
A NOTE ON HILBERT SCHEMES OF NODAL CURVES

Ziv Ran

Abstract. We study the Hilbert scheme and punctual Hilbert scheme of a nodal
curve, and the relative Hilbert scheme of a family of curves acquiring a node. The
results are then extended to flag Hilbert schemes, parametrizing chains of subschemes.
We find, notably, that if the total space X of a family X/B is smooth (over an
algebraically closed field k), then the relative Hilbert scheme Hilbm(X/B) is smooth
over k and the flag Hilbert schemes are normal and locally complete intersection, but
generally singular .

The Hilbert scheme parametrizes ideal sheaves or subschemes of Projective Space
or more generally, or a fixed scheme X. Perhaps the simplest case is where X is a
smooth curve, for then the Hilbert scheme Hilbm(X) parametrizing length-m sub-
schemes of X coincides with the symmetric product Symm(X). Our purpose in this
note is to study what is in a sense the next simplest case, where X is essentially
a curve with ordinary nodes, with planar equation formally equivalent to xy = 0.
Besides Hilbm(X) itself, there are (at least) 2 other types of Hilbert scheme of nat-
ural interest here: the punctual one Hilb0

m(X), parametrizing length-m subschemes
supported at a node; and the relative one Hilbm(X̃/B), parametrizing length-m
subschemes in the fibres of the family X̃/B that is the map A2 → A1 given by
xy = t (both Hilbm(X) and Hilbm(X̃/B) may conveniently be viewed as germs,
or formal schemes, along Hilb0

m(X). All these will be determined below. We find
that Hilb0

m(X) is a connected chain of (m− 1) nonsingular rational curves meeting
transeversely; Hilbm(X) is a connected chain of (m+1) nonsingular m-dimensional
germs, whose first and last members are supported on points and each other member
is supported on a component of Hilb0

m(X), and only consecutive members intersect
(and those transversely); finally, Hilbm(X̃/B) is a smooth (m + 1)-fold.

To elucidate the relations between the Hilbm for different m, with an eye to
enumerative applications based on recursion on m, we will also study some flag
Hilbert schemes Hilbm., parametrizing chains of ideals whose colengths form a
given sequence m. = (m1 > m2 > ...). For some purposes, these are easier to
work with than ordinary Hilbert schemes, due to the natural maps between the
Hilbm. for different (m.). For example, for m. = (m,m − 1), we find that the
punctual Hilbert scheme Hilb0

m.(X) is a chain of 2m− 3 copies of P1 that alternate
between those coming from Hilb0

m(X) and from Hilb0
m−1(X). The relative Hilbert

scheme Hilbm.(X̃/B) is still smooth. Things begin to change though with m. =
(m,m− 1,m− 2). Here Hilb0

m.(X) is still a chain of 2m− 3 components, but now
only the 2 external ones on each side are P1’s and the rest are P1×P1. The relative

1991 Mathematics Subject Classification. 14C05, 14H10.
Research Partially supported by NSA Grant MDA904-02-1-0094; reproduction and distribu-

tion of reprints by US government permitted.

1
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Hilbert scheme Hilbm.(X̃/B) is no longer smooth, but it is still normal with locally
complete intersection singularities. A similar picture emerges for longer chains,and
in particular for the ’full flag’ case fHilbm = Hilbm,m−1,...,1.

In [R], which uses some of these results, we will develop an alternative and more
’geometric’ approach to these objects. In particular, we will identify fHilbm(X̃/B)
with a certain space Wm(X̃/B) constructed as an explicit blow-up of the relative
Cartesian product X̃m/B. The proof of this identification uses some of the results
here. We will then apply the spaces Wm(X̃/B) to some enumerative problems. In
these applications, the relatively simple relationship between fHilbm and fHilbm−1

is critical.
We work over a fixed algebraically closed field k. We denote by R localizarion of

the ring
k[x, y]/(xy)

and at its maximal ideal (x, y). A typical element of R can be written in the form

u(a +
∑

i≥1

bix
i + ciy

i)

where u is a unit and the sum is finite. The formal completion

R̂ = k[[x, y]]/(xy) = {a +
∑

i≥1

bix
i + ciy

i}

(sum not necessarily finite) is isomorphic to the formal completion of the local ring
at any 1-dimensional ordinary node. We seek first to determine the punctual Hilbert
scheme Hilb0

m(R) of colength-m ideals in R which, as is well known, is naturally
isomorphic to Hilb0

m(R̂). At this point, we do not seek to define or compute a
natural scheme structure on Hilb0

m(R) (so calling it the punctual Hilbert scheme is
something of a misnomer)– this will be done later (see Corollary 8). For now we
simply view Hilb0

m(R) as an algebraic set endowed with a flat family of ideals that
yields a bijective correspondence between the (closed, k−valued) points of Hilb0

m(R)
and the colength-m ideals of R.

Theorem 1. (i) Every ideal I < R of colength m is of one of the following, said
to be of type (cm

i ), (qm
i ), respectively:

Im
i (a) = (yi + axm−i), 0 6= a ∈ k, i = 1, ..., m− 1;

Qm
i = (xm−i+1, yi), i = 1, ..., m.

