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Abstract. Given a family X/B of nodal curves we construct canonically and com-
patibly with base-change, via an explicit blow-up of the Cartesian product Xr/B,
a family W r(X/B) that we show isomorphic to the relative flag Hilbert scheme,
parametrizing flags of subschemes of fibres of X/B, of colengths 1, ..., r . Though
W r(X/B) is singular, the important sheaves on it are locally free, which allows us to
study some intersection theory on it and deduce enumerative applications, including
some relative multiple point formulae, enumerating the length-r schemes contained
simultaneously in some fibre of X/B and some fibre of a given map from X to a
smooth variety.

One of the important facts which make geometry, in particular enumerative
geometry, on a smooth curve X relatively simply is the existence of simple and
quite tractable parameter spaces for subschemes of X of given length r, be it the
symmetric product Symr(X), which in fact is isomorphic to the Hilbert scheme
Hilbr(X), or the Cartesian product Xr which parametrizes subshemes in an (r! : 1)
fashion, and is sufficient for many applications, especially enumerative ones. One
might say that what is essential about these parameter spaces is that they are
enumerative-geometric, i.e.

(i) geometric, which effectively means they admit a morphism to the Hilbert
scheme, through which natural geometric loci may be defined by pullback;

(ii) enumerative, meaning that the relevant cohomology classes and intersection
numbers that may enter into the enumeration of those natural geometric loci are
computable.

Mutatis mutandis, similar considerations also hold for families of smooth curves.
In [R1], the author studied from this viewpoint enumerative projective geometry
for families of smooth curves, obtaining, inter alia, a general relative multiple point
formula. This is a formula enumerating the length-r subschemes of the fibres of a
given family X/B whose image under a given map

f : X → Y

is a single reduced point.
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Incongruously, it seems these ideas and results have yet to be extended to singular
curves and families of such. This paper is a step in that direction in the case of
nodal curves, i.e. curves with only ordinary double points as singularities. To a
family

π : X → B

of nodal curves and a natural number r we shall associate canonically a family

πr : W r(X/B) → B

which is enumerative-geometric in the above sense, and has a number of other
favorable properties. W r(X/B) is functorial in B, i.e. its formation commutes
with base-change; in fact, W r(X/B) is a canonical and explicit blowup of the
Cartesian fibre product Xr/B (more explicitly and directly, of W r−1(X/B)×B X)
in a suitable sheaf of ideals. We will show that W r(X/B) admits a morphism to
the relative Hilbert scheme Hilbr(X/B). In fact, we will subsequently show that
W r(X/B) is isomorphic to the relative flag- Hilbert scheme, which parametrizes
chains

z1 ⊂ z2... ⊂ zr

where each zi is a length-i subscheme of a fibre of X/B. The relatively simple
relationship of W r(X/B) and W r−1(X/B), in the form of the natural blow-up
map

br : W r(X/B) → W r−1(X/B)×B X

makes these spaces more amenable to enumerative computations than the Hilbert
scheme itself.

The fact that W r(X/B) admits a morphism to Hilb implies that, for any vector
bundle L on X, W r(X/B) carries a ’tautological’ bundle (also called secant bundle)
Sr(L), whose fibre at a point is the restriction of L on the corresponding scheme.
We will see that thanks to the simple relationship of W r(X/B) and W r−1(X/B),
Sr(L) can be analyzed conveniently with exact sequences that relate it to Sr−1(L).
This fact, together with the fact that certain ’diagonal’ divisors become Cartier on
W r(X/B) enables us to do some intersection theory on these spaces and apply it to
enumerative questions (although the complete intersection theory of the W r(X/B)
is yet to be worked out).

We note that the W r(X/B), as total spaces, are always singular for r ≥ 3, as
soon as the family X/B has singular fibres. However, when B is smooth, W r(X/B)
is normal and Cohen-Macaulay (cf. Proposition 2.3). In enumerative applications,
at least those developed so far, the singular nature of W r(X/B) is irrelevant; what
matters is that they are enumerative-geometric in the sense described above.

The remainder of the paper is largely devoted to multiple-point formulae. In the
case of a map f to a Grassmannian, one can define and enumerate a multiple-point
scheme Mr(f) as a more-or-less direct consequence of the existence of a tautological
bundle on W r(X/B) (whose fibre at a point is the space of functions, or sections of a
vector bundle, on the corresponding subscheme), and its relation to the tautological
bundles on the Grassmannian. This result can be extended to the case of a target
space which is ’pseudo-Grassmannian’ in the sense that its diagonal admits a nice
global description as zero-scheme of a vector bundle. In the case of a map to a
general (smooth) variety Y , multiple-point schemes Mr(f) can still be defined via
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an embedding of Y in a pseudo-Grassmannian (e.g. Projective space), and then
enumerated by applying a residual-intersection formula. It can, in fact, be shown
that Mr(f) can be defined intrinsically, independently of the pseudo-Grassmannian
embedding (hence even for non-projective or non-algebraic Y ), but that argument
is disproportionately involved considering the paucity of applications, and is not
presented here. The version we do present follows a suggestion by the referee.

Perhaps the main question raised and left open by this paper is the full compu-
tation of the subring of the cohomology (or Chow) ring of the W r(X/B) generated
by the diagonal divisor classes [∆k], k = 2, ..., r, corresponding to the loci where the
k-th point coincides with one of the preceding ones. This would allow the explicit
evaluation of all the multiple-point loci that we compute, beyond the few fragmen-
tary results given here (generally for r ≤ 3). However, see [R8, R9] for some recent
progress.

The paper is organized as follows. The construction of the parameter spaces
W r(X/B) is begun in §1 where the case r ≤ 3 is considered in explicit detail. The
general case is completed in §2 by an inductive construction, and the relation with
the Hilbert scheme is worked out in full. In §3 we give enumerative applications,
including several multiple-point formulae for maps to targets of various degrees of
generality, and some concrete examples, mainly for maps to P2 and P3.

This paper is, in part, a continuation of [R6], where more particular enumerative
results were obtained for r = 2, in effect by an ad hoc version of some of the
methods of this paper. We will work over C. However, we don’t see any significant
obstruction to extending the results over an algebraically closed field of arbitrary
characteristic.

I thank the referee for his detailed, constructive suggestions which have improved
the paper.

1. Parameter spaces for pairs and triples

Let
π : X → B

be a flat family of curves over an irreducible variety, with all fibres nodal, i.e.
each fibre of π has at worst ordinary double points as singularities. Typically, the
generic fibre will be smooth, but we do not assume this. Our purpose is to construct
a natural and explicit birational modification W r(X/B) of the relative cartesian
product Xr/B, which will serve as our basic ’configuration space’ on which to do
enumerative geometry. In this section we begin by considering in explicit detail the
case of r ≤ 3. Subsequently the construction will proceed by induction.

First, we obviously set
W 1(X/B) = X/B.

Next we consider the easy but significant case r = 2. Note that, at a critical point p
of π (i.e. a singular point of a fibre Xb = π−1(b)), our family is formally equivalent
to a subvariety of A2 ×B given by

(1.1) xy = a

where x, y are coordinates on A2 and a is an element of m̂B,b, which may be also
be viewed as a (formal) mapping of B to the base (= A1) of the versal deformation
of a node, pulling back the germ at p of X/B. The analogous statements obtained
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by replacing ’formal’ by ’complex analytic’ also hold, and it is basically a matter
of taste whether one uses the formal or analytic setting. Note that X is smooth at
p iff a 6∈ m̂2

B,b. If B is a smooth curve, a is either zero or may be taken to be of
the form a = tk, where t is a local parameter on B and k ≥ 1 and k = 1 iff X is
smooth at p. The construction we shall undertake will be manifestly local about
critical points such as p, as well as compatible with base-change, therefore for many
purposes it will suffice to consider the ’universal’ case xy = t.

