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0. Introduction

Our purpose here is to develop a ’canonical’ approach to infinitesimal and for-
mal deformation theory. For simplicity we shall focus in the paper mainly to one
fundamental-and somewhat typical-case, that of a compact complex manifold X
without global vector fields. Our starting point, and model , is the classical (first-
order) Kodaira-Spencer formalism: this associates to any deformation X/S with
special fiber X a ’Kodaira-Spencer’ map

κ : T0S → H1(X, T )

where T = TX is the tangent sheaf, and consequently obtains a canonical identifi-
cation between the set of first-order deformations of X and the cohomology group
H1(X, T ). It is then natural to seek a higher-order analogue of this, for n-th order
tangent spaces and n-th order deformations. At a minimum, one would like an n-th
order analogue of κ:

κn = κn(X/S) : T (n)S → (?)n

where (?)n is an explicit ( and preferably computable) cohomological functor of X
which, at least in favorable cases (e.g. when a global moduli space exists), should
be canonically identifiable with the n-th order tangent space at a smooth point of
the moduli space. Put another way, one knows, when H0(T ) = 0, the existence of
an universal formal deformation

X̂/Ŝ = lim
n

Xn/Sn.
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The problem is to write each Xn/Sn, i.e, the universal n-th order deformation,
as an explicit cohomological functor of X , extending the above Kodaira-Spencer
identification of first-order deformations.

Our approach to this is to combine some earlier constructions from [R1] with an
important and very novel insight coming out of some work of Beilinson, Drinfeld and
Ginzburg, cf. [BG]. The latter is, among other things, concerned specifically with
deformations of vector bundles and principal bundles on a fixed complex curve X.
It gives a formula for the n-th order cotangent space to the moduli of such bundles
as H0 of a suitable sheaf on the Knudsen-Mumford space X̂n parametrizing n-
tuples of points on X. This suggests the simple but stunning–to the author–and
very broad philosophy that n-th order deformations should be related to n-tuples:
e.g. that T (n)M or something similar ought to be writable in terms of cohomology,
at least on some sort of parameter space for n-tuples on X (notwithstanding that
a good analogue of X̂n is not known if dim X > 1).

Here we will realize this philosophy as follows. First, we construct certain spaces
X < n >, related to symmetric products, which we call the very symmetric products
of X. To be precise, X < n > parametrizes the nonempty subsets of X of cardinality
≤ n. These naturally form a tower:

X = X < 1 >⊂ X2 = X < 2 >⊂ X < 3 > · · · ⊂ X < n > · · · ⊂ X < ∞ >=
lim
→

X < n > .

Then on X < ∞ > we construct a certain complex J · = J ·(TX) which we call the
Jacobi complex of X: this is essentially just a multivariate version of the standard
complex used to compute the Lie algebra homology of TX . cf. [F] (indeed the latter
homology coincides with the cohomology of J · along X < 1 >). The subcomplex
FnJ · =: J ·n is natually supported on X < n >⊂ X < ∞ >. This material is
developed in Sect. 2. With it, we will prove the following

Theorem 0.1. Let X be a compact complex manifold with H0(TX) = 0 and let J
be the Jacobi complex of X. Then

(i) for each n there is a canonical ring structure on

Ru
n = C⊕H0(Jn)∗

and a canonical flat deformation Xu
n/Ru

n, and these fit together to form a direct
system with limit

X̂u/R̂u = lim
n

Xu
n/Ru

n ;

(ii) for any artin local C−algebra Rn of exponent n and flat deformation Xn/Rn

of X, there is a canonical Kodaira-Spencer ring homomorphism

αn = αn(Xn/Rn) : Ru
n → Rn

and an isomorphism

Xn/Rn
∼→ α∗nXu

n = Xu
n ×Ru

n
Rn ;

(iii) if R̂ = lim
←

Rn is a complete local noetherian C−algebra and X̂ = lim Xn/Rn,

then α̂ = limn αn : R̂n → R̂ exists and X̂/R̂ = α̂∗(X̂u/R̂u)

Note that, effectively, constructing the n-universal deformation Xu
n/Ru

n amounts
to associating to any local homomorphism β : Ru

n → Rn to another artin local
algebra of exponent n a deformation Xn/Rn = (Xn/Rn)(β): indeed given Xu

n/Ru
n
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exists, of course (Xn/Rn)(β) = β∗(Xu
n/Ru

n); conversely, if the (Xn/Rn)(β) exist
compatibly for all β, just set Xu

n/Ru
n := (Xn/Rn)(id) where id:Ru

n → Ru
n is the

identity. Of course, the latter remark is just a tautology, but a useful one, as we
shall find it most convenient to construct the (Xn/Rn)(β) directly.

The proof of the Theorem is given mainly in Sect. 4, after a different and more
concrete argument in the second- order case is given in Sect. 3. The proof is based
on the idea that a deformation of X, i.e. of its structure sheaf OX , can be obtained
by taking a suitable (e.g. Dolbeault or Čech) resolution of OX and appropriately
deforming the differentials in the resolution. We will show that such deformations of
the differentials can be measured by the Jacobi complex. The familiar integrability
condition of Kodaira-Spencer on the one hand is the condition that the deformed
differential have square 0, i.e. yields a complex, and on the other hand is a cocycle
condition in the Jacobi (bi)complex.

The result naturally generalizes (cf. Sect. 5). If g is a sheaf of C- Lie algebras
on X and E a g-module (both assumed reasonably ’tame’), let ḡ be the unique
quotient of g acting faithfully on E and assume that H0(ḡ) = 0. For any artin local
C-algebra (R, m) of exponent n we may define a sheaf of groups GR on X by

GR = exp(g ⊗m)

(i.e. GR is g ⊗ m with multiplication determined by the Campbell- Hausdorff
formula) and similarly ḠR = exp(ḡ ⊗ m). Then g-deformations of E over R are
locally trivial deformations with transitions in ḠR, and are naturally classified
by the nonabelian Čech cohomology set Ȟ1(X, ḠR). Our construction yields a
bijection v = vR,E between these and a certain subset of H0(Jn(ḡ))⊗m (i.e. the set
of ’morphic’ elements). For n ≥ 3 this correspondence is given somewhat indirectly
and in particular does not come from an explicit correspondence on the cocycle
level. v apparently depends on both E and g, though its source and target depend
only on ḡ. It is unknown to the author whether (say for E a faithful g-module)
v is independent of E, a fortiori whether it can be defined in terms of g alone.
For another, perhaps more ’conceptual’ interpretation of our construction of the
universal deformation of E, see [R3], Theorem 3.1.

A further generalization, to the case of a sheaf of differential graded Lie algebras,
will be considered in [R3] (though the formal construction generalises directly and
indeed is already stated in this generality here, its interpretation in the dgla case
requires some care).

As indicated above, the existence of the universal formal deformation X̂u/R̂u

was known before, thanks to the work of Grothendieck, Schlessinger, Kuranishi, et
al.: our point is its explicit construction and description. As for applications and
extensions of the method, these have been, and will be given elsewhere, but a few
can be mentioned here.

(i) An analogous deformation theory for deformations of vector bundles (or more
generally locally free sheaves over a fixed locally C-ringed space) and, as one applica-
tion, construction of a symplectic (closed) 2-form on the moduli space, generalising
at the same time constructions of Hitchin (for local systems on Riemann surfaces)
and Mukai (for holomorphic vector bundles over K3 surfaces)[R5].

