
1

CYCLE MAP ON HILBERT SCHEMES OF NODAL
CURVES

ZIV RAN

Abstract. We study the structure of the relative Hilbert scheme for a
family of nodal (or smooth) curves via its natural cycle map to the rela-
tive symmetric product. We show that the cycle map is the blowing up
of the discriminant locus, which consists of cycles with multiple points.
We discuss some applications and connections, notably with birational
geometry and intersection theory on Hilbert schemes of smooth surfaces.

Introduction

An object of central importance in classical algebraic geometry is a family
of projective curves, given by a projective morphism

π : X → B

with smooth general fibre. One wants to take B itself projective, which
means one must allow some singular fibres. We will assume our singular
fibres al all nodal. Of course, by semistable reduction, etc., any family
can be modified so as to have this property, without changing the general
fibre Xb = π−1(b). Many questions of classical geometry involve point-
configurations on fibres Xb with b ∈ B variable. From a modern standpoint,
this means they involve the relative Hilbert scheme

X
[m]
B = Hilbm(X/B).

This motivates the interest in studying X
[m]
B and setting it up as a tool

for studying the geometry, e.g. enumerative geometry, of the family X/B.
This paper is a step in this direction. Our focus will be on the cycle map
(sometimes called the ’Hilb-to-Chow’ map) cm, which in this case takes
values in the relative symmetric product X

(m)
B .

Our main result is that cm is the blowing-up of the discriminant locus in
X

(m)
B . This result will be proven in §1. As we shall see, the proof amounts to

a fairly complete study, locally over X
(m)
B , of cm. We shall see in particular

that cm is a small resolution of singularities; in fact in ’most’ cases the
non-point fibres of cm are chains of rational curves (with at most m − 1
components). In §2 we will consider applications of the result of §1 to the
further study of X

[m]
B and cm. We will give a formula for the canonical bundle
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of X
[m]
B showing that cm ’looks like’ a flipping contraction; in fact, c2 is none

other than the Francia flip and admits a natural 2:1 covering by the flop
associated to a 3-fold ODP . We will also give a simple formula for the
Euler number of X

[m]
B . In §3 we will discuss the Chern classes of tautological

bundles. These are bundles whose fibre at a point representing a scheme z
is H0(E ⊗Oz), where E is a fixed vector bundle on X.

This paper has substantial intersection with the Author’s papers [7, 8, 9]
where some of the results are proven in greater detail.

As to the relevance of this paper to the theme of ’projective varieties with
unexpected properties’ I can only say that the close links- some exposed
below- of the Hilbert scheme, a priori a purely algebraic object, to classical
projective geometry were quite unexpected by me, though this is probably
due only to my own ignorance.

Acknowledgments. A preliminary version of this work was presented at
the Siena conference in June ’04. I would like to thank the conference’s orga-
nizers, especially Luca Chiantini, for their hard and successful work putting
together this memorable and valuable mathematical event. I would also like
to thank the participants of both the Siena conference and a subsequent one
in Hsinshu, Taiwan, especially Rahul Pandharipande and Lih-chung Wang,
for valuable input into §3.

1. The cycle map as blow-up

Our main object of study is family of projective curves

π : X → B

whose fibres Xb = π−1(b) are smooth for b ∈ B general. We shall make the
following

Essential hypothesis: Xb is nodal for all b ∈ B.

We shall also make the (nonessential, but convenient) hypothesis that
X, B are smooth of dimension 2,1 respectively.

Geometry of the family largely amounts to the study of families of sub-
varieties (more precisely subschemes)

{Zb ⊂ Xb, b ∈ B}
of some fixed degree (length) m over B.

The canonical parameter space for subschemes is the relative Hilbert
scheme

X
[m]
B = Hilbm(X/B).

So (ordinary)points z ∈ X
[m]
B correspond 1-1 with pairs (b, Z) where b ∈ B

and Z ⊂ Xb is a length-m subscheme. More generally, for any artin local
2



C-algebra R and S = Spec(R), we have a bijection between diagrams

S
f→ X

[m]
B

↘
f0 ↓

B

and
Z ⊂ XS → X

↘ ↓ ↓
S

f0→ B

with the right square cartesian and Z/S flat of relative length m.
As usual in Algebraic Geometry, we study a complex object like X

[m]
B by

relating it (mapping it) to other (simpler ?) objects. One approach (not
pursued here, but see [7]) is to relate X

[m]
B (albeit only by correspondence,

not morphism) to X
[m−1]
B . This leads to studying flag Hilbert schemes. These

have a rich geometry; they are generally singular.
We focus here on another approach, based on the cycle map

cm : X
[m]
B → Symm

B (X) =: X
(m)
B

Z 7→
∑

p∈X

lengthp(Z)p.