Now consider the fibre square X2/B and let D ⊂ X2/B be the diagonal. Note
that D is a Cartier divisor at all points (p, p) such that π is smooth (i.e. submersive)
at p. On the other hand, at points (p, p) where p is a critical point, i.e. a fibre
singularity, of π, X2/B is given formally or analytically by

(1.2) x1y1 = x2y2 = a,

and D is given by the 2 equations

(1.3) x1 = x2, y1 = y2;

moreover if the total space X is smooth, then X2/B is smooth (over C) except at
those points (p, p). We let

b2 : W 2(X/B) → X2/B

denote the blowup of D ⊂ X2/B. As D is Cartier away from the singular points
(p, p) as above, the blowup coincides with the blowup locally at all those points of
the ideal (x1 − x2, y1 − y2), cf. (1.3). Let

∆2 ⊂ W 2(X/B)

be the exceptional divisor, defined by

I∆2 = b∗2(ID)

(this is not to be confused with the exceptional locus, i.e. the locus of all points
of W 2(X/B) where b2 is not an isomorphism locally). Note that the construction
of ∆2 ⊂ W 2(X/B) is manifestly canonical and compatible with base-change. To
analyze it, it will suffice to consider the situation locally along the exceptional locus
of b2 where we may use formal or analytic coordinates as above.

In terms of these coordinates, over a neighborhood (formal or analytic) of each
(p, p), W 2(X/B) is covered by 2 open affines denoted U2

x,p, U
2
y,p or just U2

x , U2
y if

p is understood. The coordinate ring of U2
x,p is generated over that of X2/B by a

symbol [(y2 − y1)//(x2 − x1)] subject to the evident relation

(x2 − x1)[(y2 − y1)//(x2 − x1)] = y2 − y1.

Note that
x1(x2 − x1)[(y2 − y1)//(x2 − x1)] = x1(y2 − y1)

= y2(x1 − x2),
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hence we may, and shall, write [(y2−y1)//(x2−x1)] as−[y2//x1]; similarly, the same
may also be written as −[y1//x2], therefore when the index range is understood
we may write the same as −[y//x]. Similar comments apply over the other open
U2

y,p where a generator [x1//y2] = [x2//y1] = [x//y] is defined and of course, on
the overlap U2

x,p ∩ U2
y,p we have

[y2//x1][x1//y2] = 1.

Henceforth we shall denote U2
x,p, U

2
y,p respectively as U([y//x]), U([x//y]).

Thus the exceptional locus of b2 consists of a P1 over each point (p, p) as above.
Moreover it is easy to see that if X is smooth, then so is W 2(X/B): indeed in
U([y//x]) (resp.U([x//y])), a set of coordinates (or a regular system of parameters)
is given by x1, x2, y1 (resp. x2, y1, y2). In fact, if X is a smooth surface then by
(1.2), (p, p) is just a 3-fold ordinary double point and b2 is one of its 2 small
resolutions. As an aside, it is curious to note that this resolution may be obtained
determinantally: i.e. via (1.2) we obtain locally a mapping

M : X2/B → M1
2×2,

M =
[

x1 x2

y2 y1

]
,

to the space of 2× 2 matrices of rank ≤ 1 and W 2(X/B) is just obtained by taking
fibre product of X2/B via M with what is known as the ’canonical determinantal
resolution’ of M1

2×2, defined by

R1
2×2 = {(A,B) ∈ M1

2×2 × P1 : BA = 0}.

Next, we claim that the natural rational map of X2/B to the Hilbert scheme
Hilb2(X/B), assigning a pair p 6= q to the ideal Ip,q < OX lifts to a morphism, i.e.
a regular map

J2 : W 2(X/B) → Hilb2(X/B).

A priori, J2 is just a rational map, and as such it is clearly compatible with the
respective natural maps of W 2(X/B) and Hilb2(X/B) to Sym2(X/B) (see [A] for a
general construction of the map from the Hilbert scheme to the Chow variety). By,
respectively, the projectivity of blow-up morphisms and of Hilbert schemes, these
maps are proper (even projective), hence by the GAGA principle it would suffice
to check that J2 exists as a holomorphic map (see Remark 1.1 below for a formal
analogue, in arbitrary characteristic, of this argument). Clearly it suffices to check
the holomorphic nature of J2 locally along the exceptional locus. To this end it
suffices finally to note that in the open subset U2

x,p, J2 is given explicitly by sending
a point with coordinates (x1, x2, [y2//x1]) to the ideal

J2(x1, x2, [y2//x1]) =

(1.4) (xy − a, (x− x1)(x− x2), y − y1 + [y2//x1](x− x1))

where, of course, we set

y1 = x2[y1//x2], y2 = x1[y2//x1], a = x1y1 = x2y2 = x1x2[y2//x1].
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Indeed, it is elementary that the RHS of (1.4) defines an ideal of colength 2 whose
cosupport contains (x1, y1), (x2, y2), and therefore this RHS defines a morphism to
Hilb that coincides with J2 generically (e.g. whenever (x1, y1) 6= (x2, y2)). This
implies our assertion. The case of U2

y,p is similar.

Remark 1.1. The use of holomorphic coordinates and the GAGA principle to show
the regularity of J2 can be circumvented and replaced by formal coordinates, mean-
ingful in char. p, as follows. First, it is well known and easy to prove that any nodal
curve, embedded in PN by a complete linear system of sufficiently high degree on
each component, yields a smooth (unobstructed) point of the Hilbert scheme of
PN , and consequently any family of nodal curves is obtained by pullback from a
family with smooth base. Since J2 (as rational map), its source and target are all
base-change compatible, it suffices to check regularity of J2 in the case of a smooth
base B. If B is smooth then W 2(X/B) is normal by Corollary 2.2.1 below. On the
other hand, formal-analytic considerations as above show that J2 exists as a con-
tinuous, formally regular map, in the sense that for any point w in W = W 2(X/B)
there corresponds a well-defined point h = J2(w) ∈ H =Hilb2(X/B) and

J∗2 (ÔH,h) ⊆ ÔW,w

where Ô denotes formal completion. Then for any g ∈ OH,h, J∗2 (g) is a rational
function on W that is also in ÔW,w, and by a well-known property of normal
varieties (cf. Mumford, Red Book, ch.3, §9) it follows that J∗2 (g) ∈ OH,h. Hence
J2 is a morphism.