(ii) A direct construction of the universal variation of Hodge structure associated
to a compact Kähler manifold and resulting study of the (local) period map and
characterisation of its image (local Schottky relations), especially for Calabi-Yau
manifolds and curves [R3],[L].
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(iii) A theory of semiregularity for submanifolds and embedded, as well as rela-
tive deformations and resulting dimension bounds for Hilbert schemes and relative
deformation spaces [R2][R4].

Higher-order Kodaira-Spencer maps, especially associated to ’geometric’ (re-
duced) families, and a version of the Jacobi complex, were discovered independently
and about the same time as this author (Winter 1992) by Esnault and Viehweg , cf.
[EV]; their paper defines higher- order (additive) Kodaira-Spencer classes, but does
not construct the universal family. Some important antecedents (albeit employing
a different viewpoint) are in the work of Goldman-Millson [GM].

1. Coalgebra

The purpose of this section is to characterize the vector space m∗ dual to the
maximal ideal of an artin local C-algebra (R, m). While the general concept of
coalgebra is well known, our application in the artin local case assigns a special role
to the m-adic filtration and its dual, the ’order’ filtration,not present in the general
case. Moreover, it is convenient to state the definition in a more general categorical
setting. Consequently, it will be convenient to give a brief self-contained treatment
here.

By an admissible category we shall mean a small abelian category V admitting an
initial element 0, an internal product, denoted ⊗, which is symmetric and such that
each V ⊗ V decomposes canonically into eigenobjects under the natural Z2-action,
denoted sym2(V ),

∧2(V ). Examples of admissible categories include modules over
a ring S containing 1/2 and complexes of S-modules over a topological space.

By a (V-compatible) Order-Symbolic (OS) structure of order n ≤ ∞ on an object
V of an admissible category V we mean an increasing filtration (i.e. chain of
injections)

V 0 = 0 ⊆ V 1 ⊆ · · · · · · ⊆ V n = V

and mutually compatible ’symbol’ or ’comultiplication’ maps

σi,j : V i/V j → sym2(V i−j), j < i.

(Sometimes we shall use the same notation to denote the induced map V i →
sym2(V i); actually, a moment’s thought shows that σ := σn,1 is sufficient to deter-
mine the rest) . These are assumed to satisfy the natural (co)associativity condition
which states that the following diagram should commute

sym2(V n−1)⊗ V n−1

ϕ

↗ ↘
V/V 1 → sym2 V n−1 ⊂ V n−1 ⊗ V n−1 V n−1 ⊗ V n−1 ⊗ V n−1

ψ

↘ ↗
V n−1 ⊗ sym2(V n−1)

ϕ = σn−1,1 ⊗ id, ψ = id⊗ σn−1,1

An OS structure V is said to be standard if σ is injective ( hence σn,j is injective
for all j < n).

We can now state the basic result about OS structures on finite-dimensional
vector spaces, which relates them with artin local algebras.
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Proposition 1.1. There is an equivalence of categories between OSn, the category
of OS structures of order n on finite dimensional C-vector spaces, and FRn, the
category of commutative artin local C-algebras (R, m) of exponent n together with
a super-m-adic filtration (mi ⊇ (m)i), where standard structures correspond with
m-adically filtered algebras. The correspondence is given by

(V, V ·, σ) 7→ (C⊕ V ∗, V i⊥ = (V/V i)∗, σ∗n)

(S, m, m·) 7→ (m∗,m⊥
i−1 = (m/mi−1)∗, comultiplication).

Proof. Basically trivial. Given V etc. define

R = C⊕ V ∗,m = V ∗,mi = (V i−1)⊥ = (V/V i−1)∗ ⊂ V ∗

Dualising σ yields the multiplication map

sym2(m) → sym2(m/mn) σ∗→ m2 ⊂ m

This extends in an obvious way to a commutative associative multiplication map
sym2 R → R. By construction, σ∗ descends to a map

sym2(m/mi)
σi+1,2∗
−→ m2/mi+1

hence m ·mi ⊂ mi+1. So inductively mi is firstly an ideal and then mi ⊇ mi by
induction. The rest is similar. ¤

Thus in particular, to an artin local C-algebra (R,m) of exponent n, we have
a uniquely determined standard OS structure on TnR = m∗, which conversely
determines (R,m). For later use it is convenient to explicate and amplify the
morphism part of the above equivalence.

Corollary 1.2. Let (R, m), (R′,m′) be artin local algebras of exponent n. Then the
following are mutually interchangeable:

(i) a local homomorphism η : R′ → R;
(ii) an OS morphism κ : TnR → TnR′;
(iii) a compatible collection of elements

vi ∈ mn+1−i ⊗ TnR′/Tn−iR′

such that (id⊗σ)(vn) = vn·vn ∈ m2⊗sym2(TnR′) (1.1)

Proof. Only (iii) may require comment. vn evidently determines κ as well as
v1, · · · · · · , vn−1; it is the existence of the latter that ensures that κ is filtration-
preserving, while (1.1) makes κ compatible with comultiplication. ¤

Let us call an element v ∈ mR ⊗ TnR′ as above morphic.

2. Products

2.1. Very symmetric products. Fix a Hausdorff topological space X. For any
n ≥ 1, we denote by Xn and Xn the Cartesian and symmetric products, respec-
tively. The system (Xn, n ∈ N) forms essentially a simplicial configuration ( while
the Xn’s are related to one another in even more complicated ways). On the
other hand, the system of the n-th order neighborhoods of a point(say on a moduli
space), n ∈ N, is simply a tower. This indicates that the ’right’ spaces of point-
configurations to work with in deformation theory are neither Xn or Xn but a
suitable modifications thereof which form a tower. We now proceed to define these
spaces which we call the very symmetric products (powers) of X and denote by
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X < n >. A word to the wise: defining X < n > may appear to be a fastidious
bother as (sheaf) cohomology behaves simply with respect to finite maps; however,
it is complexes that we must work with, and even to define the coboundary maps in
appropriate complexes, a certain minimum amount of ’quotienting’ must be effected
, e.g. it seems that the Jacobi complexes defined below on X < n > cannot be
defined on any natural space strictly ’above’ X < n > (and this certainly includes
Xn).

As a set , we define
X < n >= Xn/ ∼
(x1, · · · , xn) ∼ (y1, · · · , yn) iff {x1, · · · , xn} = {y1, · · · , yn}.
Thus X < n > parametrises precisely the nonempty subsets of X of cardinality

≤ n. We endow X < n > with the quotient topology induced by the projection
πn : Xn → X < n >. Note that we indeed have a tower of closed embeddings

X = X < 1 >⊂ X2 = X < 2 >⊂ X < 3 > · · · ⊂ X < n > · · · ⊂ X < ∞ >=
lim
→

X < n > .

One basis for the topology of X < n > consists of all open subsets U < n > where
U ⊆ X is open. Another, perhaps more useful basis may be described as follows.
Take x = {x1, ..., xk} ∈ X < n > with x1, ..., xk distinct and pick mutually disjoint
neighborhoods Ui 3 xi, i = 1, ..., k. Then define the basic open set

U. = U1 · · ·Uk = πn(
∐

σ∈Sk

∐
P

ni=n

U
nσ(1)

σ(1) × ...× U
nσ(k)

σ(k) ) (2.0)

(note that the set in parentheses is a πn-saturated open subset of X < n >). These
U. clearly form a basis for the topology of X < n >. If X is not Hausdorff, e.g.
a variety with its Zariski topology, a formula such as (2.0) is impossible, therefore
in this case X < n > should be defined as a Grothendieck topology (see below;
however we shall not need this here).