Clearly, cm is an iso off the locus of cycles whose support meets the critical
or singular locus

sing(π) = locus in X of singular points of fibres of π.

Main Theorem. cm is the blowing-up of the discriminant locus

Dm = {
∑

mipi : ∃mi > 1} ⊂ X
(m)
B

Recall that if I is an ideal on scheme X, we have a surjection of graded
algebras from the symmetric algebra on I to the Rees or blow-up algbera

Sym•(I) →
∞⊕

0

Ij

Applying the Proj functor, we get a closed embedding (maybe strict) of
schemes over X

B`I(X) ⊆ P(I)

of the blow-up into the ’singular projective bundle’ P(I), whose fibres over
X are projective spaces of varying dimensions. Note that P(I) may be re-
ducible, while B`I(X) is always an integral scheme if X is. Concretely, these
schemes may be described, locally over X, as follows: if f1, ..., fr generate
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I, take formal homogeneous coordinates T1, ..., Tr, then as subschemes of
X × Pr−1,

B`I(X) = Zeros(G(T1, ..., Tr) : G(f1, ..., fr) = 0, G homogeneous)
P(I) = Zeros(G(T1, ..., Tr) : G(f1, ..., fr) = 0, G homogeneous linear)

Thus, the inclusion B`I(X) ⊆ P(I) is strict iff I admits nonlinear syzygies;
the case of the discriminant locus, to be studied below, will provide examples
of such ideals.

Remark Will see in the proof that
• X

[m]
B is smooth (over C) of dimension m + dimB

• cm is a small map (in fact, if each Xb has at most ν nodes– usually, ν = 1 –
then fibres of cm have dimension at most min(ν, m/2)).

Clearly, Dm is a prime Weil divisor on X
(m)
B , in fact

Dm ∼bir X ×B X
(m−2)
B

because a general z ∈ D has the form

z = 2p1 + p2 + ... + pm−1

. On the other hand, near cycles meeting sing(π), esp. ’maximally singular’
cycles

z = mp, p ∈ sing(π),

it’s not clear a priori what (or how many) defining equations Dm has (the
proof below will yield a posteriori e set of equations locally at maximally
singular cycles).
Note that locally at maximally singular cycles, the relative Cartesian prod-
uct Xm

B is a complete intersection with equation x1y1 = ... = xmym, with
the projection to B given by t = x1y1, while X

(m)
B is a quotient of a complete

intersection

(x1y1 = ... = xmym)/ symmetric group Sm.

We will see that X
(m)
B is not Q-factorial: in fact, Dm is not Q-Cartier;

Worse, X
(m)
B is not even Q-Gorenstein: we shall see that it admits a small

discrepant resolution X
[m]
B .

Nonetheless, being quotient by a finite group and smooth in codimension 1,
X

(m)
B is normal and Cohen-Macaulay.

The plan of proof is as follows.
¦ Construct explicit (analytic) model of X

[m]
B and cm, locally over X

(m)
B ;

in particular, conclude that X
[m]
B is smooth and cm is small, so c−1

m (Dm) is
Cartier divisor.
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¦ The Universal property of blowing up now yields a factorization

X
[m]
B

c′m→ B`Dm X
(m)
B

↘
cm ↓ b`

X
(m)
B

Then we check locally (over the blowup) that c′m is an iso.

To start the proof, fix an analytic neighborhood U of fibre a node p, so
the family is given in local analytic coordinates by xy = t.

For the local study, the first question is: what are fibres of cm?
Now locally in the étale topology, all fibres are (essentially) products of fibres
c−1
mi

(mipi). So suffices to study

c−1
m (mp), p ∈ sing(π).

Then,
c−1
m (mp) = Hilb0

m(R)

where R is the formal power series ring

R = C[[x, y]]/(xy).

Here Hilb0
m denotes the punctual Hilbert scheme.