Yet another approach approach to proving the regularity of J2, suggested by
an anonymous correspondent, is to note that J2 corresponds to the subscheme
Γ3 ⊂ W 2 ×B X as in (1.5) below and the regularity of J2 is equivalent to the
flatness of Γ3 over W 2. By the formal criterion for flatness, this flatness may be
checked by passing to formal completions where we have the formal coordinates
xi, yj as above, and the above computations as in (1.4) prove flatness. ¤

Next, we will study in detail the case r = 3. Let

Γ3 ⊂ W 2 ×B X

denote the pullback of the tautological subscheme of Hilb2(X/B) via the map J2.
Note the scheme-theoretic equality

(1.5) Γ3 = Γ3
1 ∪ Γ3

2

where
Γ3

i ⊂ W 2 ×B X

is the graph of the natural projection W 2 → X: indeed this follows easily from the
fact that the LHS of (1.5) is flat over W 2, contains the RHS, the RHS is reduced
and both sides agree generically over W 2. In particular, we see that Γ3 is reduced.
We define

W 3 = W 3(X/B) := BΓ3(W 2(X/B)×B X),

i.e. the blowup of W 2 ×B X in Γ3, with natural map

b3 : W 3 → W 2 ×B X.
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Clearly W 3 is reduced. Let ∆3 ⊂ W 3 be the natural exceptional (Cartier) divisor
supported on b−1

3 (Γ3), with ideal

I∆3 = b∗3(IΓ3),

and ∆3
i = b−1

3 (Γ3
i ), i = 1, 2 its components (as Weil, in fact nonCartier divisors).

From the computations below it will follow that all these divisors are reduced.
To analyze this construction, we work over U([y//x]). There, note that the ex-

pression (y3 − y1)(x3 − x2) viewed, e.g. as a function on

V := U([y//x])×B U,

is divisible by x2: indeed setting

R = y2 − [y//x]x3 − y3 + y1,

it is easy to check that x2R = (y3 − y1)(x3 − x2). I claim next that the ideal of Γ3

in V is generated by (x3 − x1)(x3 − x2) and R: indeed the subscheme Γ′ defined
by the latter projects isomorphically to the subscheme of the ’x-axis’ defined by
(x3 − x1)(x3 − x2), hence is flat over W 2, and of course Γ3 is also flat over W 2.
Since Γ3 and Γ′ clearly coincide generically over W 2, they coincide, as claimed.

Thus we see that b−1
3 (V ) may be realized in the standard way as a subscheme

of V × P1 and as such is covered by the two standard opens pulled back from P1.
One of these is the domain of regularity of the rational function

−[y//x2] :=
R

(x3 − x1)(x3 − x2)
,

and it is easy to check that as rational functions,

[y//x2] =
yi

xjxk

whenever {i, j, k} = {1, 2, 3}, justifying the notation; we denote this open by
U([y//x2]). Note, trivially, that regularity of [y//x2] implies that of [yi//xj ], ∀i, j,
so U([y//x2]) indeed lies over U([x//y]). On the other standard open of V × P1

the function
[x2//y] =

xjxk

yi

is regular, however its domain of regularity does not lie entirely over U([y//x]) (nor,
for that matter, entirely over U([x//y]).

Analogous comments apply to the part of W 3 over U([x//y]) which gives rise to
symbols [x//y2], [y2//x]. Setting

U([y2//x], [x2//y]) := U([y2//x]) ∩ U([x2//y])

i.e. the common regularity domain of [y2//x] and [x2//y], note by construction
that the regularity domains

U([y//x2]), U([y2//x], [x2//y]), U([x//y2])
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already cover W 3(X/B).
I claim next that the natural rational map J3 of W 3(X/B) to the relative Hilbert

scheme Hilb3(X/B) is a morphism. Using again the projectivity of W 3(X/B) and
Hilb3(X/B) over Sym3(X/B) and the GAGA principle, it suffices to check that
J3 extends as a holomorphic map (the ’cycle map’ Hilb3(X/B) → Sym3(X/B)
is constructed in great generality by Angéniol [A], or see [Ko]); alternatively, one
could argue as in Remark (1.1). The extension is a local assertion, and is moreover
either obvious or a consequence of the analogous result for J2, except at points of
W 3 lying over (p, p, p) ∈ X3/B, so it suffices to check it on opens

U([y//x2]), U([y2//x], [x2//y]), U([x//y2])

as above. Over U([y//x2]), it is easy to see that the expression

(y − y1)(x− x2)(x− x3),

considered as a function on W 3 ×B X, i.e. taken modulo xy − x1y1, is divisible by
x2x3: explicitly, setting

R = ([y2//x3]− [y//x2])x2 + ([y1//x3] + [y1//x2])x + y − (y1 + y2 + y3)

(recall that [y2//x3] = x1[y//x2] etc.), we have

x2x3R ≡ (y − y1)(x− x2)(x− x3) mod xy − x1y1.

Then on U([y//x2]), J3 takes a point with coordinates xi, yj to the ideal

J3 = ((x− x1)(x− x2)(x− x3), R, xy − x1y1).

Since the latter ideal evidently has colength 3 over W 3, this makes J3 a morphism
over U([y//x2]). The case of U([x//y2]) is similar. Over U([y2//x], [x2/y]), it is
elementary to check as above that, always modulo xy−x1y1, (y−y1)(y−y2)(x−x3)
is divisible by x3 and (x− x1)(x− x2)(y − y3) is divisible by y3 and the ideal

J3 = (
(y − y1)(y − y2)(x− x3)

x3
,
(x− x1)(x− x2)(y − y3)

y3
, xy − x1y1)

has colength 3 over W 3 and yields the map to Hilb (cf. [R7]).

2. Parameter spaces for r-tuples

In this section we will give the construction of our parameter spaces W r(X/B) for
general r, proceeding by induction. It is convenient to summarize the construction
and its main properties as follows.

Theorem 2.1. Define

(2.1) br : W r(X/B) → W r−1(X/B)×B X

inductively as the blowup of the canonical subscheme

(2.2) Γr ⊂ W r−1(X/B)×B X
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corresponding to the morphism

Jr−1 : W r−1(X/B) → Hilbr−1(X/B),

let ∆r = b−1
r (Γr) be the exceptional divisor and

(2.3) wr : W r(X/B) → Xr/B

be the natural map. Then
(i) W r(X/B) is reduced, and is irreducible if X is; Γr is reduced and has r − 1

irreducible components each isomorphic to W r−1; as functor of the family X/B,
W r(X/B) commutes with base-change;

(ii) the natural rational map

Jr : W r(X/B) → Hilbr(X/B)

is a morphism;
(iii) for each node p of X/B, an analytic or formal neighborhood N of w−1

r (p, ..., p)
in W r = W r(X/B) carries meromorphic or formal-rational functions

(2.4) [yi//xr−i] = [yI//xJ ], [xi//yr−i] = [xI//yJ ]

where I ⊂ [1, r] is any index-set of cardinality i and complement J and the domains
of regularity

U([y//xr−1]), ..., U([yi//xr−i], [xr−i+1//yi−1]), ..., U([x//yr−1])

form a covering of N ;
(iv) setting

(2.5) P r
i =

i∏

j=1

(y − yj)
r∏

j=i+1

(x− xj) ∈ OW r [x, y]/(xy − x1y1),

over U([yi//xr−i]), P r
i is divisible by xi+1 · · ·xr and over U([xr−i//yi]), P r

i is
divisible by y1 · · · yi; over U([yi//xr−i], [xr−i+1//yi−1]), the map Jr is given by

(2.6) Jr = (xy − x1y1,
P r

i

xi+1 · · ·xr
,

P r
i−1

y1 · · · yi−1
);

(v) W r+1 is covered by open sets over each of which either
(a)[yi//xr+1−i] is regular and P r

i−1(xr+1,yr+1)

y1···yi−1
is an equation for ∆r+1 (called an

’x−based equation’); or
(b)[xr−i+1//yi]) is regular and P r

i (xr+1,yr+1)
xi+1···xr

is an equation for ∆r+1 (called a
’y−based equation’).

proof. For r ≤ 3 all of this has already been proven, so we may assume it holds for
r− 1. First (i) is clear from the fact that W r is an iterated blowup of the cartesian
product Xr/B, while Γr coincides with the union of the graphs (over B) of the
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coordinate projections pi : W r−1 → X (proof as in the r = 3 case). For the rest,
we may as before work over

U([yi//xr−1−i], [xr−i//yi−1]) ⊂ W r−1

so in a suitable open set in W r−1 ×B X, the ideal of Γr is generated by

P r−1
i

xi+1 · · ·xr−1−i
,

P r−1
i−1

y1 · · · yi−1

(where we plug in (xr, yr) for (x, y)). Thus the blowup (in the part under consider-
ation) is covered by two standard opens. In the first we have the regular function

P r−1
i

xi+1 · · ·xr−1−i
/

P r−1
i−1

y1 · · · yi−1
=

yr − yi

xr − xi

y1 · · · yi−1

xi · · ·xr−1−i

and it is easy to see as before that this coincides as rational function with

− y1 · · · yi

xi+1 · · ·xr

and, for that matter, with any −yI/xJ as in (iii) so we may denote it by

−[yi//xr−i].

