the following

Corollary 2.8. If C, C ′ are cubics meeting in 9 points P1, ..., P9 and if
Q is a nondegenerate conic containing P1, ..., P6 but not the rest, then
P7, P8, P9 are collinear.

A classic consequence is the following

Theorem 2.9. (Pascal’s mystic hexagon) The opposite sides of a hexagon
inscribed in a nondegenrate conic meet in 3 collinear points.

Proof. By assumption, we have an irreducible conic Q, points P1, ..., P6

on Q, and the inscribed hexagon comprised of the lines

L1 = P1P2, ..., L6 = P6P1.

The pairs of opposite sides are (L1, L4), (L2, L5), (L3, L6). Now consider
the cubics

C = L1L3L5, C
′ = L2L4L6.

Their intersection points are precisely P1, ..., P6 together with L1 ∩
L4, L2 ∩ L5, L3 ∩ L6. Therefore our claim follows from the previous
result. ¤
Remark 2.2. Given 6 points P1, ..., P6 ∈ P2, we do not expect that
there exist a conic through all of them. To see why, notice that the
set of all quadratic forms F (X0, X1, X2) is a 6-dimensional vector space
with basis X2

0 , X
2
2 , X

2
2 , X0X1, X0X2, X1X2. For F to vanish at Pi is one

linear equation on the coefficients of F , so in total there are 6 such,
and we don’t expect them to have a nontrivial common solution, in
general. In fact, it can be shown that there do exist 6-tuples not on
any conic.

Theorem 2.10. (Pappus) Let L1, L2 be distinct lines in P2,

P1, P2, P3 ∈ L1 \ L2, Q1, Q2, Q3 ∈ L2 \ L1.

Set
Lij = PiQj, i 6= j ∈ {1, 2, 3},

L12 ∩ L21 = R3, L13 ∩ L31 = R2, L23 ∩ L32 = R1.

Then R1, R2, R3 are collinear.

Proof. Apply Prop 2.7 and the following remark in case

C = L12L23L31, D = L21L32L13, E1 = L1, E2 = L2.

Since E1 ∩E2 6∈ C ∩D, we can conclude that the part of C ∩D not on
E1 ∪ E2 is on a line, which is precisely Pappus’ assertion. ¤
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Proposition 2.11. (Cayley-Bachrach) Let C be an irreducible cubic,
C1, C2 cubics. Suppose for i = 1, 2, Ci meets C in 9 distinct points
P1, ..., P8, Qi. Then Q1 = Q2.

Lemma 2.12. If 2 cubics C,C1 meet in exactly 9 points and Q is
one of these points, then all but finitely many lines through Q meet C
residually in exactly 2 points.

[The proof of the Lemma uses concepts to be discussed later; briefly,
one shows first that Q is a simple (nonsingular) point on C, and second
that any simple point Q on C has the asserted property.]

Proof. (of Prop) If false, let L be a line through Q1 not through Q2.
Thus

L ∩ C = {Q1, R, S}.
Choose another line M not through any of the previously designated
points. Then

(L ∪ C2) ∩ (C ∪M) = {P1, ..., P8, Q1, Q2, R, S} ∪ ((L ∪ C2) ∩M)

= C1 ∩ C ∪ {Q2, R, S} ∪ ((L ∪ C2) ∩M).

Of these 16 points, the 12 points C1 ∩ C ∪ ((L ∪ C2) ∩ M) are on
C1 ∪M . By Prop 2.7 and the following remark, Q2, R, S are collinear,
i.e. Q2 ∈ L, which is a contradiction. ¤
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3. Singular and nonsingular points

The notions of singular and nonsingular point P on a curve C have do
do with the local geometry of C near P . We begin with some deinitions.
Let C ⊂ A2 be an affine curve with reduced equation f(x, y), and let P
be a points on C. Then P is said to be a singular point or a singularity
of C if

∇f(P ) = 0,

i.e.
∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

Similarly, a point P on a projective curve C ⊂ P2 with reduced ho-
mogenous equation F is said to be a singular point of C if

∇F (P ) = 0

i.e.
∂F

∂X0

(P ) =
∂F

∂X1

(P ) =
∂F

∂X2

(P ) = 0.

A point of C that is not singular is said to be nonsingular or smooth.
C itself is said to be a singular curve if it has at least one singular
point; otherwise C is said to be nonsingular or smooth.