Proposition 1.1. Hilb0
m(R) is a chain of m − 1 smooth rational curves

meeting normally
Cm

1 ∪qm
2

... ∪qm
m−1

Cm
m−1 :

Qm
2 Qm

m−1

Cm
1 Cm

2 ... Cm
m−1

Qm
1 Qm

m

Fig. 1

qm
i = (xm+1−i, yi),

Cm
i \ {qm

i , qm
i+1} = {Im

i (a) = (axm−i + yi) : a 6= 0}
NB lim

a→0
Im
i (a) = qm

i , lim
a→∞ Im

i (a) = qm
i+1.

Proof. See [8] ¤

Given this, the next question is: what does the full Hilbert scheme look
like along Hilb0, e.g. locally near qm

i ?
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Proposition 1.2. The universal flat deformation of the ideal qm
i = (xm+1−i, yi), i =

1, ..., m, rel B, is (f, g) where

f = xm+1−i + f1
m−i(x) + vyi−1 + f2

i−2(y),

g = yi + g1
i−1(y) + uxm−i + g2

m−i−1(x)

where each fa
b , ga

b has degree b, f1
m−i, g

1
i−1 have no constant term, and the

following relations, equivalent to flatness, hold

yf = vg

xg = uf

Proof. See [8] ¤

Concretely, the above relation mean
- the coefficients of f1

m−i(x), g1
i−1(y) are free parameters (no relations);

- the relation uv = t holds;
- f2

i−2, g
2
m−i−1 are determined by the other data.

A similar and simpler story holds at the principal ideals Im
i (a).

We conclude
- X

[m]
B is smooth;

- its fibre at t = 0, i.e. Hilbm(X0) has, along Hilb0
m(R), (m + 1) smooth

components crossing normally, D0, ..., Dm.

fig. 2

In fact, if X0 = X ′
0 ∪X ′′

0 then

Di ∼bir (X ′
0)

m−i × (X ′′
0 )i.

The next question is: how to glue together the various local deformations ?

Construction Let C1, ..., Cm−1 be copies of P1, with homogenous coordi-
nates ui, vi on the i-th copy. Let C̃ ⊂ C1× ...×Cm−1×B be the subscheme
defined by

v1u2 = tu1v2, ..., vm−2um−1 = tum−2vm−1
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Fibre of C̃ over 0 ∈ B is

C̃0 =
m−1⋃

i=1

C̃i,

where
C̃i = [1, 0]× ...× [1, 0]× Ci × [0, 1]× ...× [0, 1]

In a neighborhood of C̃0, C̃ is smooth and C̃0 is its unique singular fibre
over B. We may embed C̃ in Pm−1 ×B via

Zi = u1 · · ·ui−1vi · · · vm−1, i = 1, ..., m.

These satisfy
ZiZj = tZi+1Zj−1, i < j − 1

so embed C̃ as a family of rational normal curves C̃t ⊂ Pm−1, t 6= 0 special-
izing to a connected (m− 1)-chain of lines.

Next consider A2m with coordinates a0, ..., am−1, d0, ..., dm−1

Let H̃ ⊂ C̃ × A2m be defined by

a0u1 = tv1,
a1u1 = dm−1v1, . . . , am−1um−1 = d1vm−1

d0vm−1 = tum−1

Fibres of H̃ over A2m are: a point (generically), or a chain of i ≤ m − 1
rational curves; all values i = 1, ...,m− 1 occur. Consider the subscheme of
Y = H̃ ×B U defined by

F0 := xm + am−1x
m−1 + ... + a1x + a0

F1 := u1x
m−1 + u1am−1x

m−2 + ... + u1a2x + u1a1

+v1y

...

Fi := uix
m−i + uiam−1x

m−i−1 + ... + uiai+1x + uiai

+vidm−i+1y + ... + vidm−1y
i−1 + viy

i

...

Fm := d0 + d1y + ... + dm−1y
m−1 + ym

The following is proven in [9]

Theorem 1.1. (i) H̃ is smooth and irreducible.
(ii) The ideal sheaf I generated by F0, ..., Fm defines a subscheme of H̃×B U

that is flat of length m over H̃
(iii)The classifying map

Φ = ΦI : H̃ → Hilbm(U/B)

is an isomorphism.
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The proof shows furthermore that H̃ is covered by opens

Ui = {Zi 6= 0}, i = 1, ..., m

fig.3

On Ui, we have
Fj = ujx

i−j−1Fi−1, j < i− 1

Fj = vjy
j−iFi, j > i

hence Fi−1, Fi generate I on Ui (they yield the f, g in the universal defor-
mation of Proposition 2 above).