It is also easy to see as before that this standard open coincides with the regularity
domain of this function so we denote it by U([yi//xr−i]). Similarly we get a rational
function [xr−i//yi].

Now we can prove (iii). Given z ∈ W r, such that wr(z) is close to (p, ..., p), we
may assume z projects to

z′ ∈ U([yi//xr−1−i], [xr−i//yi−1]) ⊂ W r−1,

and in particular
y1 · · · yiyr

xi+1 · · ·xr−1
= [yi+1//xr−1−i],

xi · · ·xr−1xr

y1 · · · yi−1
= [xr−i+1//yi−1]

is regular at z. As we have seen, either

[yi//xr−i] or [xr−i//yi]

are regular at z. Therefore either

z ∈ U([yi//xr−i], [xr−i+1//yi−1])

or
z ∈ U([xr−i//yi], [yi+1//xr−1−i]).

Thus (iii) is proved.
We will now prove (iv), which of course implies (ii) (our purpose in stating (ii)

separately was rhetorical). To begin with, note that the question is local (on W r,
a fortiori on X/B) so we may assume X/B is the versal family xy = t over B = A1

(actually we just need that B is integral). Now note
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Claim. (a) Over U([yi//xr−i]), P r
i is divisible by xi+1 · · ·xr;

(b) over U([xr−i//yi]), P r
i is divisible by y1 · · · yi.

proof. We prove(a) as the proof of (b) is similar. Now P r
i (a polynomial in x, y

subject to the relation xy = x1y1) is a sum of terms of the form

Mi−a(y)Mr−i−b(x)yaxb

where the M ’s are monomials in distinct variables y1, ..., yi, xi+1, ..., xr of the indi-
cated degrees. If a ≤ b, use the relations

xy = xjyj , ∀j

to rewrite this term as
xb−ay1 · · · yiMr−i−b+a(x),

which is clearly divisible as claimed. If b ≤ a this term can be rewritten as

ya−bMi−a+b(y)xi+1 · · ·xr,

which is even more clearly divisible as claimed. This proves the claim.

Note that the above calculation shows P r
i /xi+1 · · ·xr and P r

i−1/y1 · · · yi−1 can
be written respectively as

yi + f1(x) + f2(y),

xr+1−i + g1(x) + g2(y)

where f1, f2 have degree ≤ r− i and g1, g2 have degree ≤ i− 1 and all have regular
functions as coefficients. By the proof of [R7], Theorem 2, we see that for Jr as
defined to yield a morphism

Jr : W r(X/B) → Hilbr(X/B)

is equivalent to certain identities (4) among the coefficients of the fi and gj . Since
Jr clearly coincides generically with the evident rational map, these identities hold
generically, hence they hold period, so Jr is indeed a lifting of the evident rational
map as a morphism to Hilb. This completes the proof of (iv). Finally, in light of
the fact that

P r
i−1(xr+1, yr+1)

y1 · · · yi−1
/
P r

i (xr+1, yr+1)
xi+1 · · ·xr

= [xr−i+1//yi],

(v) follows directly from (iv) and the definition of blowup (the two opens in ques-
tion are the standard affine opens of P1 over U([yi//xr−i], [xr−i+1//yi−1]). This
completes the proof of Theorem 2.1.

A posteriori, we can identify W r(X/B) with the flag-Hilbert scheme studied in
[R7]: recall that the flag Hilbert scheme fHilbm(X/B) parametrizes OB− chains of
ideals

Im < ... < I1 < OX
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where OX/Ij is OB−locally free of length j. Note that the ideal

aj = Ann(Ij−1/Ij)

isOB−locally free of colength 1, giving rise to a B-map fHilbm(X/B) → X. Putting
these together, we get a map

fHilbm(X/B) → Xm/B

Note that the various maps Jj together yield a morphism

ηr : W r(X/B) → fHilbr(X/B),

which evidently commutes with the natural maps of its source and target to Xr/B.
We showed in [R7] that any length-m subscheme of a fibre of X/B, supported at a
fibre node with local coordinates as above is either Qm

i = (xm−1+1, yi) or Im
i (a) =

(yi + axm−i), a ∈ C∗ and a is part of a local coordinate system on Hilbm(X/B).

Proposition 2.2. The map ηr is an isomorphism.

proof. The proof that follows uses the detailed, local-coordinate description of Hilb
given in [R7]. Clearly, both W r(X/B) and fHilbr(X/B) are proper, even projec-
tive, over the fibre power Xr/B, and fHilbr(X/B) is reduced by [R7], Theorem 8.
Therefore ηr is scheme-theoretically surjective. To show ηr is an isomorphism, it
suffices by an obvious induction to prove that its fibre over a flag supported at a
point p that is a relative node reduces (scheme-theoretically) to a point. By induc-
tion, we may assume ηr−1 is an isomorphism and in particular fHilbr(X/B) is a
subscheme of W r−1 ×B Hilbr(X/B). It then suffices to prove that a fibre F of the
natural map

ζr : W r → W r−1 ×B Hilbr(X/B)

is a point. Note that, because fHilbr(X/B) admits an rth projection map to X, F
is contained in a fibre of the natural map

br : W r → W r−1 ×B X.

Let w ∈ W r be ’supported’ at a fibre node p (i.e. wr(w) = (p, ..., p) or equivalently,
Jr(w) is supported at p) and write

ζr(w) = (w′, z).

Note also that by construction, if

w′ ∈ U([yi//xr−1−i], [xr−i//yi−1])

then a fibre of the map br already is coordinatized locally by either

[yi//xr−i] or [xr−i//yi].

Assume first that w ∈ U([yi//xr−i]). Then by [R7], Theorem 2 and the com-
putations in the proof of Theorem 2.1(iv) it is clear that z, the point in Hilbr

corresponding to w is either

Ir
i (a), with a = [yi//xr−i]

if a 6= 0 (note that a is the coefficient of xr−i in P r
i /xi+1 · · ·xr, and it has already

been noted that on Hilbr, a is part of a coordinate system), or Qr
i if

[yi//xr−i] = [xr−i+1//yi−1] = 0.