For an alternative, inductive construction of X < n >, let

diagn−1 : Xn−1 → Xn → Xn

be a ’diagonal’ map, e.g. (x1, · · · , xn−1) 7→ (x1, · · · , xn−1, xn−1) ,whose image
Dn−1 is the big ’diagonal’ in Xn (and is independent of the choice of which point
gets doubled). Then

X < n > = Xn

⋃

Xn−1

X < n− 1 > (2.1)

(i.e. the quotient of Xn

∐
X < n − 1 > by the relation πn−1(x) ∼ diagn−1(x)

(i.e. the topological pushout of the pair (diagn−1, πn−1). Indeed it is easy to see
inductively that πn−1 factors through a map Dn−1 → X < n−1 >, so we may also
write

X < n >= Xn

⋃

Dn−1

X < n− 1 > .

Via (2.1), very symmetric products may be defined in more general settings, e.g.
when X is a Grothendieck topology.

For future reference, we let ua,b : X < a > ×X < b >→ X < a + b > be the
natural ’union’ map, which is clearly continuous, and likewise ua,b,c etc; note that
this makes sense even if a or b = ∞. Under u∞,∞, X < ∞ > forms a topological
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semigroup. We also let vb
a : X < a >< b >→ X < ab > be the natural union map.

Note the factorization
πa+b = ua,b ◦ (πa × πb).

It is not hard to see that if X has a structure of (separated) analytic space, then
so does X < n > in a natural way. However, we shall not need this fact. Rather, the
sheaves on X < n > relevant to us will be alternating products of sheaves induced
from X, which now proceed to define. Let S be a ring assumed for simplicity to
contain Q, and A a sheaf of S-modules on X. Let πn : Xn → X < n > as above
be the natural map, and set

τn
S (A) = πn∗(A £S · · ·£S A)

( When S is understood, e.g. S = C, we may suppress it). Note that the symmetric
group Σn acts in a natural way on τn

S (A) and let σn
S(A) (resp. λn

S(A)) denote
the invariant and antiinvariant factors. Note that this definition makes sense on
the symmetric product Xn already, and may also be extended to mixed ( Schur )
tensors in an obvious way.

More explicitly, on an open set U. = U1 · · ·Uk as in (2.0), we can write, e.g.

λn(A)(U.) =
∑
n.

n1∧
(A(U1))⊗ ...⊗

nk∧
(A(Uk)) =:

∑
n.

λn.A(U.) (2.2)

We also agree that λn.A(U.) = 0 if some ni = 0.
When A is replaced by a complex A. of S-modules, these constructions extend in

a natural way to make τn
S (A.), σn

S(A.), λn
S(A.) into complexes (see [FH] for details,

especially on sign rules); for instance

λ2
S(A.) = λ2

S(Aeven)⊕ π2∗(Aeven £ Aodd)⊕ σ2
S(Aodd).

The cohomology of τn
S (A) can be computed by the Künneth formula, at least if

A is S-free, i.e.
Hm(τn

S (A)) = [⊗n
1H ·(A)]m

In fact the n-th tensor power of a Čech complex for A ( with respect to an acyclic
cover of X) yields one for τn

S (A). As everything decompose into± eigenspaces under
the action of Σn, analogous comments apply to σn

S(A) and λn
S(A) (one must take

into account the usual sign rules for cup products, e.g. a ∪ b = (−1)deg a deg bb ∪ a).
For instance, in the case of principal interest to us, we have H0(A) = 0 and then

Hi(X < n >, λn
S(A)) = Hi(X < n >, τn

S (A)) = 0, i < n;

Hn(X < n >, λn
S(A)) = symn

S H1(A) :
in fact, the symmetric power of the Čech complex for A may be used to compute
the cohomology of λn

S(A).
Note that the operation

(A,B) 7→ u∞,∞∗(A £ B)

defines an ’exterior’ product on sheaves (or complexes) on X < ∞ > (likewise
with (∞,∞) replaced by any (a, b), the product being defined on X < a + b >).
Similarly, if v : X < ∞ >< 2 >→ X < ∞ > is the union map,

A 7→ v∗(σ2(A)

defines an exterior symmetric product. These operations endow the category of
S-modules over X < ∞ > with an admissible structure that is different from
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the ’plain’ one (involving ordinary tensor and symmetric products); a similar such
structure exists for any topological semigroup.

Remark The spaces X < n > have recently appeared in the work of Beilinson
and Drinfeld on ’Chiral Algebras’; I am grateful to V. Ginzburg for pointing this
out.

2.2. Jacobi complex.

2.2.1. Definition. Let L. be a sheaf of complex differential graded Lie algebras
(DGLAs) on X. Thus L. is a ”Lie object’ in the category of complexes of C-modules
on X, which means there is a morphism bt : Λ2(L.) → L., whose natural extension
as a derivation of degree -1 on the Grassmann algebra ⊕Λi(L.) satisfies bt2 = 0;
or course ’Grassmann algebra’ and wedge must be understood in the graded sense,
compatible with the gradation on L..Note that bt induces a map

br : λ2(L.) → Λ2(L.) → L.

(i.e. restriction followed by bt). Now we associate to L. a complex J ·(L.) on
X < ∞ > called the Jacobi complex of L., as follows. Set

J−n(L) = λn(L.), n ≥ 1

( where the latter is viewed as a sheaf on X < ∞ > via X < n >⊂ X < ∞ >
and λ is understood in the graded sense); the differential dn : λn(L.) → λ(n−1)(L.)
is defined as follows. First, let alt : τ2(L.) → λ2(L.) be the alternation or skew-
symmetrization map, where λ2(L.) is viewed as a complex on X < 2 > via the
diagonal embedding X → X < 2 >, and set

a = un−2,2∗(id £ alt) : πn∗(£nL.) = un−2,2∗(τn−2L. £ τ2(L.))

→ un−2,2∗(τn−2L. £ λ2(L.)).

Next, set

b = un−2,2∗(id £ br) : un−2,2∗(τn−2L. £ λ2(L.)) → un−2,2∗(τn−2L. £ L.)

= un−2,1∗(τn−2L. £ L.) = τn−1(L.).

Finally let p : τn−1(L.) → λn−1(L.) be the natural alternation map and i :
λn(L.) → τn(L.) the inclusion. Then define

dn = p ◦ b ◦ a ◦ i.

More explicitly, in terms of a decomposition (2.2) over an open subset U. as
in (2.0), dn(U.) is defined on each summand λn.A(U.) as the differential on the
tensor-product complex of the standard complexes of the dgla’s L.(Ui), i = 1, ..., k,
i.e. dn(U.) on a summand λn.A(U.) is a direct sum of maps

λn.A(U.) → λn1,...ni−1,...nkA(U.)

each given by (−1)
P
j<i

nj

id ⊗ δi ⊗ id, where δi is the differential of the standard
complex for L.(Ui) [F] which, as we recall, is given by

δ(t1 ∧ · · · ∧ tn) =
1

(n− 1)!