(ii) The closure Cm
i in the Hilbert scheme of the set of ideals of type (cm

i ) is iso-
morphic to P1 and consists of the ideals of types (cm

i ) or (qm
i ) or (qm

i+1). In fact,
we have

lim
a→0

Im
i (a) = Qm

i ,

lim
a→∞

Im
i (a) = Qm

i+1.

(iii) The punctual Hilbert scheme Hilb0
m(R), as algebraic set, is a rational chain

(1) Cm
1 ∪Qm

2
Cm

2 ∪ · · · ∪Qm
m−1

Cm
m−1;
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it has ordinary nodes at Qm
2 , ..., Qm

m−1 and is smooth elsewhere.

proof. Recall that elements z, z′ ∈ R are said to be associate if z = uz′ for some
unit u. Note that any nonzero nonunit z ∈ R is associate to a uniquely determined
element of the form xα or yβ or xα + ayβ , a 6= 0, α, β > 0, in which case we will say
that z is of type (α, 0) or (0, β) or (α, β), respectively. Note also that for any ideal
I of colength m we have

xm, ym ∈ I.

Now given I of colength m, pick z ∈ I of minimal type (α, β), with respect to the
natural partial ordering on types. Suppose to begin with that α, β > 0. Then note
that

xα+1, yβ+1 ∈ I,

and consequently (α, β) is unique: indeed if (α′, β′) is also minimal then we may
assume α′ > α, hence xα′ ∈ I, hence yβ′ ∈ I, contradicting minimality. Hence
(α, β) is unique and it is then easy to see that the element z′ = xα + ayβ ∈ I is
unique as well, so clearly z′ generates I and I is of type (cm

β ).
Thus we may assume that any minimal element of I is of type (α, 0) or (0, β).

Since xm, ym ∈ I, I clearly contains minimal elements of type (α, 0) and (0, β),
and then it is easy to see that I is of type (qm

β ). This proves assertion (i). Since
Im
i (a) contains yi+1, xm−i+1, assertion (ii) is easy. As for (iii), let C =

⋃
i

Cm
i

be an abstract nodal curve as in (1). It follows from (ii) that each Cm
i carries a

flat family of ideals, i.e. admits a natural morphism to Hilbm(R) which is clearly
injective on k-valued as well as k[ε]-valued points (compare the computations in
the proof of Theorem 2 below). Since these morphisms agree on the intersections
Cm

i ∩ Cm
i+1 = Qm

i+1, they yield a morphism, again clearly injective on k and k[ε]
valued points, from C to Hilbm(R), which identifies C with Hilb0

m(R) as an algebraic
set. ¤

Next we determine the structure of the full Hilbert scheme of R and R̂:

Theorem 2. The Hilbert scheme Hilbm(R) (resp. Hilbm(R̂) is a chain

Dm
0 ∪Dm

1 · · ·Dm
m−1 ∪Dm

m

where each Dm
i is a smooth and m−dimensional germ (resp. formal scheme) sup-

ported on Cm
i for i = 1, ..., m − 1 or Qm

i for i = 0,m; for i = 1, ..., m − 1, Dm
i

meets its neighbors Dm
i±1 transversely in dimension m− 1 and meets no other Dm

i .
The generic point of Dm

i corresponds to subscheme of Spec(R) comprised of m− i
points on the x-axis and i points on the y-axis.

proof. Clearly Hilbm(R) (resp. Hilbm(R̂)) is a germ (resp. formal scheme) sup-
ported on Hilb0

m(R), so this is a a matter of determining the scheme structure of
Hilbm(R) and Hilbm(R̂) at each point of Hilb0

m(R), which may be done formally
by testing on Artin local algebras. Again, we shall do so at Qm

i , i > 1 as the cases
of Im

i (a) and Qm
1 are similar and simpler. Given S artinian local augmented, a flat

S-deformation of I = Qm
i is given by an ideal

IS = (f, g),
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(4) f = xm+1−i + f1(x) + f2(y),

g = yi + g1(x) + g2(y),

where fi, gj have coefficients in mS , and such that RS/IS is S− free of rank m, in
which case it is clear by Nakayama’s Lemma that

1, x, ..., xm−i, y, ..., yi−1

is a free basis for RS/IS . It is easy to see that we may assume f1, g1 are in fact
polynomials of degree ≤ m − i and f2, g2 are of degree < i and f2, g2 have no
constant term. Let’s write

(5) f1(x) =
m−i∑

0

ajx
j , f2(y) =

i−1∑
1

bjy
j ,

(6) g1(x) =
m−i∑

0

cjx
j , g2(y) =

i−1∑
1

djy
j .

Now obviously
yf − bi−1g ≡ 0 ≡ xg − cm−if mod IS .

Writing these elements out in terms of 1, x, ..., xm−i, y, ..., yi−1 yields relations
among 1, x, ..., xm−i, y, ..., yi−1. Since the latter elements form an S-free basis of
RS/IS , those relations must be trivial. In other words, we have exact equalities
rather than congruences:

yf − bi−1g = 0 = xg − cm−if.

Writing out this equality term by term yields the following identities

bj = bi−1dj+1, j = 1, ..., i− 2,

bi−1d1 = a0,

(7) bi−1cj = 0, j = 0, ..., m− i,

cj = cm−iaj+1, j = 0, ..., m− i− 1,

cm−ia0 = 0,

cm−ibj = 0, j = 1, ..., i− 1.