Analogous conclusions hold if w ∈ U([xr−i//yi]). In either case, the computations
show that [yi//xr−i] or [xr−i//yi] can be read off from z ∈ Hilbr, consequently ζr

is scheme-theoretically injective, hence so is ηr. ¤



GEOMETRY ON NODAL CURVES 13

Corollary 2.2.1. If X/B is flat and B is integral, W r(X/B) → B is a flat, locally
complete intersection morphism. In particular, if B is Cohen-Macaulay or a locally
complete intersection, so is W r(X/B).

proof. It suffices to prove this locally on X. But locally, any X/B is induced by
base-change from the versal family X0/B0 ⊂ A2×A1/A1 given by xy = t . For this
family, the analogous assertions for the flag Hilbert scheme were proven in [R7],
Theorem 8, and by base change this implies the general case.

Unfortunately, W r is never smooth if r ≥ 3, whenever X/B has a singular fibre,
but we still have

Proposition 2.3. If B is smooth and X/B is flat then W r(X/B) is normal and
Cohen-Macaulay.

proof. We have essentially seen this already in [R7] in the case of the flag Hilbert
scheme, but will give another proof for W r. We first show inductively that W r is
R1. For r = 1 this is clear (indeed W 1 = X is smooth or has at most rational
double points). Inductively, if W r−1 is R1 then clearly so is W r−1×B X. Moreover
the blowup map

br : W r → W r−1 ×B X

has at most P1 fibres and those only over a codimension-3 locus. Hence W r is R1.
Now one can see either by applying Corollary 2.2.1 above or imitating the fore-

going proof that W r is CM, hence S2. Hence W r is normal. ¤

3. Enumerative results

Now let
Γr+1 ⊂ W r ×B X

be the ’tautological divisor’ (=pullback of universal divisor over the Hilbert scheme
via Jr). For any sheaf L on X, set

(3.1) Sr(L) = pW r∗(p∗X(L)⊗OΓr+1).

If L is locally free, Sr(L) is clearly locally free of rank r.rk(L), and we call it
the r−th secant bundle associated to L. It was introduced in the smooth case
by Schwarzenberger [Sc]. Because Γr+1 is the pullback of the universal divisor on
Hilbr(X/B)×B X, Sr(L) is the pullback of the analogous bundle on Hilbr(X/B).
However the recursive structure of W r makes Sr(L) easier to compute with, as we
proceed to show.

So start with, note trivially that by flatness of Γr+1/W r, Sr is an exact functor
from coherent (resp. locally free coherent) sheaves on X to coherent (resp. locally
free coherent) sheaves on W r. Also, if V is a vector space and φ : V ⊗OX → L is
a map, φ lifts naturally to a map V ⊗OW r×BX → p∗X(L) whence a map

φr : V ⊗OW r → Sr(L)

and clearly φr is surjective is φ is. Next, note that W r(X/B) is not symmetric
with respect to permuting the factors, but still there are projections ’to the first s
factors’, for all s ≤ r:

γr,s : W r → W s.
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We also set
γr = γr,r−1.

Also, denote by
∆r ⊂ W r

be the exceptional divisor of br, i.e. b∗r(Γ
r), which is by definition of blowup a

Cartier divisor. As in Theorem 2.1, we have for any r that Γr splits up as

Γr =
r−1⋃

i=1

Γr
i

with each Γr
i , being the graph of the i−th coordinate projection to X, is isomorphic

to W r−1 and in particular is reduced always and irreducible if X is. Similarly ∆r

splits

∆r =
r−1⋃

i−1

∆r
i

with each ∆r
i reduced and birational to Γr

i (and in general a non-Cartier divisor on
W r).

Proposition 3.1. Let pi : W r(X/B) → X denote the ith natural projection for
1 ≤ i ≤ r. There is an exact sequence of vector bundles on W r(X/B)

(3.2) 0 → p∗r(L)⊗O(−∆r) → Sr(L) → γr∗(Sr−1(L)) → 0

proof. There is clearly a natural surjection

Sr(L) → γr∗(Sr−1(L))

whose kernel K is locally free of rank rk(L) and moreover admits a generically
injective map

k : K → p∗r(L).

Clearly, k vanishes at each generic point of ∆r, hence factors through p∗r(L) ⊗
O(−∆r). It is easy to see that the factored map

K → p∗r(L)⊗O(−∆r)

is an isomorphism in codimension 1 between locally free sheaves of the same rank,
hence an isomorphism since W r is pure-dimensional. ¤

Thus Sr(L) has a natural filtration with quotients

(γr,s)∗(p∗s(L)⊗O(−∆s)),

and consequently we have
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Corollary 3.2. The total Chern class c(Sr(L)) satisfies

c(Sr(L)) =
r∏

i=1

c(Li(−(γr,i)∗∆i))

where Li denotes (the class of) p∗i (L) and ∆1 = 0. In particular, if L is invertible,
we have

(3.3) c(Sr(L)) =
r∏

i=1

(1 + Li − (γr,i)∗∆i) ¤

After this was written, the author became aware of the work of Lehn [L], which
computes the Chern classes of the analogue of the Sr(L) over Hilbert schemes of
smooth surfaces, in terms of Nakajima’s theory of the cohomology of these schemes.
See [R8] for further discussion the the connection and for a verification that Corol-
lary 3.2 is consistent with Lehn’s formula.

In a nutshell, it is the possibility of results like the foregoing Corollary that make
the spaces W r amenable to enumerative computations. As a first application, we
use this result to give a multiple-point formula for maps to a Grassmannian. Let
X/B be as above and

f : X → G

be a map to a Grassmannian G = G(k, m + k) = G(k, V ), with tautological sub-
and quotient bundles SG, QG respectively. Set

SX = f∗SG, QX = f∗QG.

Note that on G×W r(X/B) we have a natural map

ψ : p∗G(SG) → p∗W Sr(QX)

which is the composite of the obvious inclusion p∗G(SG) ⊂ V ⊗O with the natural
surjection φr : V ⊗ O → p∗W Sr(QX) deduced from the tautological quotient φ :
V ⊗O → QX . Put another way, ψ is obtained from the diagram

(3.4)
G× Γr+1 1G×pX−→ G×X

1G×f−→ G×G
1G × pW r ↓

G×W r

by pulling back the equation of the diagonal in G × G to G × Γr+1 and pushing
down to G × W r. Thus, ψ vanishes at a point (w, g) iff all the elements of the
subspace g ⊂ V vanish in QX ⊗ OJr(w), in other words, iff f maps the scheme
Jr(w) corresponding to w to the reduced point scheme g. We call the latter locus
M+

r (f); by definition, it is a subscheme of G × W r. We may replace M+
r (f) by

a subscheme of W r, as follows. Define a bundle Sr,1(L), for any L, by the exact
sequence

0 → Sr,1(L) → Sr(L) α→ (γr,1)∗(L) → 0.

Then clearly the zero-scheme of the composite map

α ◦ ψ : p∗G(SG) → p∗W (γr,1)∗(QX)
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is just the graph R of the composite

f ◦ p1 : W r → G.

Thus, M+
r (f) is a subscheme of R, and as such, it is the zero-scheme of a map

p∗G(SG) → p∗W Sr,1(Q). Identifying R with W r by projection, we see that M+
r (f)

projects isomorphically to its image Mr(f) in W r and Mr(f) is the zero-scheme of
an analogous map

p∗1(SX) → Sr,1(QX).

Then we have shown the following.

Theorem 3.3. In the above situation, M+
r (f) and Mr(f) have a natural scheme

structure as zero-scheme of vector bundle maps. When M+
r (f) and Mr(f) have

their expected codimension, i.e.

codim(M+
r (f),W r ×G) = rkm,

or equivalently
codim(Mr(f),W r) = (r − 1)km,

then the cohomology (or rational equivalence) class of Mr(f) on W is

(3.5) [Mr(f)] = c(r−1)km(p∗1(S
∗
X)⊗ Sr,1(QX)).