∑

σ∈Sn

sgn(σ)[tσ(1), tσ(2)] ∧ tσ(3) ∧ · · · ∧ tσ(n)

= [t1, t2] ∧ t3 ∧ ... ∧ tn + [t2, t3] ∧ ... ∧ tn ∧ t1 + ... + [tn, t1] ∧ t2 ∧ ... ∧ tn−1.
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At this point let us introduce some notation. For a multiindex I = (i1 < ... < ia) ⊂
{1, ..., n} =: [n], set |I| = a, sgn(I) = (−1)

P
(ij−j), tI = ti1 ∧ ... ∧ tia

, [n] − I =
complementary multiindex, and if I = (i < j), [tI ] = [ti, tj ]. Then we can also write

δ(tJ) =
∑

|I|=2

sgn(J) sgn(I) sgn(J − I)[tI ] ∧ tJ−I .

I claim next that with these dn, J(L.) forms a complex, i.e. dn−1 ◦ dn = 0.
indeed this follows immediately from the fact the δ form a complex (for a dg Lie
algebra), plus the standard fact that the tensor product of complexes is a complex;
alternatively, note first that for n > 3, dn−1 ◦ dn, like dn, admits a factorization as
p ◦ c ◦ i where c = un−3,3∗(id £ (d2 ◦ d3)), so it suffices to prove d2 ◦ d3 = 0, where,
NB, d2 ◦ d3 factors through a map

δ2 ◦ δ3 :
3∧

(L.) → L.

on X = X < 1 >=suppJ1(L.). Indeed,

δ2(δ3(t1 ∧ t2 ∧ t3)) = d2([t1, t2] ∧ t3 + [t2, t3] ∧ t1 + [t3, t1] ∧ t2)

= [[t1, t2], t3] + [[t2, t3], t1] + [[t3, t1], t2] = 0
by the Jacobi identity for L.. Put J ·n(L.) = J≥−n(L.), which may be viewed as

complex on X < n >.

2.2.2. OS structure. Our next goal is to define an OS structure on V n(L.) =
H0(Jn(L.)). Indeed this will be induced by an OS structure on J(L.) itself and
the Jn(L.), in the sense of the admissible structure on the category of complexes of
sheaves on X < ∞ > discussed in Sect 2.1. To this end consider first the complex
σ2(Jn−1(L.)) on X < n−1 >< 2 > (σ2 = signed symmetric square), and its image
K . on X < 2n− 2 > by the natural map

v = v2
n−1 : X < n− 1 >< 2 >→ X < 2n− 2 >

(or, what is the same, by v2
∞) v∗σ2(Jn−1(L.) =: K ., which takes the form :

... → λ3(L.) £ L. ⊕ σ2(λ2(L.)) → λ2(L.) £ L. → λ2(L.)

Now I claim that the natural direct summand inclusions

λ2(L.) → λ2(L.)

λ3(L.) → λ2(L.) £ (L.)
λ4(L.) → λ3(L.) £ L. ⊕ σ2(λ2(L.))

...

yield a morphism of complexes

(Jn/J1)(L.) → K .

which means that the following diagrams commute for r ≡ 1 mod 4

λr(L.) → λr−1(L.) (2.3)

↓ ↓∑
a<r/2

ua,r−a∗(λa(L.) £ λr−a(L.)) → ∑
1<a<r/2

ua,r−a∗(λa−1(L.) £ λr−a(L.))⊕ v∗(σ2(λ(r−1)/2(L.)))

with similar diagrams for other congruence classes of r mod 4. Now for a basic
open set U. (cf. (2.0)), K .(U.) is clearly just the symmetric square of J .

n−1(L.)(U.),
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which itself is a tensor product of standard complexes associated to the L.(Ui).
It therefore suffices to prove the commutativity of the analogue of (2.3) for the
standard complex of a Lie algebra L, which is

∧r(L) → ∧r−1(L) (2.4)
↓ ↓∑

a<r/2

∧a(L) £
∧r−a(L) → ∑

1<a<r/2

∧a−1(L) £
∧r−a(L)⊕ sym2(

∧(r−1)/2(L))
.

where, e.g. the left vertical map takes an element t1 ∧ ... ∧ tr to
∑

a

(−1)a(r−a)
∑

|I|=a

sgn(I) sgn([r]− I)tI ⊗ t[r]−I , (2.5)

and the bottom arrow takes the latter to∑

a≤(r−1)/2

(−1)a(r−a)(
∑

|I|=a

∑

J⊂I,|J|=2

sgn(J) sgn(I − J) sgn([r]− I)[tJ ] ∧ tI−J ⊗ t[r]−I

+(−1)a
∑

|I|=a

∑

J⊂[r]−I,|J|=2

sgn(J) sgn(I) sgn([r]− I − J)tI ⊗ [tJ ] ∧ t[r]−I−J). (2.6)

where we have used ⊗ to denote multiplication in sym2(
∧(r−1)/2(L)) which occurs

in the second double sum for a = (r − 1)/2.
Going clockwise, t1 ∧ ... ∧ tr first maps to

∑

J⊂[r],|J|=2

sgn(J) sgn([r]− J)[tJ ] ∧ t[r]−J ,

then the right vertical arrow sends each summand to a sum analogous to (2.5) with
[r] replaced by the ordered set ({J} < [r] − J) (i.e. {J}∐

([r] − J), ordered by
putting {J} first) , which may be written as

∑

a≤(r−1)/2

(
∑

J⊂I,|I|=a

sgn(J) sgn(I−J) sgn([r]−I)(−1)a−1(−1)(a−1)(r−a)[tJ ]∧tI−J⊗t[r]−I

+
∑

J⊂[r]−I,|I|=a

sgn(J) sgn(I − J) sgn([r]− I)(−1)a(r−1−a)tI ⊗ tJ ∧ t[r]−J).

As (−1)(r−a+1)(a−1) = (−1)a(r−a), (−1)a(r−1−a) = −(−1)a(r−a), we see that by
summing over J we get the same thing as (2.6), so the diagram commutes. Other
congruence classes of r mod 4 are treated similarly.

Thus we have direct summand embeddings

σn : Jn(L.)/J1(L.) = J−n≤·≤−2(L.) → v∗σ2(Jn−1(L.),

σ∞ : J(L.)/J1(L.) → v2
∞∗σ

2(J(L.),
I claim next that with this σn, Jn(L.) forms an OS structure (and likewise with

n = ∞). Indeed commutativity and standardness are obvious, and it suffices to
check the associativity condition, which follows from the equality of the composite
maps (where we have omitted the L.)

λr →
∑

a+b=r

ua,b∗(λa£λb) →
∑

a+b=r

∑

b′+b”=b

ua,b∗(λa£ub′,b”∗(λb′£λb”)) =
∑

a+b+c=r

ua,b,c∗(λa£λb£λc)

λr →
∑

a+b=r

ua,b∗(λa£λb) →
∑

a+b=r

∑

a′+a”=a

ua,b∗(ua′,a”∗(λa′£λa”)£λb) =
∑

a+b+c=r

ua,b,c∗(λa£λb£λc).
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Working over a basic open set U. and decomposing as in (2.2), we are again reduced
to proving the corresponding assertion for the exterior powers of a vector space L,
which is standard: indeed it boils down to the fact that the duality isomorphism

.∧
(L) ' (

.∧
(L∗))∗

endows the Grassmann algebra
∧.(L) with a coalgebra structure that is (co)associative

because, as is well known,
∧.(L∗) is associative; alternatively, the assertion can be

verified by a simple computation. This completes the verification that (J(L.), σ∞)
is indeed an OS structure, with substructures (Jn(L.), σn). It follows immediately
that V (L.) = H0(J(L.) and V n(L.) = H0(Jn(L.) inherit OS structures, which are
standard provided H≤0(L.) = 0.