Also, ai = (−1)iσx
m−i are the elementary symmetric functions in the roots

of F0, and ditto for di, σ
y
m−i, Fm. So the projection H̃ → A2m

B factors through
the cycle map

H̃
c ↓ ↘
X

(m)
B

σ→ A2m
B

σ = (σx
1 , ..., σx

m, σy
1 , ..., σy

m)
(one can show σ is embedding).To prove the Main Theorem, we must show:
c is the blow-up of Dm

It is convenient to pass to an ’ordered’ model, defined by the following
Cartesian diagram:

X
dme
B → X

[m]
B

↓ ↓
Xm

B → X
(m)
B

In this diagram, the right vertical arrow is the cycle map, the bottom hori-
zontal arrow is the natural map between the Cartesian and symmetric prod-
ucts, and the other arrows are defined by the fibre product construction.
Recall the description of the blowup of an ideal I as subscheme of P(I). Let
us rewrite the defining local equations for X

[m]
B in terms of the homogeneous

coordinates Zi on Pm−1: they are

linear :

σy
m−jZi = tm−j−iσx

j Zi+1, i = 1, ..., m− 1, j = 0, ..., m− 1;

σx
m−jZi = tm−j−iσy

j Zi−1, i = 2, ..., m, j = 0, ..., m− 1.
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quadratic:
ZiZj = tZi+1Zj−1, i < j − 1

Our task at this point is to ’reverse engineer’ an ideal whose generators
G1, ..., Gm satisfy (precisely) these relations. Actually, the choice of G1

determines G2, ..., Gm via the linear relations, though a priori, G2, ..., Gm

are only rational functions. Now recall that Z1 generates O(1) over the
open U1 which meets the special fibre t = 0 in the locus of m-tuples entirely
on x-axis. On that locus, an equation for the discriminant is given by the
Van der Monde determinant:

vm
x = det(V m

x ),

V m
x =




1 . . . 1
x1 . . . xm
...

...
xm−1

1 . . . xm−1
m


 .

Thus motivated, set
G1 = vm

x .

This forces

Gi =
(σy

m)i−1

t(i−1)(m−i/2)
vm
x =

(σy
m)i−1

t(i−1)(m−i/2)
G1, i = 2, ..., m.

If the construction is to make sense, these better be regular. In fact,

Gi = ±det(V m
i ),

V m
i =




1 . . . 1
x1 . . . xm
...

...
xm−i

1 . . . xm−i
m

y1 . . . ym
...

...
yi−1
1 . . . yi−1

m




(we call this the ’Mixed’ Van der Monde matrix). The Gi satisfy same
relations as the Zi, so we can map isomorphically

O(1) → J = Ideal(G1, ..., Gm)

Zi 7→ Gi.

Then J is an invertible ideal defining a Cartier divisor Γ. The Main Theo-
rem’s assertion that c is the blowup of Dm means

J = c∗(IDm)

i.e.
Γ = c∗(Dm)
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Containment ⊇ of schemes is clear. Equality is clear off the special fibre
t = 0. Now this special fibre is sum of components

ΘI = Zeros(xi, i 6∈ I, yi, i ∈ I), I ⊆ {1, ..., m}.
Set

Θi =
⋃

|I|=i

ΘI .

Note that the open set Ui meets only Θi,Θi−1. One can check that the
vanishing order of Gi on any ΘI , |I| = k, is

ordΘI
(Gi) = (k − i)2 + (k − i)

= 0 if k = i, i− 1
So Zeros(Gi) = c∗(Dm) on Ui, i.e.

Γ|Ui = c∗(Dm)|Ui , ∀i
∴ Γ = c∗(Dm)

This concludes the proof of the Main Theorem.
One point of interest is the interpretation of mixed Van der Monde ma-

trices, whose determinants played a large role in the proof : The universal
subscheme

Ξ = Zeros(I) ⊂ X
dme
B ×X

contains sections
Ψi = graph(pi : X

dme
B → X)

The universal quotient
Qm = p

X
dme
B ∗(O/I)

maps to O
X

(m)
B

via restriction on Ψi. Assembling together, get map

V : Qm → mO
X
dme
B

.

Then V m
i = is just the matrix of V with respect to the basis 1, x, ..., xm−i, y, ..., yi−1

of Qm on Ui.
A somewhat mysterious point that comes up in the above proof is: as the

Zi are interpreted as the equations of the discriminant, what,if any, is the
interpretation of ui, vi ?