Example 3.1. Any projective conic C is equivalent to one with equa-
tion F = X2

0 +X2
1 +X2

2 . Thus ∇F = (2X0, 2X1, 2X2) and this is never
zero on P2. Therefore C is nonsingular.

Exercise 3.1. (i) If C, C ′ are projectively or affine equivalent then C
is singular iff C ′ is.

(ii) Determine the singularities of the affine curves

y2 = x3 + x + 1,(12)

y2 = x3 + x2,(13)

y3 = x3.(14)

We begin by checking that the affine and projective notions are com-
patible:

Lemma 3.2. If P ∈ U0 = {X0 6= 0} ⊂ P2, then for any projective
curve C, P is singular on C iff P is singular on C0 = C∩U0 ⊂ U0 ' A2.

Proof. Let F be a homogeneous equation for C, so that

f(x, y) = F (1, x, y)

is an affine equation for C0. Then

(15)
∂f

∂x
(P ) =

∂F

∂X1

(P ),
∂f

∂y
(P ) =

∂F

∂X2

(P )
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From this it is immediate that a singular point on C is singular on C0.
Conversely, if P is singular on C0 then

∂F

∂X1

(P ) =
∂F

∂X2

(P ) = 0.

If d = deg(F ), then

F (X0, X1, X2) = Xd
0f(X1/X0, X2/X0)

therefore by the chain rule,

∂F

∂X0

(P ) = dX0f(X1/X0, X2/x0)+Xd
0

∂f

∂x
(P )(

−X1

X2
0

)+Xd
0

∂f

∂y
(P )(

−X2

X2
0

).

The first term is zero because P ∈ C0, while the other two are zero
because P is singular on C0.

¤
Note that given a point P on a projective curve C, one can always

choose coordinates so that P ∈ U0, so one can study the singularity or
nonsingularity of C at P via the affine curve C ∩ U0.

The set of singular points of a curve C is denoted sing(C). Thus, the
foregoing Lemma is the statement that sing(C ∩U0) = sing(C)∩U0 for
any projective curve C.

Proposition 3.3. For any curve C, sing(C) is finite.

Proof. We do the proof in the projective case; the affine case is similar.
Suppose first that C = Zeros(F ) is irreducible. Thus F is irreducible,
say of degree d. We may assume F1 = ∂F

∂X1
6= 0. Then F1 is homogenous

of degree d1 and since F is irreducible, F and F1 have no common
factor. Then by Little Bézout, Zeros(F ) ∩ Zeros(F1) is finite (in fact,
has at most d(d − 1) points. But the latter intersection obviously
contains sing(C), to sing(C) is finite too.

Now suppose C is reducible, say C = C1 ∪ C2, so the homogeneous
equation F of C splits as F = F1F2 with Ci = Zeros(Fi), i = 1, 2. By
the product rule,

∇(F1F2)(P ) = F1(P )∇F2(P ) + F2(P )∇F1(P ).

If this is zero and F (P ) = 0, either F2(P ) = 0, F1(P ) 6= 0, in which
case ∇F2(P ) = 0; or F1(P ) = 0, F2(P ) 6= 0, in which case ∇F1(P ) = 0;
or F1(P ) = F2(P ) = 0. Therefore

(16) sing(C1 ∪ C2) = sing(C1) ∪ sing(C2) ∪ C1 ∩ C2

From this, an obvious induction on the number of irreducible compo-
nents of C proves our assertion. ¤
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Remark 3.1. For k = C, some of the significance of nonsingular points
comes from the implicit function theorem which says that if f is a poly-
nomial such that f(x0, y0) = 0, ∂f/∂x(x0, y0) 6= 0, then there is an
analytic function (not a polynomial in general) y(x) defined in some
disc D around x0, such that if x ∈ D, then f(x, y) = 0 iff y = y(x);
similarly if ∂f/∂y(x0, y0) 6= 0. In terms of the corresponding curve
C = Zeros(f), this says that if P is a nonsingular point on C, then
there is a piece of C that is a graph of an analytic function y = y(x) or
x = x(y). This implies that this piece of C is an ’analytic manifold’.

The singularity of an affine curve C with equation f at a point
P = (a, b) ∈ C is closely related to the Taylor expansion of f at P : we
can write

f(x, y) =
m∑

k=1

∑

i+j=k

1

i!j!