(If i = 1 only lines 4 and 5 of display (7) are operational.) Conversely, suppose the
relations (7) are satisfied, or equivalently

(8) yf − bi−1g = 0 = xg − cm−if.
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By Nakayama’s Lemma, 1, x, ..., xm−i, y, ..., yi−1 generate RS/IS , hence to show (4)
defines a flat family it suffices to show these elements admit no nontrivial S-relations
mod IS . To this end,, suppose

(9) um−i(x) + vi−1(y) = A(x, y)f + B(x, y)g

where u, v,A, B are all polynomials in the indicated variables and of the indicated
degees (if any) with coefficients in S and v has no constant term; in fact it clear a
priori that then A, B must have coefficients in mS . Then the relations (8) allow us
to rewrite (9) as

(9’) um−i(x) + vi−1(y) = A′(x)f + B′(y)g,

with A′(x) =
∑

a′kxk ∈ mS [[x]], B′(x) =
∑

b′kyk ∈ mS [[y]]. Comparing coefficients
of xm−i+1, ..., yi, ... in (9’) we get relations

−a′0 = a′1am−i + ...,−b′0 = b′1bi−1 + ...

(10) ...

−a′k = a′k+1am−i + ...,−b′k = b′k+1bi−1 + ...

Starting from the fact that aj , a
′
k ∈ mS , ∀j, k, we infer from these first that, in fact,

a′k ∈ m2
S ,∀k; plugging the latter fact back into the relations (10) we then infer

a′k ∈ m3
S , ∀k, and so on. Since S is artinian it follows that a′k = 0,∀k and likewise

for b′k. Thus
A′ = B′ = um−i = vi−1 = 0,

hence there are no nontrivial relations, as claimed.
Thus the Hilbert scheme is embedded in the space of the variables

a1, ..., am−i, d1, ..., di−1, bi−1, cm−i,

i.e. Am+1, and defined by the relation

(11) bi−1cm−i = 0.

Thus it is a union of 2 smooth m−dimensional components meeting transversely
in a smooth (m− 1)−dimensional subvariety. The generic point on the component
where bi−1 = 0 (resp. cm−i = 0) is clearly an ideal generated by g (resp. f), which
has the properties as claimed.

In the case I = Im
i (a) = (yi + axm−i), a similar analysis shows that an S-

deformation of I is given by the principal ideal

IS = (yi + ãxm−i + f1(x) + f2(y))

where
ã ∈ S, ã ≡ a mod mS ,

f1(x) =
m−i−1∑

0

ajx
j , f2(y) =

i−1∑
1

bjy
j ,
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aj , bj ∈ mS ,

and via (ã, a0, ..., am−i−1, b1, ..., bi−1) we may identify Hilbert scheme locally with
Am. ¤
Remark 2.1. We note that in terms of the above coordinates the subset Hilb0

m(R) ⊂
Hilbm(R) is defined by

a1 = ... = am−i = d1 = ... = di−1 = 0,

i.e. by the conditions
f(x, 0) = xm−i+1, g(0, y) = yi.

We shall see below that this, in fact, defined the ’natural’ scheme structure on
Hilb0

m(R). ¤
Next we consider the relative local situation, i.e. that of a germ of a (1-

parameter) family of curves with smooth total space specializing to a node. Thus
set

R̃ = k[x, y](x,y), B = k[t](t),

and view R̃ as a B−module via xy = t. As is well known, this is the versal
deformation of the node singularity xy = 0, so any family of nodal curves is locally
a pullback of this.

Theorem 3. The relative Hilbert scheme Hilbm(R̃/B) is formally smooth, formally
(m + 1)−dimensional over k.

proof. The relative Hilbert scheme parametrizes length-m schemes contained in
fibres of Spec ˜(R) → Spec(B). This means ideals IS < R̃S of colength m containing
xy − s for some s ∈ mS , such that R̃S/IS is S−free. The analysis of these is
virtually identical to that contained in the proof of Theorem 2, except that the
relation bi−1cm−i = 0 gets replaced by

(*) bi−1cm−i = s

and lines 3,5,6 of display (7) are replaced, respectively, by

bi−1cj = saj+1, j = 0, ..., m− i− 1

cm−ia0 = sd1

cm−ibj = sdj+1, 1 ≤ j ≤ i− 2,

relations which already follow from the other relations (in lines 1,2,4 of display (7))
combined with (*). Thus, the relative Hilbert scheme is the subscheme of the affine
space of the variables a1, ..., am−i, d1, ..., di−1, bi−1, cm−i, t defined by the relation

(12) bi−1cm−i = t,

hence is smooth as claimed. ¤
Remark 3.1. After this was written, the author was informed by Prof. I. Smith
of some related work by himself and Prof. S. Donaldson [DS, Sm] which considers
the relative Hilbert scheme of a pencil of nodal curves on a smooth surface from a



HILBERT SCHEME OF NODAL CURVES 7

rather different viewpoint, valid in the symplectic category over C; in particular,
they prove in this context an analogue of Theorem 3 (smoothness of the total space
of the relative Hilbert scheme).