2. Applications

Canonical bundle. A first application is a formula for the canonical bundle
of X

[m]
B . For any class α on X, denote

α[m] = q∗p∗(α)

where Ω ⊂ X
[m]
B ×B X is universal subscheme and p : Ω → X, q : Ω → X

[m]
B

are natural maps. Here q∗ denotes the cohomological direct image, some-
times called the norm or denoted q!, not the sheaf-theoretic direct image.
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Another way to construct α[m] is as follows. First note the natural iso-
morphism over Q

H∗(X(m)) ' Symm(H∗(X))
This yields a class αm ∈ H∗(X(m)), and α[m] is the image of the latter via
the composite

(1) H∗(X(m)) → H∗(X(m)
B )

c∗m→ H∗(X [m]
B )

Also set
O

X
[m]
B

(1) = O(−Γ)

(the canonical O(1) as blowup, via Proj).

Corollary 2.1. K
X

[m]
B /B

= (KX/B)[m] ⊗O
X

[m]
B

(1)

Proof. It suffices to note that both sides agree off the exceptional locus of
cm. ¤

In particular, K
X

[m]
B /B

.Cm
i = +1, so cm ’looks like’ a flipping contraction.

The following example partially confirms this.

Example: m = 2. We have a diagram

X
d2e
B → X

[2]
B

c′2 ↓ ↓ c2

X2
B → X

(2)
B

with horizontal maps of degree 2. Local equations for X2
B are:

x1y1 = x2y2 = t

(so this is a 3-fold ODP);
for X

d2e
B in X2

B × P1:
x1u = y2v

x2u = y1v

so c′2 is a small resolution of the ODP, known as a flopping contraction;
it can be flopped to yield X∗∗ smooth that is the source of the ’opposite’
flopping contraction.
Local equations for X

(2)
B are:

σy
2σx

1 = tσy
1

σx
2σy

1 = tσx
1

σx
2σy

2 = t2

Viewed in A5, this is a cone over a cubic scroll in P4. X
[2]
B is small resolution

of the cone, with exceptional locus C2
1 = P1. Equations for X

[2]
B in X

(2)
B ×P1

are
σx

2u1 = tv1

σx
1u1 = σy

1v1

11



σy
2v1 = tu1.

A well-known procedure, due to Francia, yields a flip, called Francia’s flip,
of c2: blow up C2

1 in X
[2]
B (which is the same as blowing up the vertex of

the cone); the exceptional divisor is a scroll of type F1; then blow up the
negative curve of F1 to get a new exceptional surface of type F0; then blow
down F0 in the other direction to C∗ = P1 so the F1 becomes a P2; then
finally blow down P2 to a (singular) point on a new 3-fold X∗, which is 2:1
covered by X∗∗.

This situation is intriguing in view of recent work of Bridgeland [2] and
Abramovich and Chen [1] which shows that the flop X∗∗ and the flip X∗
can be interpreted as moduli spaces of certain ’1-point perverse sheaves’ on
X
d2e
B and X

[2]
B , respectively. This raises the question of finding a natural

interpretation of X∗, X∗∗ and their higher-order analogues, if they exist, in
terms of our family of curves X/B.

Euler number. As an application of our study of cm, we can compute
(topological) Euler number e(X [m]

B ) = cm+1(TX
[m]
B

), at least for case of ≤ 1
node in any fibre:

Corollary 2.2. If X/B has σ singular fibres and each has precisely 1 node,
then the topological Euler number of X

[m]
B is given by

e(X [m]
B ) = (−1)m

(
2g − 2

m

)
(2− 2g(B)) + σ

(
m− 2g + 2

m− 1

)
(2)

Proof. Let
(Xi, pi, Xi,0 = Xi \ pi), i = 1, ..., σ

be the singular fibres with their respective unique singular point and smooth
part, and

X0 = X \ (X1 ∪ . . . ∪Xσ), B0 = π(X0).

Then X
(m)
B admits a (locally closed) stratification with big stratum

(X0)
(m)
B0

and other strata

Σi,j = ipj + (Xj,0)(m−i), i = 0, ..., m, j = 1, ..., σ.