∂kf(a, b)

∂xi∂yj
(x− a)i(y − b)j(17)

=
m∑

k=1

fk(18)

with each fk homogenous of degree k in x − a, y − b (and f0 = 0
because P ∈ C). Note that C is nonsingular at P iff f1 6= 0. In this
case the (affine) line with equation f1 is called the tangent line to C at
P , denoted TP C. In general, the smallest k such that fk = 0 is called
the multiplicity of C at P (or the multiplicity of P on C). Note that in
that case we can factor the homogenous polynomial fk (which is known
as the leading form of f at P ) as

(19) fk =
k∏

i=1

[αi(x− a) + βi(y − b)]

The lines Li with equations

αi(x− a) + βi(y − b) = 0

are called the generalized tangent lines of C at P . The union of these
lines (i.e. the zero-set of fk) is known as the tangent cone to C at P .

Points of multiplicity 2 are known as double points or nodes. A node
or double point (more generally, a singular point of multiplicity k) is
said to ordinary if the tangent cone consists of k distinct lines (i.e. the
leading form splits as a product of distinct linear factors).

In the projective case, if P is a nonsingular point on the projective
curve C with homogeneous equation F , we define the tangent line to
C at P , denoted TP C, as the projective line with equation

∇F (P ).(X0, X1, X2) = 0.
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This is denoted by TP C. This notion is compatible with the affine one
because of the following

Lemma 3.4. If P ∈ U0 ' A2, then TP C ∩U0 is the affine line TP (C ∩
U0).

Proof. Write P = [1, a, b] and let f be an affine equation for C0 =
C ∩ U0. Then

F (X0, X1, X2) = Xd
0f(X1/X0.X2/X0)

hence

∇F (X0, X1, X2) =

(dXd−1
0 f(X1/X0, X2/X0)−Xd−2

0 X1
∂f

∂x
(X1/X0, X2/X0)

−Xd−2
0 X2

∂f

∂y
(X1/X0, X2/X0),

Xd−1
0

∂f

∂x
(X1/X0, X2/X0),

∂f

∂y
(X1/X0, X2/X0))

Plugging in (X0, X1, X2) = (1, a, b), we get

(20) ∇F (P ) = (−a
∂f

∂x
(a, b)− b

∂f

∂y
(a, b),

∂f

∂x
(a, b),

∂f

∂y
(a, b))

Thus, TP C is the line with homogenous equation

X0(−a
∂f

∂x
(a, b)− b

∂f

∂y
(a, b)) + X1

∂f

∂x
(a, b) + X2

∂f

∂y
(a, b)

Dehomogenizing this yields

(x− a)
∂f

∂x
(a, b) + (y − b)

∂f

∂y
(a, b)

i.e exactly the affine equation for TP C0.
¤

Note that for a nonsingular point P on a projective curve
C = Zeros(F ), the tangent line TP C may be viewed as a point in
the dual projective plane P2∗; it is just the point with homogeneous
coordinates

[∇F (P )] = [
∂F

∂X0

(P ),
∂F

∂X1

(P ),
∂F

∂X2

(P )].

Therefore if C is nonsingular, say of degree d, this yields a well defined
mapping, known as the dual mapping

D : C → P2∗.
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It can be shown that the image C∗ := D(C) ⊂ P2∗ is itself a curve,
and it has degree d∗ = d(d − 1) (this is known as one of the Plücker
formulas). If d > 3, C∗ will always be singular.

As in the affine case, one can talk about the multiplicity and gener-
alized tangent lines of a projective curve C or homogeneous polynomial
F at a point P ∈ P2. For future reference, we note the following

Lemma 3.5. (i) The vector space Vn of homogeneous polynomials of
degree n in X0, X1, X2 is of dimension n(n + 2)/2;

(ii) the subspace Vn(r, P ) ⊂ Vn of polynomials having multiplicity at
least r ar P is of codimension r(r + 1)/2.

(iii) for any collection of points P1, ..., Pk and natural numbers r1, ..., rk,
the subspace Vn(r1, P1; ... : rk, Pk) of polynomials having multplicity at
least ri at each Pi, i = 1, ..., k is of codimension at most

∑ (
ri+1

2

)
.