Construction 3.2. An explicit construction of Hilbm(R), globally along Hilb0
m(R),

can be given as follows (also see [R2] for further developments). Let C1, ..., Cm−1

be copies of P1, with homogenous coordinates ui, vi on the i-th copy. Let C̃ ⊂
C1 × ...× Cm−1 × A1 be the subscheme defined by

v1u2 = tu1v2, ..., vm−2um−1 = tum−2vm−1.

Thus C̃ is a reduced complete intersection of divisors of type (1, 1, 0, ..., 0),
(0, 1, 1, 0, ..., 0), ..., (0, ..., 0, 1, 1) and it is easy to check that the fibre of C̃ over 0 ∈ A1

is
C̃0 =

⋃

i

[1, 0]× ...× [1, 0]× Ci × [0, 1]× ...× [0, 1]

and that in a neighborhood of C̃0, C̃ is smooth and C̃0 is its unique singular fibre
over A1. We may identify C̃0 is an obvious way with Hilb0

m(R). Next consider an
affine space A2m with coordinates a0, ..., am−1, d0, ..., dm−1 and let H̃ ⊂ C̃ × A2m

be the subscheme defined by

a0u1 = tv1, d0vm−1 = tum−1

a1u1 = dm−1v1, ..., am−1um−1 = d1vm−1.

Set Li = p∗Ci
O(1). Then consider the subscheme of H̃ ×A1 Spec(R̃) defined by the

equations
F0 := xm + am−1x

m−1 + ... + a1x + a0 ∈ Γ(OH̃ ⊗R)

F1 := u1x
m−1 + u1am−1x

m−2 + ... + u1a2x + u1a1 + v1y ∈ Γ(L1 ⊗R)

...

Fi := uix
m−i+uiam−1x

m−i−1+...+uiai+1x+uiai+vidm−i+1y+...+vidm−1y
i−1+viy

i

∈ Γ(Li ⊗R)

...
Fm := d0 + d1y1 + ... + dm−1y

m−1 + ym ∈ Γ(OH̃ ⊗R).

In view of the above results, it is easy to check that the ideal sheaf I generated by
F0, ..., Fm defines a subscheme of H̃ × Spec(R) that is flat over H̃ and that may
serve to identify H̃ with Hilb(R̃)/B. Locally at a point of type cm

i (resp. Qm
i ), I is

generated by Fi (resp. Fi−1, Fi).
Now let E be the universal bundle on H̃, whose fibre at a point corresponding

to a length-m scheme z is Γ(Oz), and let V be the trivial rank−(2m+1) bundle on
the symbols 1, x, ..., xm, y, ..., ym. Since 1, x, ..., xm, y, ..., ym generate Γ(Oz) for all
z ∈ Hilbm(R̃), we have a surjection V → E. Then F0, ..., Fm together yield a map

F : OH̃ ⊕
m−1⊕

1

L−1
i ⊕OH̃ → V
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so we get an exact sequence

0 → OH̃ ⊕
m−1⊕

1

L−1
i ⊕OH̃ → V → E → 0.

In particular, it follows that c1(E) = L1 + ...Lm−1.
Note that Am

a0,...,am−1
,Am

d0,...,dm−1
may be identified, respectively, with SymmA1

x,

SymmA1
y and accordingly it will be convenient to use the notation σi = am−i, τi =

dm−i, these being respectively the i-th elementary symmetric functions in the roots
of F0, Fm. I claim, in fact, that the projection c : H̃ → A2m+1 may be identified
with the cycle map H̃ → Symm(Spec(R̃)/B) : this is because the natural map

Φ : Symm(Spec(R̃)/B) → Am
σ × Am

τ ×B

is an embedding. Φ is an embedding because its restrictions on the generic fibre
and the special fibre over B are embeddings. Moreover, it is not hard to see that
the image of Φ (which coincides with that of c) is scheme-theoretically defined by
the equations

σiτj = tσi−1τj−1, ∀i, j = 1, ..., m, i + j > m

where we set σ0 = τ0 = 1. Setting Sm =im(Φ), we have that H̃ is a Weil divisor in
Sm × C̃. ¤

The local analysis immediately yields some conclusions for the Hilbert scheme
of a nodal curve:

Corollary 4. Let C0 be a curve with only k nodes as singularities and c irreducible
components. Then
(i) Hilbm(C0) is reduced and has precisely

(
m+c−1

m

)
components, the general element

of each of which corresponds to a reduced subscheme of the smooth part of C0;
(ii) let I be a point of Hilbm(C0) having colength mi at the i-th node of C0; then
locally at I,Hilbm(C0) is a cartesian product of k factors, each of which is a 2-
component normal crossing of dimension mi, i = 1, ..., k, or a point if mi = 0,
times a smooth factor.
(iii) the fibre of the cycle map

cyc : Hilbm(C0) → Symm(C0)

(cf. [A]) over a cycle having multiplicity mi at the ith node is a product of 1-
dimensional rational chains of length mi − 1.

proof. It is clear from the explicit analysis in the proof of Theorem 2 that any sub-
scheme of C0 deforms to a reduced subscheme supported on the smooth part. Such
subschemes are parametrized by an open dense subset of the symmetric product
Symm(C0). This clearly yields (i) and (ii), while (iii) follows from the fact that the
fibres of cyc are products of punctual Hilbert schemes. ¤