In case G = Pm = G(m, m + 1), the formula (3.4) simplifies somewhat. Let us
write

Li = (f ◦ pi)∗(OG(1)), M1 = (f ◦ p1)∗(SX).

Then we get

[Mr(f)] =
r∏

i=2

cm(M∗
1 ⊗ (Li − (γr,i)∗(∆i)))

(3.6) =
r∏

i=2

(
m∑

j=0

Lj
1(Li − (γr,i)∗(∆i))m−j).

Consider now the case m = 2, r = 3. Then the RHS of (3.5) yields

(3.7) (L2
1 + L1(L2 −∆2) + (L2 −∆2)2)(L2

1 + L1(L3 −∆3) + (L3 −∆3)2).

We want to compute the image of this on X = W 1. To this end we must first
compute the image on the second factor on W 2 via γ3,2. This computation follows
formally from the following.
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Lemma 3.4. Set
f i
0 = fibre of W i(X/B) over 0 ∈ B,

d = deg(f1
0 ) = f1

0 .L, b = π∗L2.

Then we have

(i) γ32
∗ (L2

1) = 0

(ii) γ32
∗ (L1L3) = dL1

(iii) γ32
∗ (L1∆3) = 2L1

(iv) γ3,2
∗ (L2

3) = π∗2(b)

(v) γ3,2
∗ (L3∆3) = L1 + L2

(vi) γ3,2
∗ ((∆3)2) = −K1 −K2 + 2∆2

where Ki = p∗i (KX/B)

proof. Assertions (i), (ii) and (iv) are obvious. Assertions (iii) and (v) are immedi-
ate from the fact that ∆3 has 2 components mapping birationally to W 2. To prove
(vi) we may work off the (codimension-2) exceptional locus of the natural birational
map

W 2 → X2/B

and its inverse image in W 3; on this open set, ∆3 consists of 2 components ∆3
1, ∆

3
2,

each a pullback of the diagonal via the p13, p23 projections, which meet in a locus
projecting isomorphically to ∆2 ⊂ W 2.

Remark 3.4.1. Actually analogues of formulae (i-vi) hold for any γr.r−1, r ≥ 3 in
place of γ3,2, where the analogue of (vi) is

(γr,r−1)∗((∆r)2) = −
r−1∑

i=1

Ki + 2
r−1∑

i=2

(γr−1,i)∗(∆i)

where we set γr−1,r−1 =identity. All these formulae are but the tip of a sizable
iceberg, that it explored more deeply in [R9].

Given formulae 3.4(i-vi), an elementary formal calculation yields

γ3,2
∗ ((L2

1 + L1(L3 −∆3) + (L3 −∆3)2))

= (d− 4)L1 − 2L2 −K1 −K2 + 2∆2 + π∗2(b)

Therefore by the projection formula the image of (2.12) via γ3,2 is

(L2
1 + L1(L2 −∆2) + (L2 −∆2)2)·
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(3.8) ((d− 4)L1 − 2L2 −K1 −K2 + 2∆2 + π∗2(b))

In the computation of the product in (3.8) and its image in X, the main point is
the following. Observe that the normal bundle to ∆2 in W 2 is just −b∗2K1 + E
where

b2 : W 2 → X2/B

is the natural blowup map and E its exceptional locus, which is a divisor on ∆2.
Indeed the restriction of b2 over the diagonal

∆X = X ⊂ X2/B

is just the blowup of the critical locus of π, which we denote by σ (cf. [R6]).
Therefore

γ2,1
∗ (∆2)2 = −K,

γ2,1
∗ (∆2)3 = γ2,1

∗ (K − E)2 = K2 − σ.

From these facts the computation of (3.8) and its image in X are routine.
Now by construction M3(f) parametrizes filtered length-3 schemes contained

in fibres of f , and the filtration induces an ordering on the support. Therefore,
the image on X of M3(f) is geometrically twice the locus of points contained in
a relative triple point of f , while the image on B of the same is 6=3! times the
locus of fibres containing a triple point. Thus writing out the product yields the
following result. As a matter of terminology, we will say that a locus Z has ’virtual
class z’ if whenever Z has its expected dimension, then its cohomology or rational
equivalence class is given by z.

Theorem 3.5. Let π : X → B be a family of connected nodal curves of arithmetic
genus g and f : X → P2 a morphism. Then the virtual class on X of the locus of
points contained in a relative triple point of f is

(3.9) N3,X(f) =
1
2
((3d2 − 18d + 24 + 6g − 6)L2 + (18− 3d)KL + 4K2 − 2σ);

the locus in B of fibres containing a relative triple point of f has virtual class

N3,B(f) =
1
3
π∗(N3,X(f)).

Here L = f∗O(1),K = ωX/B , d = deg(f(π−1(pt.))), σ = class of critical locus of f .

Let us finally specialize to the case where X/B is the normalization of the pencil
(i.e. 1-parameter family) of rational curves in P2 through 3d − 2 assigned generic
points. In this case all the ingredients of (3.9) have been computed recursively
before, e.g. in [R2-R5]; the needed results from these papers are summarized in
[RA]. We have L2 = Nd, the number of rational curves of degree d through 3d− 1
generic points,

K = −2s1 −mdf
1
0 + R1

(cf. [RA],(11)) where s1 is a section of X/B contracted by f to a point (viz. one of
the base points of the pencil), R1 is the sum of all fibre components disjoint from
s1, and md = −s2

1 is given by [RA],(5). Hence

L.K = −dmd + L.R1,K
2 = −σ

(cf. [RA], (14),(15)) and σ coincides with the number of reducible fibres of X/B,
also recursively computed. We conclude
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Corollary 3.6. The number of rational curves of degree d in P2 having a triple
point and going through 3d− 2 generic points is (cf.[R6])

(3.10) Nd,3 =
1
2
((d2 − 6d + 10)Nd + (d− 6)(dmd − L.R1)− 2σ)

Example 3.6.1. N4,3 = 60, a number first computed by Zeuthen and rederived with
modern methods by Kleiman and Piene [KP] (I am grateful to Steve Kleiman for
this reference). See [KP,R6] for some similar examples.

When f is a map to Pm, one is interested classically not only in the relative
multiple-point loci of f but also in its relative multisecant loci, that is the locus
of length-r subschemes of fibres whose f−image is contained in a linear Pk. This
locus can be enumerated by the above results, as the r−fold locus of the natural
projection

IX → G(k, m) := G

where IX is the incidence variety, i.e.

IX = {(x, L) : f(x) ∈ L} ⊂ X ×G.

But it is simpler and more direct to enumerate this locus as follows. Set

(3.11) Secr
k(f) = {(z, L) : f(sch(z)) ⊂ L as schemes} ⊂ W r(X/B)×G

where sch(z) is the subscheme of X corresponding to z. Clearly Secr
k(f) is just the

zero- scheme of the natural map

p∗2(Q
∗
G) → Sr(L)

where QG is the tautological quotient bundle (of rank m − k) on G and L =
f∗(O(1)). Thus we conclude

Theorem 3.7. For a family of nodal curves X/B and a morphism

f : X → Pm,

the virtual locus on W r(X/B) × G of relatively r−secant k-planes to X/B in Pm

is given by

(3.12) [Secr
k(f)] = cr(m−k)(p∗1(S

r(L))⊗ p∗2(QG)).