Example 3.6. Let C be a nonsingular conic. Then C is projectively
equivalent to the conic C0 with equation F = X2

0 + X2
1 + X2

2 . For this
C0 the dual mapping is just

[X0, X1, X2] 7→ [2X0, 2X1, 2X2] = [X0, X1, X2]

so the dual C∗
0 is just C0 itself. Therefore for any nonsingular conic C,

the dual C∗ is a conic (not necessarily equal to C; in fact if C = T ∗
A(C0)

then C∗ = T ∗
At(C0) 6= C). The fact that C∗ is a conic means, concretely,

that through a general point of P2 there are just 2 lines tangent to C.
A famous fact from classical projective geometry related to this is

known as Poncelet’s porism. Let C1, C2 be two general conics and
choose a general point P0 ∈ C1. Let L1 be one of the two tangent lines
to C2 through P0, and P1 the other intersection point of L1 with C2.
Now at P1 there will be, besides L1, a second line, say L2, tangent to
C2; the procedure may be iterated indefinitely. The question is: is this
process periodic, i.e. is Pn = P0 for some n (in which can it is easy to
see that Pn+1 = P1 etc.) Poncelet’s theorem is that the process being
periodic depends only on the conics C1, C2 and not on the choice of
starting point P0. Interestingly, the proof depends on a certain cubic
(elliptic) curve and its group structure, specifically on whether a certain
point on this elliptic curve has finite order in the group structure.
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4. Intersection numbers and Bézout’s theorem

Definition 1. A point Q ∈ P2 is said to be a good center with respect
to curves C,D (or their equations) if

(i) Q 6∈ C ∪D
(ii) Q is not on any line joining two distinct points of C ∩D.

Theorem 4.1. There exist unique symbols IP (F,G) = F ·P G, IP (C,D) =
C ·P D, where P ∈ P2 is a point, F, G are nonzero homogeneous poly-
nomials and C, D ⊂ P2 are curves, such that

IP (C, D) = IP (F, G)

whenever F, G are reduced equations for C, D, and such that

(i) IP (C, D) = IP (D, C);
(ii) IP (C, D) = ∞ iff C,D have a common component through p

and otherwise IP (C, D) is a nonnegative integer;
(iii) IP (C, D) = 0 iff p 6∈ C ∩D
(iv) if L1, L2 are distinct lines through p, then IP (L1, L2) = 1;
(v) IP (F1F2, G) = IP (F1, G) + IP (F2, G);
(vi) if deg(F ) ≤ deg(G) and deg(H) = deg(G) − deg(F ) then

IP (F, G) = IP (F, G + HF ).

Moreover, if Q = [0, 0, 1] is a good center with respect to F, G, p =
[a, b, c] 6= Q and p̄ = [a, b], then
• IP (F,G) is the multiplicity at p̄ of the resultant r(F, G; X2) of
F, G with respect to X2.

Proof. We first show that the properties (i)-(vi) characterize IP uniquely.
To simplify notation, we may assume P = [1, 0, 0]. We may assume that
F, G are irreducible, distinct, and both vanish at P . Set k = IP (F, G).
By induction on k, we may assume IP is already uniquely determined
if its value is < k. Set

f(y) = F (1, 0, y), r = deg f, g(y) = G(1, 0, y), s = deg g.

By symmetry (axiom (i)), we may assume r ≤ s. Suppose first that
f = 0. This clearly means that X1|F , so write F = X1H, hence

IP (F,G) = IP (X1, G) + IP (H, G).

Write

G = G(X0, 0, X2) + X1Q(X0, X1, X2)

(i.e. G(X0, 0, X2) is the part of G not involving X1), and

G(X0, 0, X2) = Xq
2T
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where X2 - T which means precisely T (1, 0, 0) 6= 0. Note q > 0. Then

IP (X1, G) = IP (X1, G(X0, 0, X2)) = IP (X1, X
q
2T ) = IP (X1, X

q
2) = q.

Moreover IP (H, G) = k − q < k, so inductively it is already uniquely
determined. Therefore so is IP (F,G).

Now suppose f 6= 0. Since f(0) = 0, this implies r > 0. We may
assume f, g both monic. Set

S = X
N−deg(G)
0 G−X

N−deg(F )−s+r
0 Xs−r

2 F

for some sufficiently large integer N . Then

S(1, 0, y) = g − ys−rf

is of degree < s. Moreover since F, G are distinct irreducible, S 6= 0.
Then

IP (F, S) = IP (F, X
N−deg(G)
0 G) = IP (F, G).

If S is reducible, IP (F, S) is determined by additivity (property (v));
else, an induction on s shows IP (F,G) is uniquely determined.