Next we extend (most of) the above results to the case of flag Hilbert schemes (see
[Se] for a general discussion of those). By definition, for any decreasing sequence of
positive integers

m. = (m1 > ... > mk),
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the flag Hilbert scheme Hilbm.(R) parametrizes nested chains of ideals

(13) I1
S < ... < Ik

S < RS

such that RS/Ij
S is S-free of rank mj , j = 1, ..., k (i.e. such that each Ij

S is an S−
point of Hilbmj (R)); similarly for punctual and relative Hilbert schemes. Thus a
flag Hilbert scheme is by definition a subscheme of a product (or, in the relative
case, a fibre product) of its ’constituent’ ordinary Hilbert schemes and as such comes
equipped with forgetful projection morphisms to those constituents; moreover the

defining equations for Hilbm.(R) in
k∏

j=1

Hilbmj
(R) are just the conditions that the

inclusions (13) hold, and these equations involve only pairs of successive factors
Hilbmj (R), Hilbmj+1(R), j = 1, ..., k − 1 . In the case of ’full flags’, i.e. the case

m. = (m > m− 1 > ... > 1),

we will denote Hilbm.(R) by fHilbm(R). We begin by analyzing the case of pairs of
ideals of relative colength 1:

Theorem 5. (i)The only colength-(m − 1) ideal containing Im
i (a) is Qm−1

i ; the
only colength-(m − 1) ideals containing Qm

i are the Im−1
i−1 (a) for a 6= 0 and their

limits Qm−1
i and Qm−1

i−1 .
(ii) The punctual flag Hilbert scheme Hilb0

m,m−1(R), as algebraic set, is a chain of
nonsingular rational curves of the form

Cm
1 ∪(Qm

2 ,Qm−1
1 ) Cm−1

1 ∪(Qm
2 ,Qm−1

2 ) Cm
2 ∪ · · · ∪(Qm

m−1,Qm−1
m−1)

Cm
m−1;

it has ordinary nodes at Qm
2 , ..., Qm

m−1 and is smooth elsewhere. Each compo-
nent Cm

i projects isomorphically to its image in Hilb0
m(R) and to a point Qm−1

i

in Hilbm−1(R), and vice-versa for Cm−1
i .

(iii) The flag Hilbert scheme Hilbm,m−1(R), as formal scheme along Hilb0
m,m−1(R),

has normal crossing singularities and at most triple points. Each of its components
is formally smooth, m−dimensional and of the form

Dm,m−1
i,i′ , i = 0, ..., m, i− 1 ≤ i′ ≤ i,

and projects to Dm
i , Dm−1

i′ respectively (cf. Theorem 2); Dm,m−1
i,i′ meets Dm,m−1

j,j′

nontrivially iff
|i− j|+ |i′ − j′| ≤ 1;

the components of Hilb0
m,m−1(R) contained in Dm,m−1

i,i (resp. Dm,m−1
i,i−1 ) are Cm

i

and Cm−1
i (resp. Cm−1

i−1 and Cm
i ).

(iv) The relative flag Hilbert scheme Hilbm,m−1(R̃/B), as formal scheme along
Hilb0

m,m−1(R), is formally smooth and (m + 1)-dimensional over k. The natural
map

Hilbm,m−1(R̃/B) → Hilbm−1(R̃/B)

is a flat, locally complete intersection morphism of relative dimension 1.

Proof. Assertion (i) is an elementary consequence of the analysis in the proof of
Theorem 1 and its proof will be omitted. Assertion (ii) and the set-theoretic portion
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of Assertion (iii) follow from this. To complete the proof of (iii),(iv), it remains to
analyze the situation locally at each pair (I, I ′) ∈Hilb0

m,m−1(R). We will consider
the case of (Qm

i , Qm−1
i ), 1 < i < m, as other cases are similar or simpler. There we

will focus mainly on Assertion (iv), as (iii) is essentially a special case of this (as will
be indicated below). Consider then a pair (IS < I ′S) flatly deforming (Qm

i , Qm−1
i )

relative to B. Then we may assume that for some s ∈ mS , IS and I ′S are generated
by xy − s and f, g (resp. f ′, g′) with

f = xm+1−i +
m−i∑

j=0

ajx
j +

i−1∑

j=1

bjy
j ,

g = yi +
m−i∑

j=0

cjx
j +

i−1∑

j=1

djy
j ,

f ′ = xm−i +
m−i−1∑

j=0

a′jx
j +

i−1∑

j=1

b′jy
j ,

g′ = yi +
m−i−1∑

j=0

c′jx
j +

i−1∑

j=1

d′jy
j .

(For the non-relative case we take s=0.)
As we saw above, the relations as in (7), or equivalently (8), are necessary and

sufficient so that IS , I ′S are S-flat deformations of I, I ′ respectively. In particular,
these include

(14) bi−1cm−i = s = b′i−1c
′
m−i−1.

The other relations can be used to eliminate some of the parameters. It remains to
account for the condition that IS < I ′S . To this end it suffices to note that

1, x, ..., xm−i−1, y, ..., yi−1

form an S-free basis of RS/I ′S , then express f, g in terms of this basis and equate
the coefficients to 0. This yields the coefficient relations

a0 = −(am−i − a′m−i−1)a
′
0 + sb′1,

aj = a′j−1 − (am−i − a′m−i−1)a
′
j , j = 1, ..., m− i− 1,

bj = ((am−i − a′m−i−1)b
′
j + sb′j+1, j = 1, ..., i− 2,

bi−1 = (am−i − a′m−i−1)b
′
i−1,

cj = c′j + cm−ia
′
j , j = 0, ..., m− i− 1,

dj = d′j + cm−ib
′
j , j = 1, ..., i− 1.