By Section 1 then we obtain an inverse system of artin local algebras

Rn(L.) = C⊕ V n(L.)∗

and their limit R̂(L.) which might be called the deformation ring associated to L..
In particular, if X is a compact complex manifold, its tangent sheaf T = TX

forms a Lie algebra under Lie bracket of vector fields, and we denote the associated
Jacobi complexes by Jn,X or Jn, the corresponding OS structure by V n

X or V n, and
the corresponding ring by Ru

n,X or Ru
n, As we shall see, when H0(T ) = 0 the latter

turns out to be the base ring of the n-universal deformation of X.

2.3. Obstructions. Assume L. is a dgla with H≤0(L.) = 0. Note that the long
cohomology sequence associated to

0 → Jn−1(L.) → Jn(L.) → λn(L.)[n] → 0, n ≥ 2,

gives rise to a ’big obstruction’ map

Obn : symnH1(L.) → H1(Jn−1(L.)).

Let Kn = ker(Obn), so that we have an exact sequence

0 → V n−1 → V n → Kn → 0.

Let Kn−1.H1(L.) denote the intersection of symnH1(L.) and Kn−1⊗H1(L.) consid-
ered as subspaces of ⊗nH1(L.). In view of the natural direct summand embedding

(Jn/J1)(L.) → un−1,1∗(Jn−1(L.) £ L.),

analogous to σn above, it is easy to see that Kn−1.H1(L.) coincides with the image
of the natural map

H0(Jn/J1)(L.) → symnH1(L.).
Now the diagram

0 → J1(L.) → Jn(L.) → (Jn/J1)(L.) → 0
↓ ‖ ↓

0 → Jn−1(L.) → Jn(L.) → λn(L.)[n] → 0

induces
H0((Jn/J1)(L.)) → H2(L.)

↓ ↓
symnH1(L.) → H1(Jn−1(L.)

and we let H2(L.) denote the image of the right vertical arrow. Then we get a map,
called the small obstruction map

obn : Kn−1.H1(L.) → H2(L.).
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Since elements in the kernel of Obn lift toH0(Jn(L.)) and in particular toH0((Jn/J1)(L.)),
they automatically lie in Kn−1.H1(L.) and belong to the kernel of obn; hence

Kn = ker obn.

Thus Kn may be described inductively, starting with K1 = H1(L.), ob1 = 0.

2.4. Coefficients. The following remark will be useful in Sect 4. Let

m. = (m = m1 ⊃ m2...)

be a filtered vector space (for example, the set of powers of the maximal ideal of an
artin local algebra). Then the complex Jn(L.) ⊗ m- whose cohomology coincides
with H.(Jn(L.)) ⊗ m- contains a natural subcomplex denoted Jn(L., m.) whose
term in degree i is J i

n(L.)⊗mi. By considering the exact triangle associated to the
natural map

Jn(L.,m.) → Jn(L.)⊗m

and its long cohomology sequence, it is immediate that, provided H≤0(L.) = 0, the
induced map

H0(Jn(L.,m.)) → H0(Jn(L.))⊗m

is injective.

3. Second order deformations

For n = 1, Theorem 0.1 reduces to standard first -order Kodaira-Spencer defor-
mation theory. Before taking up the general n-th order case in the next section,
we consider here the second-order case , where it is possible to give a rather direct
proof which illustrates some- though by no means all- of the ideas: the proof is
based on a cocycle- level construction which does not generalize to higher order.
Thus this section is logically unnecessary for the rest of the paper.

Let us fix an artin local C-algebra(R2, m2) with reduction (R1,m1) = (R2/m2
2,m2/m2

2)
as well as an acyclic (say polydisc) open cover (Uα) of X, to be used in computing
Čech cohomology. To a flat deformation

X2/R2 = Spec(O2)

we seek to associate a Kodaira-Spencer homomorphism

α2 = α2(X2/R2) : Ru
2 → R2

or equivalently (cf. Section 2) a morphic element

v2 = v2(X2/R2) ∈ m2 ⊗H0(J2)

which is to be described by a hypercocycle
v2 = (u, 1

2u2) ∈ Č1(T )⊗m2⊕ sym2 Č1(T )⊗m2
2 ⊂ Č0(J2)⊗m2 (3.1)

where u = (uαβ) is required to be a lifting of

v1 = (v1αβ) ∈ Ž1(T )⊗m1,

a cocycle representing O1 = O2 ⊗R2 R1 (where O2 is the structure sheaf of X2),
and u2 means exterior cup product in the cochain sense,i.e

(u2)αβγ = uαβ × uβγ ∈ sym2 Č1(T )⊗m2
2 ⊂ Č2(λ2T )⊗m2

2

Note that the particular form of (3.1) makes the morphicity of v2 automatic pro-
vided it is a hypercocycle, which means explicitly
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−1
2
[uαβ , uβγ ] = uαβ + uβγ + uγα = δ(u) (3.2)

δ = Čech coboundary
Note that the LHS of (3.2) depends only on the reduction v1αβ of uαβ mod m2

2

Now to define (u) we proceed as follows. As O2/R2 in a flat deformation of O,
it is locally trivial, hence we have isomorphisms of R2−algebras

ψα : O2(Uα) → O(Uα)⊗C R2

which give rise to a gluing cocyle given by

D2
αβ = ψα ◦ ψ−1

β ∈ AutR2(O(Uα ∩ Uβ)⊗R2)

which reduces mod m2
2 to

D1
αβ = I + v1αβ ∈ AutR1(O(Uα ∩ Uβ)⊗R1),

a gluing cocycle defining O1.
Now it is easy to see that D2

αβ is uniquely expressible in the form

D2
αβ = exp(uαβ) (3.3)

= I + uαβ + 1
2u2

αβ , uαβ ∈ m2 ⊗ T (Uα ∩ Uβ) :

indeed starting with an arbitrary lift u′αβ of v1αβ to m2 ⊗ T (Ua ∩ Uβ), exp(u′αβ)
and D2

αβ are R1-algebra homomorphisms which agree mod m2
2, hence differ by an

m2
2- valued derivation tαβ and we may set uαβ = u′αβ + tαβ . Now we simply plug

(3.3) into the cocycle equation for D2:

D2
αβD2

βγ = D2
αγ (3.4)

which becomes,

I + uαβ + uβγ +
1
2
u2

αβ + uαβuβγ +
1
2
u2

βγ = I + uαγ +
1
2
(uαγ)2

= I + uαγ +
1
2
(u2

αβ + uαβuβγ + uβγuαβ + u2
βγ)

as (uαβ) is a cocycle mod m2
2. This is obviously equivalent to (3.2). Thus v2 is a

hypercocycle , as claimed.
Now the foregoing argument can essentially be read backwards: given a morphic

element
v2 ∈ m2 ⊗H0(J2),

choose a representative for v2 of the form

((uαβ), (u′αβγ)) ∈ Č ′(T )⊗m2 ⊕ sym2 Č ′(T )⊗m2
2 ⊂ Ž0(J2),

where (uαβ) is a lifting of (v1αβ); thus compatibility with comultiplication yields
that v2 may also be represented by

((uαβ),
1
2
(uαβ)2).