We now prove existence of IP .
(a) If P is in a common component of the zero-sets of F,G, set

IP (F,G) = ∞.
(b) If P is not a common zero of F,G, set IP (F,G) = 0.
(c) Otherwise, remove all common factors from F, G, choose co-

ordinates so that [0, 0, 1] is a good center with respect to F, G and
P = [1, 0, 0] and define IP (F, G) according to • above.

Then (i) above follows from ± symmetry of the resultant; (ii) follows
from the fact that in case (c) F,G have no common factor so their re-
sultant r 6= 0. (iii) follows from the fact that in case (c), using notation
as above f(y), g(y) have the same degrees as F, G and have no common
zeros y 6= 0. Therefore F, G both vanish at p iff f, g have a common
zero iff r(1, 0) = 0 iff the multiplicity of [1, 0] as zero of r is > 0.

Now (iv) is the following easy calculation: if F = a1X1 + a2X2, G =
b1X1 + b2X2, then

r = det

[
a1X1 a2

b1X1 b2

]
= (a1b2 − a2b1)X1

and the coefficient is clearly 6= 0.
Finally, (v)-(vi) follow from standard properties of the resultant. ¤
An immediate consequence of the defining axioms of the Intersection

Number IP is the following

Corollary 4.2. If L is a line through p with equation F and F - G
then

IP (F, G) = multP (G|L).
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Proof. We may assume F = X2, P = [1, 0, 0, ]. Write

G = G0(X0, X1) + X2G1 = Xr
1G

′
0(X0, X1) + X2G1, G

′
0(1, 0) 6= 0.

Then

IP (F, G) = IP (X2, G0) = IP (X2, X
r
1) = r = multP (G|L).

¤
As an immediate consequence of the definition via resultants, we

obtain

Theorem 4.3. (Bézout) If F, G are homogeneous polynomials of de-
grees m,n with no common factor, then

(21)
∑

P

IP (F,G) = mn.

If C,D are curves in P2 of degrees m,n with no common component,
then

(22)
∑

P

IP (C, D) = mn.

Proof. It suffices to prove the polynomial version. Applying a suit-
able projective transformation- which doesn’t affect either side of the
claimed equality- we may assume Q = [0, 0, 1] is good center with re-
spect to F,G. As F,G have no common factor, their resultant r is a
nonzero homogeneous polynomial of degree mn, hence r has mn zeros,
counting multiplicities. On the other hand, by the above proof, those
multiplicities correspond exactly to the intersection numbers of F,G.
Therefore the result follows. ¤

As in the case of P1, we can define the group of cycles

Z(P2) = {
∑

ni[Pi] : ni ∈ Z}
and its subset (closed under addition) Z+(P2) of cycles with nonnega-
tive coefficients. The degree of a cycle is defined as

deg(
∑

ni[Pi]) =
∑

ni ∈ Z.

Given curves C,D without common component, we can define their
intersection cycle C ·D or I(C,D) as

(23) C ·D =
∑

P∈P2

IP (C, D)[P ]

We similarly define F ·G or F ·C. Then Bézout’s Theorem is just the
statement that

deg(C ·D) = deg(C) deg(D).
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Theorem 4.4. (Local intersection inequality) If F,G have multiplici-
ties r, s at P , then

IP (F,G) ≥ rs.

Proof. We may assume P = [1, 0, 0] and dehomogenize as usual. Write

f = f0x
r + f1x

r−1y + ... + fryr + fr+1y
r+1...

g = g0x
s + g1x

s−1y + ... + gsy
s + gs+1y

s+1...

with fi, gi polynomials in x. Then we have the resultant

(24) r = det




f0x
r ... fr fr+1 ... ... 0

0 f0x
r ... fr fr+1... ... 0

...
f0x

r ... fm

g0x
s ... gs gs+1 ... ... 0

0 g0x
s ... gs gs+1... ... 0

...
g0x

s ... gn




Now as in the proof of Thm 2.3, multiply the 1st row by xs, the 2nd
by xs−1 etc., then the sth row by xr etc. Then the 1st column becomes
divisible by xr+s, the 2nd by xr+s−1 etc. Then the same computation as
in the proof of Thm 2.3 yields that the x-multiplicity of r, i.e. IP (F, G),
is at least rs.

¤
Corollary 4.5. If F, G have no common factors then

deg F deg G ≥
∑

µP (F )µP (G).

Corollary 4.6. If F of degree n has no multiple factors then

n(n− 1) ≥
∑

µP (F )(µP (F )− 1).