These coefficient relations are equivalent to

(14.1) f = (x + am−i − a′m−i−1)f
′, g = g′ + cm−if

′.
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By formal manipulations, these relations imply that

(15) c′m−i−1 = cm−i(am−i − a′m−i−1).

Therefore the 2 relations (14) are replaced by the single relation

(16) (am−i − a′m−i−1)b
′
i−1cm−i = s.

Consequently the relative flag Hilbert scheme is smooth here, with regular param-
eters

a′1, ..., a
′
m−i−1, am−i, d

′
1, ..., d

′
i−1, b

′
i−1, cm−i

and its fibre, i.e. Hilbm,m−1(R), is the normal-crossing triple point

(am−i − a′m−i−1)b
′
i−1cm−i = 0.

The 3 components are: Dm,m−1
i−1,i−1, defined by am−i − a′m−i−1 = 0 (which implies

bi−1 = c′m−i−1 = 0); Dm,m−1
i,i , defined by b′i−1 = 0 (which implies bi−1 = 0);

Dm,m−1
i,i−1 , defined by cm−i = 0, (which implies c′m−i−1 = 0). Finally the rela-

tion (15) exhibits Hilbm,m−1(R̃/B) locally as a conic in an A2 with coordinates
am−i, cm−i over Hilbm−1(R̃/B), and therefore the projection is a flat locally com-
plete intersection morphism. ¤
Remark 5.1. In the case of the punctual flag Hilbert scheme, we have by Re-
mark 2.1 that the only coefficients in the above calculation not automatically 0
are bi−1, cm−i, b

′
i−1, cm−1−i, and the vanishing of am−i, a

′
m−i−1, d1, d

′
1 yield the re-

lations

(17) bi−1 = c′m−i−1 = cm−ib
′
i−1 = 0.

Thus Hilb0
m,m−1(R) has two components at (Qm

i , Qm−1
i ): one where cm−i = 0,

which projects to {Qm
i } ⊂ Hilbm(R) and to Cm−1

i−1 ⊂ Hilbm−1(R); the other where
b′i−1 = 0 which projects to Cm

i ⊂ Hilbm(R) and to {Qm−1
i } ⊂ Hilbm−1(R). Thus

we recover in terms of equations the set-theoretic picture presented in Theorem
5(ii). ¤
Remark 5.2. For future reference we note that in the analogous case of (relative)
deformations of (Qm

i , Qm−1
i−1 ), f ′, g′ take the form

f ′ = xm−i+1 +
m−i∑

j=0

a′jx
j +

i−2∑

j=1

b′jy
j , g′ = yi−1 +

m−i∑

j=0

c′jx
j +

i−2∑

j=1

d′jy
j .

The relations (15) and bi−1 = (am−i−a′m−i−1)b
′
i−1 (see just above (15)) are replaced

by

(18) cm−i = (di−1 − d′i−2)c
′
m−i, b

′
i−2 = (di−1 − d′i−2)bi−1.

As we shall see, this remark is useful in studying flag Hilbert schemes with more
than 2 constituents. ¤
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Remark 5.3. Note that for any (I, I ′) ∈ Hilbm,m−1(R), the annihilator Ann(I ′/I) <
R is an ideal of colength 1. This yields a morphism

Am : Hilbm,m−1(R) → Hilb1(R) = Spec(R).

For example, in the situation of (14.1), we have by (the analogue of) (8),

yf ′ = b′i−1g
′ = b′i−1g − b′i−1cm−if

′,

hence J := (x + am−i − a′m−i−1, y + b′i−1cm−i) annihilates f ′ mod IS . Hence by
(14.1) again, J annihilates I ′S mod IS . Note that by (14.1), we have b′i−1cm−i =
di−1 − d′i−1. Therefore the value of Am on the S−valued point (IS , I ′S) (which
extends the closed point (Qm

i , Qm−1
i )) is

Am(IS , I ′S) = (x + am−i − a′m−i−1, y + di−1 − d′i−1).

Consequently, the closed (special) fibre of Am is defined in terms of f, g, f ′, g′ by
the condition that

f(x, 0) = xf ′(x, 0), g(0, y) = g′(0, y). ¤

Construction 5.4. An analogue of Construction 3.2 in the flag case may be given
as follows. Let ai, di etc be as there and let a′i, d

′
i etc. be the analogous objects for

Hilbm−1. Set
r = am−1 − a′m−2, s = dm−1 − d′m−2,

so that
F0 = F ′0(x + r), Fm = F ′m−1(y + s)

and we have the relation
rs = t,

so that (r, s) give a copy of Spec(R̃)/B. Then Hilbm,m−1(R̃/B) may be relalized
as the subscheme of C̃ ×B Spec(R̃)×B Hilbm−1(R̃/B) defined by

u′ivi = ruiv
′
i, v′iui+1 = svi+1u

′
i

a′iui+1 = sd′m−1−ivi+1, d′m−1−ivi = ra′iui, i = 1, ..., m− 1. ¤

In extending these results to the case of longer- a fortiori, full- flags, the same
methods apply. But in the conclusions, a couple of new twists come up, already for
flags of type m. = (m,m− 1,m− 2). First, the punctual Hilbert scheme Hilb0

m.(R)
will have components of varying dimensions (in this case, 1 and 2), roughly speak-
ing because the parameters in Hilb0

m(R) and Hilb0
m−2(R) can vary independently.