If the RHS of (3.12) is nonzero (resp. not representable by an effective cycle), then
the locus of relative r−secant k−planes is nonempty (resp. of dimension larger than
the expected, viz. dim(B) + r + (k + r + 2)(m− k)). ¤

Note that the projection of Secr
k(f) to W r(X/B) coincides with the locus where

the natural map
H0(OPm(1))⊗OW r(X/B) → Sr(L)

has rank at most k +1, and consequently can be enumerated directly via Porteous’
formula [F].
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Now Theorem 3.3 above ’repackages’ the multiple-point locus M+
r (f) in a certain

way, and it is possible to repackage differently; the alternative repackaging is useful,
notably, for recursion, and also allows some more general, ’pseudo Grassmannian’
target spaces. We proceed to define these.

Let us say that a smooth m-dimensional variety G is pseudo- Grassmannian
(with bundle E and section ψ, if these need be specified) if E is a rank-m vector
bundle on G×G and the diagonal

∆G ⊂ G×G

is the zero-scheme of the section ψ of E.

Examples. (i) Clearly a Grassmannian has this property, with

E = p∗1S
∗ ⊗ p∗2Q

where S and Q are respectively the tautological sub- and quotient bundles.
(ii) Trivially, any curve is pseudo-Grassmannian
(iii) Generally, a product of pseudo-Grassmannians is pseudo-Grassmannian,

therefore any product of curves and Grassmannians is pseudo-Grassmannian.
Now suppose we have a morphism f : X → G to a pseudo-Grassmannian with

bundle E and section ψ. Then we get a diagram as in (3.4), and pulling back and
pushing forward E, ψ we get a bundle Er with section ψr on G×W r, and we define
M+

r (f) as the zero scheme of ψr. As in the proof of Proposition 3.1, we have an
exact sequence

0 → (pG × (f ◦ pr))∗(E)(−∆r) → Er → (γr,r−1)∗Er−1 → 0.

Consequently, M+
r (f) is a subscheme of γr,r−1∗(M+

r−1(f)) and as such is a zero
scheme of (pG × (f ◦ pr))∗(E)(−∆r). As in the Grassmannian case, the fact that
M+

r (f) is contained in (γr,1)∗M+
1 (f), where M+

1 (f) is just the graph of f , shows
that M+

r (f) is isomorphic to its image Mr(f) on W r and that as subscheme of
Mr−1(f), Mr(f) is a zero scheme of ((f ◦ p1)× (f ◦ pr))∗(E)(−∆r).

Theorem 3.3 bis. In the situation of Theorem 3.3, assume only that G is pseudo-
Grassmannian with bundle E. Then
(i) Mr(f) is a zero-scheme on W r of

(3.13)
r⊕

i=2

((f ◦ p1)× (f ◦ pi))∗(E)(−(γr,i)∗∆i)

(ii) if B is irreducible, Mr(f) is locally defined by (r−1)m equations on W r(X/B)
hence is purely at least (dim(B) + r− (r− 1)m)− dimensional and if equality holds
then

(3.14) [Mr(f)] =
r∏

i=2

((f ◦ p1)× (f ◦ pi))∗(cm(E(−(γr,i)∗∆i))).

proof. (i) has been proved above. In (ii), the assertion about the number of equa-
tions is clear from the definition. As for the assertion about the cohomology class,
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working by induction on r, it is clear from the Fulton-MacPherson residual- inter-
section formula [F] provided both Mr and Mr−1 have their expected dimensions. In
the general case, let C1, ..., Ck be the irreducible components of Mr−1. By Fulton’s
theory, there is a cycle Ui of dimension dim(B) + r− 1− (r− 2)m on each Ci such
that ∑

[Ui] = mr−1.

Since Mr is locally defined by m equations over (γr)−1(Mr−1) but still has its
expected dimension, it follows that the contribution of each oversize component Ci

to Mr is empty, and in particular

(γr)∗(Ui).µr(f) = 0.

So these oversize components contribute nothing to either Mr or mr, so (3.14) still
holds. ¤

Though in most classical application the target is in fact pseudo-Grassmannian,
it is worth noting that Theorem 3.3 bis can be extended to mappings with target an
arbitrary smooth m-dimensional variety Y embedded in a pseudo-Grassmannian G
with bundle E. Note that any projective variety admits such an embedding (e.g.
with G a projective space). Thus, let

f : X → Y

be a mapping to a smooth variety and fix an embedding

Y ⊂ G

in a pseudo-Grassmannian. Of course, the diagonal ∆Y ⊂ Y × Y is a zero-scheme,
albeit not of the expected dimension, of E⊗OY×Y . Let f ′ : X → G be the induced
map. We set

Mr(f) = Mr(f ′).

In fact, we will show that Mr(f) depends only on f and not the embedding Y ⊂ G.
As noted above, as subscheme of (γr,r−1)−1(Mr−1(f)), Mr(f) is a zero scheme of a
section of ((f ′ ◦ p1)× (f ′ ◦ pr))∗(E)(−∆r) induced by a section ψ of E whose zero
scheme is ∆G. The same section yields a section of ((f ′ ◦p1)× (f ′ ◦pr))∗(E), whose
zero-scheme consists of ∆r plus

((f ◦ p1)× (f ◦ pr))∗(∆G ∩ Y × Y ) = ((f ◦ p1)× (f ◦ pr))∗(∆Y )

Put another way, Mr(f) is the residual scheme to ∆r in ((f ◦ p1)× (f ◦ pr))∗(∆Y ).
This first shows that Mr(f) is independent of the choice of embedding Y ⊂ G.
Next, it allows us to compute Mr(f) using residual-intersection theory. To that
end, set for k ≥ 2

(3.15) µk(f) = ((f ◦ p1)× (f ◦ pk))∗(∆Y )−∆k{ (f ◦ p1)∗(c(TY )
1 + ∆k

}m−1

Also let

(3.16) mr(f) =
r∏

k=2

(γr,k)∗(µk(f))

where
γr,k : W r(X/B) → W k(X/B)

is the natural map. The residual intersection formula of [F], §9.2 yields that when-
ever Mr(f) has the expected codimension, viz. m, in (γr,r−1)−1(Mr−1(f)), then
its class is given by µr(f). Thus:
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Theorem 3.3 ter. Let X/B be a family of nodal curves and

f : X → Y

a morphism to a smooth m-dimensional variety embeddable in a pseudo-Grassmannian
G. Then

(i) there is a natural scheme structure Mr(f) on the locus in W r(X/B) of points
whose associated scheme is mapped by f to a reduced point;

(ii) if B is irreducible, Mr(f) is locally defined by (r−1)m equations on W r(X/B)
hence is purely at least (dim(B) + r− (r− 1)m)− dimensional and if equality holds
then

(3.17) [Mr(f)] = mr(f).

proof. Part (i) has been proved above and the proof of (ii) is essentially identical
to that of Theorem 3.3 bis, (ii). Note that the local defining equations for Mr(f) in
(γr,r−1)−1(Mr−1(f)) arise by pulling back equations for ∆Y (or what is the same,
for ∆G), and factoring out the equation of ∆r. ¤
Remark. An earlier version of this paper gave a more general version of Theorem
3.3 ter, not assuming any embedding of Y , and with a more complicated proof. The
foregoing argument is due to the referee. The general idea of defining a multiple-
point locus recursively as a residual scheme inside a diagonal pullback is old folklore.
Having the secant bundles is what makes it work.

Corollary 3.8. In the situation of Theorem 3.3 ter, if mr(f) 6= 0 then Mr(f) is
nonempty.