Proof. Choosing coordinates properly, we may assume F has no irre-
ducible factor R independent of X0, hence F0 = ∂F/∂X0 6= 0.

Lemma 4.7. If G is a common factor of F, ∂F/∂X0 then either G is
a multiple factor of F or ∂G/∂X0 = 0.

Proof. We may assume G is irreducible. Write

F = GmH,G - H.

Then
F0 = GmH0 + mG0G

m−1H

Since this is divisible by G, G|G0G
m−1H so either m > 1 or G0 = 0.

¤
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To prove the corollary, notice that

µP (F0) ≥ µP (F )− 1

By the Lemma, F and F0 cannot have any common factor in our case,
so we are done by the previous Corollary.

¤
The local intersection inequality yields quite a bit more information

on the ’amount of singularity’ a curve can have. For example, suppose
C is a cubic with 2 singular points P1, P2 and apply the above Cor.
4.5 to C and the line L = P1, P2. We get a contradiction unless L is
a component of C. In particular, an irreducible can have at most one
singular point P , and P must be a double point. This reasoning can be
generalized as follows.

Note that the vector space Vn of homogeneous polynomials of degree
n in X0, X1, X2 is of dimension

(
n+2

2

)
. Moreover, it is easy to check that

the subspace Vn(r, P ) of polynomials having multiplicity at least r at
p is of codimension

(
r+1
2

)
. It follows that for any collection of points

P1, ..., Pk and natural numbers r1, ..., rk, the subspace Vn(r1, P1; ... :
rk, Pk) of polynomials having multplicity at least ri at each Pi, i =
1, ..., k is of codimension at most

∑ (
ri+1

2

)
.

Theorem 4.8. Let F be an irreducible polynomial of degree n having
points Pi of multiplicity ri, i = 1, ..., k. Then

(25)
∑

ri(ri − 1) ≤ (n− 1)(n− 2)

Proof. We have
∑

ri(ri − 1)/2 ≤ n(n− 1)/2 ≤ (n− 1)(n + 2)/2 = dim Vn−1 − 1.

Therefore there exists a polynomial G of degree n−1 having multiplicity
at least ri−1 at each Pi, and through (n−1)(n+2)/2−∑

ri(ri−1)/2
further points on C. Since F, G can have no common factor, Bézout’s
Theorem and the intersection inequality yield

n(n− 1) ≥
∑

ri(ri − 1) + (n− 1)(n + 2)/2−
∑

ri(ri − 1)/2

which is the inequality claimed. ¤
Example 4.9. For n = 2 the Theorem says that an irreducible conic
is nonsingular, which we knew already. For n = 3 it says an irreducible
cubic has at most 1 singular point of multiplicity 2 (double point).
Example: X0X

2
2 = X3

1 + X2
1X0.

For n = 4 it says an irreducible quartic either has 3 or fewer double
points, or a triple point and no other singularities. All these cases
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actually occur. Examples: X2
0X

2
1 + X2

1X
2
2 + X2

0X
2
2 (3 double points),

X0(X
3
1 + X3

2 ) + X4
1 + X4

2 (1 triple point).

Theorem 4.10. Let C be an irreducible curve of degree n having points
Pi of multiplicity ri, i = 1, ..., k such that

(26)
∑

ri(ri − 1) = (n− 1)(n− 2)

Then there is a homogeneous parametrization

f : P1 → C.

Proof. (Sketch) As in the preceding proof, consider the vector space
Vn−1(r1 − 1, P1; ...; rk − 1, Pk) which by our hypothesis has dimension
at least (

n

2

)
−

(
n− 2

2

)
= 2n− 1.

Choose 2n− 3 further distinct points Q1, ..., Q2n−3 on C. Then

dim Vn−1(r1 − 1, P1; ...; rk − 1, Pk; 1, Q1 :, ...; 1, Q2n−3) ≥ 2.

Choose a 2-dimensional subspace W of this vector space. W may be
identified with k2. Note that

n(n− 1)−
∑

ri(ri − 1)− (2n− 3) = 1

Now for F ∈ W , we have

F.C −
∑

ri(ri − 1)Pi −
∑

Qi

is a nonnegative cycle on C of degree 1, hence of the form ZF so defining

f : P1 → C,

F 7→ ZF

yields a nonconstant map. Now results of general algebraic geometry,
not covered in this course, show that f is automatically a homogeneous
parametrization. ¤