Second, the relative flag Hilbert scheme Hilbm.(R̃/B) is not the same locally at
(Qm

i , Qm−1
i , Qm−2

i ) as at (Qm
i , Qm−1

i , Qm−2
i−1 ). The following proof contains the rel-

evant computation.
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Lemma 6. Set m. = (m,m− 1,m− 2). Then (i) as algebraic set, Hilb0
m.(R) is of

the form

Cm
1 ∪ Cm−1

1 ∪ Cm,m−2
2,1 ∪ Cm−1

2 ∪ ... ∪ Cm,m−2
m−2,m−3 ∪ Cm−1

m−2 ∪ Cm
m−1.

Each component Cm,m−2
i,i−1 projects isomorphically to Cm

i × Cm−2
i−1 ⊂ Hilbm,m−2(R)

and to {Qm−1
i } ⊂ Hilbm−1(R).

(ii) Hilbm.(R̃/B) is irreducible and is smooth except at points (Qm
i , Qm−1

i , Qm−2
i−1 ),

where is has a rank-4 quadratic hypersurface singularity with local equation

(19) (am−i − a′m−i−1)cm−i = (d′i−1 − d′′i−2)c
′′
m−i−1

proof. The set-theoretic assertion (i) follows from Theorem 5. For (ii), we will ana-
lyze Hilbm.(R̃/B) locally at points of the form (Qm

i , Qm−1
i , Qm−2

i ) or (Qm
i , Qm−1

i , Qm−2
i−1 )

as other cases are similar or simpler. Beginning with the former case, consider a
deformation (I ′′S < I ′S < IS) of (Qm

i , Qm−1
i , Qm−2

i ) where IS , I ′S are as in the proof
of Theorem 5 and I ′′S is analogously defined by

f ′′ = xm−i−1 +
m−i−2∑

j=0

a′′j xj +
i−1∑

j=1

b′′j yj ,

g′′ = yi +
m−i−2∑

j=0

c′′j xj +
i−1∑

j=1

d′′j yj .

Then working as in the proof of Theorem 5 we find the the (m + 1) parameters

a′′1 , ..., a′′m−i−2, d
′′
1 , ..., d′′i−1, b

′′
i−1, cm−i, a

′
m−i−1, am−i

such that all the coefficients of all our polynomials f, ..., g′′, as well as the parameter
s, are regular expressions in these and there are no relations. This shows that
Hilbm.(R̃/B) is smooth at (Qm

i , Qm−1
i , Qm−2

i ).
In the case of (Qm

i , Qm−1
i , Qm−2

i−1 ), we may assume

f ′′ = xm−i +
m−i−1∑

j=0

a′′j xj +
i−2∑

j=1

b′′j yj ,

g′′ = yi−1 +
m−i−1∑

j=0

c′′j xj +
i−2∑

j=1

d′′j yj

and analogous considerations yield (m + 2) parameters

a′′1 , ..., a′′m−i−1, d
′′
1 , ..., d′′i−2, b

′
i−1, cm−i, c

′′
m−i−1, d

′
i−1, am−i

such that all the coefficients of all our polynomials, as well as the parameter s, are
regular expressions in these, and satisfying the relation

c′m−i−1 = (am−i − a′m−i−1)cm−i = (d′i−1 − d′′i−2)c
′′
m−i−1

which yields the equation (19).
Finally, irreducibility of Hilbm.(R̃/B) follows from the fact that its natural map

to Hilbm,m−1(R̃/B) is flat with irreducible generic fibre and Hilbm,m−1(R̃/B) is
irreducible by Theorem 5(iv). ¤
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Theorem 7. The (full) flag Hilbert scheme fHilbm(R̃/B) has locally complete
intersection singularities and its natural map to B is a local complete intersection
morphism. In particular fHilbm(R̃/B) is reduced and is flat over B.

proof. The fact that fHilbm(R̃/B) has locally complete intersection singularities
follows by a downwards induction as in the proof of Lemma 6. A similar argument
shows that each map

fHilbm(R̃/B) → fHilbm−1(R̃/B)

is a locally complete intersection morphism, hence so is fHilbm(R̃/B) → B. ¤
As in Remark 5.3, we have a natural map

fAm = Am ×Am−1 × ...×A1 : fHilbm(R) → Hilb1(R)m = Spec(R)m

which fits in the diagram

fHilbm(R) → Hilbm(R)
fAm ↓ ↓ cyc

Spec(R)m → Symm(Spec(R))

Then the closed fibre of fAm is called the mth punctual flag-Hilbert scheme of R, de-
noted fHilb0

m(R), and the (scheme-theoretic) projection of fHilb0
m(R) to Hilbm(R),

i.e. the closed fibre of the cycle map cyc, is called the mth punctual Hilbert scheme
of R, denoted Hilb0

m(R). It is clear that fHilb0
m(R) and Hilb0

m(R) endow the simi-
larly denoted algebraic sets discussed previously with a scheme structure.