Then simply setting D2
αβ = exp(uαβ), the cocycle condition (3.4) follows from the

hypercocycle condition (3.2), so that (D2
αβ) yields a locally trivial flat deformation

X2/R2 = SpecO2, which we denote by Φ2(α2) ( though it is yet to be established
that this is independent of choices).
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This construction applies in particular to the identity map Ru
2 → Ru

2 , thus
yielding a flat deformation over Ru

2 which we call an universal second order defor-
mation and denote by Xu

2 = Spec(Ou
2 ). It is moreover clear by construction that

Φ2(α2) = α∗2(X
κ
2 /Rn

2 ) for any α2 : Ru
2 → R2 and also that for any second-order

deformation X2/R2,

X2/R2 ≈ α2(X2/R2)∗(Xu
2 /Ru

2 ) ≈ Φ2(α2(X2/R2)).

Similarly,
α2(Φ2(β)) = β.

Thus α2 and Φ2 establish mutually inverse correspondences, albeit on the cocycle
level. What has to be established is that this correspondence descends to cohomol-
ogy , i.e. non-abelian cohomology of Aut-cocycles and hypercohomology respec-
tively. Here we give a computational proof of this; in the next section we shall give
a more ’conceptual’ proof.

In one direction, consider two cohomologous Aut-cocycles

D2
αβ ∼ D2′

αβ = AβD2
αβA−1

α

Aα ∈ AutR2(O(Uα)⊗R2), as above uniquely expressible in the form exp(wα), wα ∈
m2 ⊗ T (Uα). Thus

D2′
αβ = (I + wβ +

1
2
w2

β)(I + uαβ +
1
2
u2

αβ)(I − wα +
1
2
w2

α)

= I + (uαβ + wβ − wα +
1
2
[wβ − wα, uαβ ] +

1
2
[wα, wβ ]) +

1
2
(uαβ + wβ − wα)2

= exp(uαβ + wβ − wα +
1
2
[wβ − wα, uαβ ] +

1
2
[wα, wβ ])

= : exp(u′αβ)

Then v′2 = v2(D2′) = (u′, 1
2 (u′)2) is cohomologous to v2 because

v′2 − v2 = ∂((wα),
1
2
(wα × uαβ) +

1
2
(wα × wβ))

where ∂ = δ ± b is the differential of the Čech bicomplex of Č(J2). Conversely,
supposing v2 = (u, 1

2u2), v′2 = (u′, 1
2u′2) are cohomologous,

v′2 − v2 = ∂((wα), (tαβ)) .

Now as H0(T ) = 0, δ(t) = 1
2 (u′)2− 1

2u2 determines (t) up to adding a Čech cobound-
ary sα − sβ and, using bδ = ±δb this may be absorbed into (wα). Thus we may
assume

tαβ =
1
2
wα × uαβ +

1
2
wα × wβ ,

so that (D2
αβ = exp(uαβ)) and (D2′

αβ = exp(u′αβ)) are cohomologous as above. This
finally completes the proof of Theorem 0.1 for n=2.

4. n-th order deformations

We now complete the proof of Theorem 0.1 in the general n-th order case, n ≥ 1,
following in part the pattern of the case n=2 and using induction (however, the
results of Sect.3 are not used). The argument becomes a bit more involved and
less direct. We shall in fact give two (parallel) proofs, using Dolbeault and Čech
cohomology, respectively.
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Fix an artin local C-algebra (Rn,mn) of exponent n, with reduction (Rn−1,mn−1),
etc, and an acyclic open cover (Uα) of X. The main point (in the Čech version) is
to associate a morphic hypercocycle

vn = vn(On/Rn) ∈ mn ⊗ Ž0(Jn) ,

hence a Kodaira-Spencer homomorphism αn(On/Rn) etc- to an Rn-flat deformation
On = OXn of O (and similarly in the Dolbeault version). As before we seek vn of
the form

vn = ε(un) := (un,
1
2
(un)2, · · · ,

1
n!

(un)n) (4.0)

for some cochain un = (unαβ) ∈ Č1(T )⊗mn which is a lift of un−1 ∈ Č1(T )⊗mn

analogously defining vn−1. We shall then show that the cohomology class of vn

is independent of choices. Conversely we shall associate a deformation On to a
hypercocycle vn = ε(un) as in (4.0).

Step 0
We start with a ’reference’ set of isomorphisms of algebras

ψn
α : On(Uα) ∼→ O(Uα)⊗Rn

which yield a gluing cocycle by

Dn
αβ = ψn

α(ψn
β )−1 ∈ AutRn(O(Uα ∩ Uβ)⊗Rn), (4.1)

which as above we express in the form

Dn
αβ = exp(tnαβ), (4.2)

This can be done because, assuming inductively that (4.2) holds for n − 1 and
letting t′n be an arbitrary lift of tn−1 and tn = t′n + ηn, ηn ∈ Č1(T )⊗mn

n, (4.2) can
be rewritten as

Dn
αβ = exp(t′nαβ) + ηn.

so just take ηn = Dn
αβ − exp(t′nαβ), which is in Č1(T )⊗mn

n precisely because (4.2)
holds for n− 1.

We now proceed with the Dolbeault version of the proof, leaving the Čech version
till later.

Step 1: definition of Kodaira-Spencer cocycle
Consider the DGLA sheaf

g. = (A0,.(T ), ∂̄, [, ])

(Γ(g.) is sometimes called the Frohlicher-Nijenhuis algebra); as g. is a soft resolution
of T , Jn(g.) is a soft resolution of Jn(T ) which may be used to compute H0(Jn(T )).
We view Jn(g.) as a bicomplex with vertical differentials induced by ∂̄ and horizontal
ones induced by Lie bracket. As g0 is soft it is easy to see that, up to shrinking our
cover (Uα) we may assume

Dn
αβ = exp(sα) exp(−sβ)

sα ∈ g0(Uα)⊗mn.

Put another way, we may view ψn
α above as a holomorphic local trivialisation

Un
α ' Uα × Spec(Rn)
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Un
α = open subset of Xn corresponding to Uα; on the other hand there is a global

’C∞ trivialisation’ C : X × Spec(Rn) → Xn, and we may set

exp(sα) = (ψn
α) ◦ C (4.3)

Now note that ∂̄ extends formally as a derivation on the universal enveloping
algebra U(g.) and we set

φα = exp(−sα)∂̄(exp(sα)) = D(ad(sα))(∂̄sα) (4.4)

where D is the function

D(x) =
exp(x)− 1

x
=

∞∑

i=0

xi

(i + 1)!
.

Note that

0 = ∂̄Dn
αβ = ∂̄ exp(sα) exp(−sβ) + exp(sα)∂̄ exp(−sβ),

hence
exp(−sα)∂̄ exp(sα) = −∂̄ exp(−sβ) exp(sβ);

since moreover ∂̄(exp(−sβ) exp(sβ) = 0 we have similarly

−∂̄ exp(−sβ) exp(sβ) = exp(−sβ)∂̄ exp(sβ), (4.5)

which means precisely that the φα glue together to a global section

φ = φn ∈ Γ(g1) = A0,1(T )⊗mn.

Next, note using (4.4) that

∂̄φα = ∂̄ exp(−sα)∂̄ exp(sα) = ∂̄ exp(−sα) exp(sα) exp(−sα)∂̄ exp(sα) = −φαφα;

recalling that for odd-degree elements φ, ψ ∈ g., [φ, ψ] = φ.ψ + ψ.φ, we conclude
that the integrability equation

∂̄φ =
−1
2

[φ, φ] (4.6)

is satisfied, and consequently

ε(φ) = (φ,
1
2
φ× φ, ...,

1
n!