Consider the case r = 2,m = 3. Thus we have a family of nodal curves mapping
to Y and are enumerating the relative multiple points of their images in Y (at least
if we assume that a general fibre of X/B is smooth and embeds in Y and that every
fibre maps in with degree 1). Then it is easy to see that (3.13) or (3.15) specializes
to (writing fi = f ◦ pi):

(3.18) [M2(f)] = (f1 × f2)∗(∆Y )− ((∆2)3 − (∆2)2f∗1 KY + ∆2f∗1 c2(Y )).

By the calculations in [R6], we have as in the proof of Corollary 3.6,

p1∗(∆2)3 = K2 − σ,

p1∗((∆2)2f∗1 KY ) = −K.f∗(KY ), p1∗(∆2f∗1 c2(Y )) = f∗(c2(Y ))

where as before K = ωX/B and σ is the critical locus of π. Thus we obtain

Corollary 3.9. For a family of nodal curves X/B mapping via f to a smooth
pseudo-Grassmannian 3-fold Y , the virtual locus on X of relative double points of
f is

(3.19) [N2,X(f)] = p1∗(f1 × f2)∗(∆Y )− (K2 − σ + K.f∗KY + f∗c2(Y ))

The expression p1∗(f1 × f2)∗(∆Y ) (which is a 0-cycle or just a number if B is
1-dimensional) may be evaluated in various ways. For example, working in singular
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cohomology over C, let (αi) be a homogeneous basis for the total cohomology H∗(B)
and let (α∗i ) be the dual basis. Then the class of the diagonal ∆B in B×B is given
by

[∆B ] =
∑

αi ⊗ α∗i

setting
βi = f∗(π∗(αi)), β∗i = f∗(π∗(α∗i ))

we have

(3.20) f∗(p1∗(f1 × f2)∗(∆Y )) =
∑

βi.β
∗
i

(which coincides with p1∗(f1 × f2)∗(∆Y ) or (f1 × f2)∗(∆Y ) when they are of top
degree, i.e. numbers. Note also that when B is a curve, we have

[∆B ] ≡ [B]⊗ [pt] + [pt]⊗B mod H1 ⊗H1

so if H3(Y ) = 0 then the first term in (3.19) reduces to 2f∗([f0]).f∗([X]). Finally
note that one customarily denotes

π∗(K2) = κ, π∗(σ) = δ.

Thus we have

Corollary 3.10. In the above situation, suppose
(i) a generic fibre of X/B is smooth and embedded via f ;
(ii)dim(B) = 1;
(iii) H3(Y ) = 0.

Then the virtual number of double of relative double points of f is given by

(3.21) n2(f) =
1
2
(2f∗([f0]).f∗([X])− κ + δ −K.f∗KY − f∗c2(Y )).

In particular, if n2(f) 6= 0 then f does not embed all fibres of X/B and if
n2(f) < 0 then f has degree > 1 on some fibre.

We note that if Y = P3, (3.13) simplifies to

(3.21bis) n2(f) =
1
2
(2bd− 6b− 4L.K −K2)

where as usual L = f∗O(1), d = L.π−1(pt.), b = L2. This formula was first given in
[CR] where it was derived from a general double-point formula referred to Fulton’s
book [F] (in fact, the book does not appear to contain such a formula explicitly
in this generality, though it should be possible to derive one from the case treated
there, due to the fact that any double point is automatically curvilinear). As shown
in [CR], Corollary 3.10 has the following geometric consequence
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Corollary 3.11. There is no nontrivial family of nonsingular rational curves of
degree d ≥ 3 in P3 parametrized by an irreducible projective variety of positive
dimension.

proof. We reproduce the short argument from [CR]. If the assertion fails, there is
a family as above with X/B a P1-bundle P(E) where E is a rank-2 vector bundle
over a smooth curve B and f restricted on each fibre is an embedding in P3, so that
n2(f) = 0, and moreover f(X) is 2-dimensional, so that b = L2 > 0. With no loss
of generality, one may assume c1(E) = 0 or −1. Set D = c1(OP(E)(1). If c1(E) = 0,
we have

K = −2D, K2 = 0,

and we can write
L = dD + xF, F = π−1(pt.), x ∈ Z.

Since b = L2 > 0, we have x > 0, hence

L.K = −2x < 0.

Since d ≥ 3, (3.21bis) yields a contradiction. If c1(E) = −1, we can write, with
similar notations

K = −2D + F,D2 = 1

so
K2 = 0, L.K = −d− 2x < 0,

so again (3.18bis) yields a contradiction. ¤
As another special case of Corollary 3.10, we recover a result from [R6]. We

use the notation developed in [RA]; in particular N red
d (a.) denotes the number

of reducible rational curves of degree d in P3 satisfying the incidence conditions
indicated by (a.) and m1 = −s2

1 where s1 is the section of X/B corresponding to
an incident linear subspace of codimension a1. Both these numbers are recursively
computable. See the [RA] for more details.

Corollary 3.12. With the notations of [RA], the number of singular rational
curves of degree d through a generic points and 4d − 2a − 1 generic lines in P3

is

(3.22) (d− 2)Nd(3a24d−2a) + N red
d (3a24d−2a−1)− 2dm1(3a24d−2a−1 + 2L.R1

if a > 0 and
(d− 2)Nd(3a24d−2a) + N red

d (3a24d−2a−1)

(3.23) −2dma+1(3a24d−2a−1) + 2L.Ra+1 − 4Nd(3a+124d−2a−2)

if 4d− 2a− 1 > 0.

proof. We use Corollary 3.10 for the family X/B(3a24d−2a−1). The the RHS of
(3.21bis) yields, with (a.) = (3a24d−2a−1)that, in the the above notation,

n2(f) =
1
2
(2dNd(3a24d−2a)−K2 + N red

d (a.) + 4LK − 4Nd(3a24d−2a)).
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Using the formula [RA],(14) for i = 1 and noting that Nd(4, ...) = 0 yields (3.22),
while the same formula with i = a + 1 yields (3.23).

Remark 3.13. Theorem 3.3, as well as the other multiple-point results in this paper,
admit straightforward generalizations to the relative case, where Y is replaced by
a smooth morphism

ρ : Y → B

and f is a B-morphism, i.e. the following diagram commutes

X
f→ Y

π ↘ ↙ ρ
B.

Note that the ’absolute’ case discussed above becomes a special case of the relative
case by replacing Y by Y × B → B. In the relative case The factors µk(f) are
replaced by

(3.24) µk(f/B) = (f1 ×B fk)∗(∆Y/B)−∆k{f∗1 (c(TY/B))
1 + ∆k

}m−1

where ∆Y/B is the diagonal in Y ×B Y and TY/B is the relative or vertical tangent
bundle of Y → B (which coincides with the normal bundle of ∆Y/B in Y ×B Y ) and
m is the relative dimension of Y/B. With (3.24) in place of (3.15), the analogue of
Theorem 3.2 and its consequences hold. The analogous generalizations of Theorem
2.6 and its consequences, which concern maps to projective and Grassmannian
bundles, also hold. The proofs are the same, because for a B−map f , multiple-
point loci involve only the ’vertical’ coordinates of Y over B.

Concluding remark 3.14. Hopefully, the enumerative results of this section provide
sufficient motivation for wanting to determine completely the multiplicative struc-
ture of the subring of the Chow ring of W r generated by ∆2, ..., ∆r together with
the Chow ring of X. As remarked above, this indeed is the subject of [R9].
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