Corollary 8. The full flag punctual Hilbert scheme fHilb0
m(R) = Hilb0

m,...,1(R) is
reduced and is the transverse union of components of the form

Cm,m−2,...,m−2j
i,i−1,...,i−j , ∀i, 1 ≤ i ≤ m− 1, j = min([

m

2
], i− 1,m− i− 1) ≥ 0,

which projects isomorphically to Cm
i × ... × Cm−2j

i−j , and to a point in the other
factors;

Cm−1,m−2,...,m−2j−1
i,i−1,...,i−j , ∀i, 1 ≤ i ≤ m− 2, j = min([

m− 1
2

], i− 1, m− i− 1− 2) ≥ 0,

which projects isomorphically to Cm−1
i × ...×Cm−2j−1

i−j and to a point in the other
factors. The punctual Hilbert scheme Hilb0

m(R), with the scheme structure as above
is a reduced nodal curve.

proof. Except for the assertion that fHilb0
m(R), hence also Hilb0

m(R) are reduced,
this is a straightforward extension of Lemma 6; the constraints on j come simply
from the fact that the components of Hilb0

k(R) are Ck
j , j = 1, ..., k − 1. For the

reducedness assertion, we argue by induction on m. We may work locally at a
point of the form (Qm

i , Qm−1
i , ...), as other cases are similar or simpler. Consider

a deformation of the form (IS = (f, g) < I ′S = (f ′, g′) < ...) with IS , I ′S as in the
proof of Theorem 5, that yields an S-valued point of fHilb0

m(R). By induction, we
may assume

f ′(x, 0) = xm−i, g′(0, y) = yi,
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which implies that

f ′ = xm−i + b′i−1y
i−1, g′ = yi + c′m−i−1x

m−i−1.

Then by Remark 5.3 we get a similar conclusion for f, g. Thus , in terms of the
coordinates a1, ..., am−i, d1, ..., di−1, bi−1, cm−i as in the proof of Theorem 2, the
subscheme Hilb0

m(R) ⊂ Hilbm(R) is simply defined by the vanishing of a1, ..., di−1,
hence is reduced as claimed, and likewise for fHilb0

m(R). ¤
Remark 8.1. To ’picure’ the configuration in Corollary 7, it is amusing to display
the components of Hilb0

k(R), k = 2, ...,m as segments arranged alternately with
empty spaces in an isosceles triangle, with each segment overlying an empty space:

−

− −
− − −

...

− − ...− ...− −
Then the components of fHilb0

m(R) are the columnwise products of these compo-
nents.

Remark 9. in [R] we construct, based on ’geometric’ considerations, a space Wm(X/B)
together with a morphism Jm : Wm(X/B) → fHilbm(X/B), which we will prove
is an isomorphism. This proof requires that we know a priori that fHilbm(X/B) is
reduced.

Remark 10. It seems likely that the above results go through without the assump-
tion that the base field k is algebraically closed, provided the fibre nodes of X/B
are of ’split’ type, i.e. each node p, and each of the 2 tangent directions at p, are
defined over k. Beyond this however, it seems some further analysis is needed. For
instance, if p is a node defined over k of nonsplit type, i.e. with equation formally
equivalent to x2 + y2, char(k) 6= 2, the punctual Hilbert scheme Hilb0

m at p appar-
ently has just 1 or 0 components defined over k depending on whether m is even or
odd; the other components occur in conjugate pairs.
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Correction to proof of Thm 1(i).
Recall that an element z ∈ I is minimal if z 6∈ mI; a minimal basis of I is a

collection of elements z1, ..., zn ∈ I that maps to a basis of I/mI; by Nakayama,
such a collection always generates I.

Now suppose first that I has a minimal element of the form z = xα. Then z alone
cannot generate I so there must exist an element z′ = axα′ + byβ′ independent of z
mod mI, b 6= 0. If α′ < α, a 6= 0 then z is a multiple of z′, which is a contradiction.
Therefore α ≤ α′ hence xα and byβ = z′ − axα′−αz are independent mod mI.
Moreover for any other z” = a”xα” + b”yβ” ∈ I, a similar argument shows α” ≥
α, β” ≥ β′, therefore z” ∈ (xα, yβ′), so xα, yβ′ generate I. Then a simple dimension
count shows α + β′ = m + 1.

Now suppose I has no minimal element of the form xα or yβ , and consider a
minimal element z = xα + byβ where α is smallest among all elements (or equiv-
alently, among all minimal elements) of I. Suppose I has another minimal ele-
ment z′ = xα′ + b′yβ′ independent of z mod mI. Then α ≤ α′. If β′ < β then
z−(b/b′)yβ−β′z′ = xα is minimal, contradiction. If β′ = β then (z−z′)/(b−b′) = yβ

is minimal, contradiction. If β′ > β, α′ = α then xα = z− (b/b′)yβ′−βz′ is minimal,
contradiction. Finally, if α < α′, β < β′ then z′ is a multiple of z, contradiction.
Thus z generates I and again a simple dimension count shows z = xi + aym−i.
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