φ× ...× φ) ∈ ⊕ symi(Γ(g1))⊗mn ⊂ Γ(Jn(g.))⊗mn

is a hypercocycle, which may be used to define a Dolbeault analogue of vn (auto-
matically morphic, due to the ’exponential’ nature of ε).

Step 2: independence of choices
We claim next that the cohomology class

[ε(φ)] ∈ H0(Jn(g.))⊗mn

is independent of choices (i.e. of C, ψn
α, the covering (Uα) being fixed). This easily

implies that the class [ε(φ)] is canonically associated to the deformation On. Clearly
all possible φ’s can be obtained by varying C only, replacing it by C1 = C ◦ exp(u)
where u ∈ Γ(g0), which leads to

φ1 = exp(−u)∂̄(exp(u)) + exp(−u)φ exp(u).

Now set
φt = exp(−tu)∂̄(exp(tu)) + exp(−tu)φ exp(tu).

Thus we are claiming that the cohomology class [ε(φt)] is constant independent of
t. To this end, note that if g. is endowed with a suitable metric, H0(Jn(g.)) inherits
a (quotient) topology as cocyles/coboundaries and by standard (real) Hodge theory
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this topology is separated (i.e. coboundaries are closed), hence coincides with the
standard Euclidean topology (on a finite-dimensional vector space), and likewise
for H0(Jn(g.))⊗mn. Consequently, to show constancy it suffices to show that the
derivative d/dt(ε(φt)) is null-cohomologous. Now we compute that

φ′t := d/dt(φt) = ∂̄(u) + ad(u)(φt)

and similarly

d/dt(ε(φt)) = (φ′t, φ
′
t × φt, ...,

1
(n− 1)!

φ′t × φt × ...φt).

As φt satisfies the integrability condition as in (4.6), a direct computation shows
that the latter is the coboundary of

(u, u× φt, ...,
1

(n− 1)!
u× φt...× φt) ∈ ⊕Γ(g0)⊗ symi Γ(g1)

(the integrability condition ensures the vanishing of the coboundary’s components
in Γ(g0)⊗ symi−1 Γ(g1)⊗Γ(g2), i = 1, ..., n− 1.) Thus [ε(φt)] is independent of t as
claimed.

Step 3: from cocycles back to deformations
The key to going back is understanding the ’meaning’ or interpretation of the

tensor φ. To this end, note that, as operators,

∂̄(exp(sα)) = [∂̄, exp(sα)],

therefore clearly

φ. = exp(−s.)∂̄(exp(s.))− ∂̄. (4.7)

What (4.7) means is this: recall the map C above which yields a C∞ trivialisation
of the deformation Xn/Rn and in particular bundle isomorphisms

A0,.(X)⊗Rn ' A0,.(Xn/Rn)

under which the canonical Dolbeault operator ∂̄n on the RHS corresponds on the
LHS precisely to ∂̄0⊗ 1+φ. The integrability equation (4.6) reads, on the operator
level

∂̄φ + φ∂̄ = φφ, ∂̄ := ∂̄0 ⊗ 1,

i.e. is equivalent to ∂̄2
n = 0.

Given this, it is now clear how to go backwards. Given φ = φn ∈ A0,1(T )⊗mn

we may define an operator dn = dφ
n on Ã0,.

n := A0,.(X)⊗Rn by

dn = ∂̄ + φ,

and the integrability equation (4.6) guarantees that (Ã0,.
n , dn) is a complex; by

semicontinuity, this complex is clearly exact in positive degrees (because Ã0,.
n ⊗ C

is) and we may define
On = ker(dn, Ã0,0

n ).

As dn is an Rn− linear derivation, On is a sheaf of Rn- algebras. That On is Rn-flat
is a consequence of the following easy observation.

Lemma 4.1. Let R be an artin local ring with residue field k , M an R-module
and M → N . a flat resolution such that M ⊗k → N .⊗k is also a resolution. Then
M is flat.
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Proof. Our assumption implies that Tori(M, k) = 0, i > 0. Now if P is any finite
R-module then P admits a composition series with factors isomorphic to k, hence
Tori(M, P ) = 0, i > 0. Finally any R-module Q is a direct limit of its finite
submodules and Tor commutes with direct limits, hence Tori(M,Q) = 0, so M is
flat. ¤

Step 4: descent to cohomology
We claim finally that the isomorphism class of the deformationOn is independent

of the choice of φ = φn yielding a given class [ε(φ)]. To prove this it suffices to prove
that a first-order deformation of φ for which [ε(φ)] remains constant leads to a family
of operators dn in a fixed conjugacy class (under the action of exp(Γ(g0) ⊗mn)).
Now recall the injection H0(Jn(g.,m.

n)) → H0(Jn(g.))⊗mn whose image obviously
contains [ε(φ)]; it will suffice to prove the corresponding assertion for Jn(g.,m.

n).
A deformation as above of φ is given by

φ̃ = φ + ∂̄u0 +
∑

ad(vi)(φi) =: φ + φ′

where u0, vi may be taken in εΓ(g0)⊗mn where ε2 = 0, and, setting

u1 =
∑

vi × φi ∈ Γ(g0)⊗ Γ(g1)⊗m2
n,

it will suffice to prove that

u1 = u0 × φ ∈ εΓ(g0)⊗ Γ(g1)⊗m2
n. (4.8)

(Note that conjugation by exp(u0) takes dn to dn + ∂̄u0 + ad(u0)(φ), since ε2 = 0).
We will prove by induction on j ≥ 3 that u1 ≡ u0 × φ mod mj

n.
Our assumption that the class [ε(φ̃)] is constant in H0(Jn(g.,m.

n)) yields a
cochain

(u0, u1, ...un), ui ∈ εΓ(g0)⊗ symi Γ(g1)⊗mi+1
n

with coboundary

(φ′, φ′ × φ, ..., φ′ × 1
(n− 1)!

φn−1).

Now by considering the vertical, i.e. ∂̄− coboundary of u1 =
∑

vi × φi we see that
∑

∂̄vi × φi ≡ ∂̄u× φ mod m3
n.

Hence we can write u1 ≡ v×φ mod m3
n with ∂̄v ≡ ∂̄u0 mod m2

n. By our assump-
tion that H0(T ) = 0 is follows that

u1 ≡ u0 × φ mod m3
n.

Next, applying a similar argument to u2 and its vertical (i.e. ∂̄-) coboundary, we
conclude similarly that

u2 ≡ 1
2
u0 × φ× φ mod m4

n.

Hence, considering the ’horizontal’, i.e. bracket-induced coboundary of u2 it follows
that, in fact, ∑

∂̄vi × φi ≡ ∂̄u× φ mod m4
n

as well. As above, it follows that

u1 ≡ u0 × φ mod m4
n.

Continuing in this way we prove (4.8).
Step5: putting things togther
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Now we may easily complete the proof as in Sect.3. First, taking the ’tautological’
element [ε(φn)] for Rn = Ru

n corresponding to the identity on H0(Jn), we obtain a
corresponding deformation Xu

n/Ru
n. Next, given any Xn/Rn, with corresponding

φ0
n, α0

n = αn(Xn/Rn) (= homomorphism Ru
n → Rn corresponding to the morphic

class [ε(φ0
n)]), it is clear by construction that φ0

n coincides with the φ associated to
the deformation (α0

n)∗(Xu
n/Ru

n), hence

α0
n = αn((α0

n)∗(Xu
n/Ru

n).

Since a deformation is determined by its φn, hence by its αn it follows that

Xn/Rn ' α∗n(Xu
n/Ru

n).

Thus Xu
n/Ru

n is n-universal. Finally it is clear by construction that for different n

these are mutually compatible so the limit X̂u
n/R̂u

n exists and is formally universal,
completing the (Dolbeault) proof of Theorem 0.1. ¤

Note that in case φ = 0 the above argument becomes simpler and does not
require H0(T ) = 0, hence it works with our compact X replaced, e.g. by an acyclic
open subset U . In particular, since the restriction map

H0(X < n >, Jn(g.)) → H0(U < n >, Jn(g.))

vanishes if U is acyclic (provided H0(X, T ) = 0), it follows that for any φ, the
restriction of ε(φ) on U < n > can be represented by 0, hence the deformation
corresponding to φ is trivial on U (though, of course, T (U) 6= 0). In other words,
any flat deformation is automatically locally trivial (of course this is well known
anyway).

We now consider a translation of the above proof into the Čech language, and
compatibility of the two proofs. To this end, we replace g. by the Čech complex
Č .(T ) which, together with the Čech differential δ and the natural bracket [,] forms
a DGLA. By analogy with φn, we set

u. = un = δ(s.) = exp(−s.)δ(exp(s.)) = −δ(exp(−s.)) exp(s.).

As C is globally defined (albeit nonholomorphic), it commutes with δ hence by
(4.3)

unα = (ψn
α)−1δψn

α

so actually un ∈ Č1(T ), i.e. ∂̄(un) = 0. In particular,

∂̄(exp(−s.)δ(exp(s.)) = − exp(−s.)∂̄δ(exp(s.).

On the other hand δ(φ.) = 0 yields

δ(exp(−s.))∂̄(exp(s.) = − exp((−s.)δ∂̄(exp(s.).

As δ and ∂̄ commute it follows that

δ(exp(−s.)∂̄((exp(s.) = ∂̄((exp(−s.))δ(exp(s.).

Hence

u.φ. = exp(−s.)δ(exp(s.) exp(−s.)∂̄(exp(s.) = −δ(exp(−s.)∂̄(exp(s.))

= −∂̄(exp(−s.))δ(exp(s.)) = φ.u.,

i.e. u., φ. commute:
[u., φ.] = 0 (4.8)
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Now as above we have formally that

δ(u.) = δ(exp(−s.))δ(exp(s.) =
−1
2

[u., u.],

and therefore vn = ε(un) ∈ Č0(Jn(T )) is a morphic hypercocycle,which may be used
to define the required Kodaira-Spencer homomorphism αn(Xn/Rn) : Ru

n → Rn.
That the cohomology class of vn is independent of choices may be proved in the
same way as in the Dolbeault proof (it is also a consequence of the latter).

The interpretation of un is analogous to that of φ: i.e. the operator

δ + un : Č .(O)⊗Rn → Č .+1(O)⊗Rn

corresponds to the coboundary operator on Č .(On) under the local trivialisation
(ψn

α) above. Thus to reverse this construction we may proceed analogously as in
the Dolbeault case. Firstly we represent a morphic element vn ∈ H0(Jn) ⊗mn in
the form

vn = ε(un), un ∈ Č1(T )⊗mn (4.9)

where u. = un satisfies the Čech integrability equation

δ(u.) =
−1
2

[u., u.]. (4.10)

Now thanks to (4.9), the deformed coboundary operator

δ′ = δ + un : Č .(O)⊗Rn → Č .+1(O)⊗Rn

satisfies (δ′)2 = 0, thus making (Č .(O)⊗Rn, δ′) as well as its sheafy version (Č.(O)⊗
Rn, δ′) into complexes where the latter is exact in positive degrees. Hence as before,

On = ker(δ′, Č0(O)⊗Rn)

is a sheaf of flat Rn-algebras yielding a flat deformation

Φn(vn) = Xn/Rn = Specan(On).

Now the proof can be completed as in the Dolbeault case.
It is worth noting that the Čech construction yields the same deformation as the

Dolbeault one: this follows easily from (4.8). Also, it is clear from the construction
that either un determines the deformation Xn/Rn up to isomorphism. Since we
know from the Dolbeault case that the associated deformation depends only on
the cohomology class of ε(φ), it follows that Xn/Rn depends only on the Čech
cohomology class of vn (or, the latter can also be proved independently in an
analogous way).

Remark See [R3] for an ’interpretation’ of the construction of Xu
n .

5. Generalizations

Let g be a sheaf of C- Lie algebras on X with H0(g) = 0 , E a g-module. Replac-
ing g by its unique quotient acting faithfully on E, we may assume E is faithful. We
also assume X, g,E are reasonably tame so cohomology can be computed by Čech
complexes. We further assume g and E admit compatible soft resolutions g., E.

where g. is a DGLA acting on E.. Typically, E will have some additional struc-
ture and g will coincide with the full Lie algebra of infinitesimal automorphisms of
the structure: e.g. when E is a ring g may be the algebra of internal derivations.
For any artin local C-algebra (R,m)), we have a Lie group sheaf Aut◦R(E ⊗ R) of
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R-linear automorphisms of E ⊗R which act as the identity on E = (E ⊗R)⊗R C,
and we assume given a Lie subgroup sheaf

GR ⊂ Aut◦R(E ⊗R)

with Lie algebra g ⊗ m, which coincides - by definition if you will -with the sub-
group of structure-preserving automorphisms in Aut◦R(E ⊗ R). For the argument
in Step 2 of Sect. 4, we require that Γ(g.) should carry a topology making it a
separated topological vector space and inducing a separated topology on cohomol-
ogy (i.e. coboundaries are closed). Then the above constructions, being essentially
formal in nature, carry over to this setting essentially verbatim, yielding n-universal
deformations Eu

n/Ru
n, n ≥ 1, and a formally universal deformation Êu/R̂u.

Examples (cf. [R5])
5.a. E is a simple locally free finite-rank OX -module and g is the algebra of all

traceless OX -linear endomorphisms of E. The deformation obtained is the usual
universal deformation of E as OX -module.

Subexamples
5.a1. OX is the ring of locally constant functions on the topological space X

assumed ’nice’, e.g. a manifold. In this case E is a local system ( i.e. a π1

representation), and we obtain its universal deformation as such.
5.a2. OX is the sheaf of holomorphic functions on a complex manifold ( or

regular functions on a proper C-scheme). In this case E is a (holomorphic) vector
bundle and we obtain its universal formal deformation as such.

5.b. Let Y ⊂ X be an embedding of compact complex manifolds, g = TX/Y the
algebra of vector fields on X tangent to Y along Y , which may be identified with the
algebra of infinitesimal automorphisms( i.e. internal derivations) of OX preserving
the subsheaf Iy. Assuming H0(TX/Y ) = 0, we obtain the universal deformation of
the pair (X, Y ).

The case of general holomorphic map f : Y → X may be treated in a similar
way using the algebra Tf (cf. [R2]); in fact it is sufficient for many purposes to
replace f by the embedding of its graph in Y ×X(cf.[R4]). On the other hand the
case of deformations of Y → X with X fixed requires the DGLA formalism and is
considered in [R3].
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