The fibre of cm over each of these strata is, respectively, a point over the
big stratum, and over the Σi,j , a point for i = 0, 1, a chain of (i − 1) P1 s
for i = 2, ...,m. Since the Euler number is multiplicative in fibrations and
additive over strata, we get

e(X [m]
B ) = e((X0)

(m)
B0

) +
∑

e((Xj,0)(m))

+
∑

i>0

ie((Xj,0)(m−i))
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Now MacDonald’s formula [5] says that for any X, the Euler number of its
mth symmetric product is given by

e(X(m)) = (−1)m

(−e(X)
m

)
.

Plugging this into the above and using multiplicativity for the fibration
(X0)

(m)
B0

over B0 yields

(3) e(X [m]
B ) = (−1)m

(
2g − 2

m

)
(2− 2g(B)) + σ

m−1∑

k=0

(−1)k(m− k)
(

2g − 2
k

)

Now, as pointed out by L.C. Wang, (2) follows from (3) by the elementary
formula

b∑

k=0

(−1)k

(
a

k

)
= (−1)b

(
a− 1

b

)

which in turn is an easy consequence of Pascal’s relation(
a
k

)
=

(
a−1

k

)
+

(
a−1
k−1

)
. ¤

Remark 2.3. Suppose our family X/B is a blowup

β : X → Y

of a smooth P1 bundle; equivalently, each singular fibre of X/B has consists
of two P1 components. Then there is another way to construct X

[m]
B and

obtain formula (3) above, as follows. Note that the natural map

η : Y
[m]
B = Y

(m)
B → B

is a Pm-bundle. Blow up a Pm−1 in each fibre of η over a singular value of
π, giving rise to exceptional divisors E1,i, i = 1, ..., σ; then blow up a Pm−2

in general position in each exceptional divisor E1,i, giving rise to new excep-
tional divisors E2,i, etc. Finally, blow up general point on each exceptional
divisor Em−1,i. This yields X

[m]
B . In these blowups, the change in Euler

number is easy to analyze, yielding (2). ¤

Further developments (under construction). We mention some natu-
ral questions and possible extensions.
• What is the total Chern class c(T

X
[m]
B

)?
• Develop intersection calculus for diagonal loci of all codimensions in

X
[m]
B , i.e. degeneracy loci

Γm
r = rk(V m

i ) ≤ m + 1− r

(locus where r points come together)
More generally, loci Γm

(m.), m1 + ... + mk = m,

Γm
(m.) = {z : cm(z) =

∑
mipi}.
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In particular, the small diagonal

Γm
(m) = locus of length-m schemes supported at 1 point

which coincides with the blowup of X, locally at each fibre node, in a punc-
tual subscheme of type

(x(m
2 ), ..., x(m−i

2 )y(i
2), ..., y(m

2 ))

A potential application of this calculus is is to enumerative geometry (mul-
tiple points, multisecant spaces, special divisors on stable curves...)
A Sample corollary which however can also be derived by other means) is
the following relative triple point formula: for a map f : X → P2, the
number of relative triple points is

N3,X(f) = (
(d− 2)(d− 4)

2
+ g − 1)L2 + (3− d

2
)ωL + 2ω2 − 4σ

where L = f∗O(1), L2 = deg(f), d = deg(fibre), g =genus(fibre).
See[9] for some progress on this.
• If X/B is of compact type (assume for simplicity there exists a section),

we have an Abel-Jacobi morphism to the Jacobian:

X
[m]
B → J(X/B)

Fibres give a notion of ’generalized linear system’ on reducible fibres. How
is this related to other approaches to such notions in the literature ?

3. Chern classes of tautological bundles

In [7] we gave a simple formula for the Chern classes of the tautological
bundles λm(L), where L is a vector bundle on X. Here X need not be a
surface; we just need a family of nodal curves X/B. More precisely, we
gave in [7] a formula for the pullback of λm(L) on the (full) flag relative
Hilbert scheme, denoted Wm(X/B). The formula is simple and involves
only divisor classes plus classes coming from X, but has the disadvantage
that these classes, unlike λm(L) itself, do not descend to the Hilbert scheme
X

[m]
B . Though it is, broadly speaking, obvious that a formula on X

[m]
B can

be derived from the one on Wm(X/B), it is still of some interest, in view
of possible applications, to work this out. It turns out that for X a surface,
a formula for the Chern classes of tautological bundles was already derived,
in the context of the (absolute) Hilbert scheme X [m], by Lehn [4], using
the Fock space formalism introduced earlier by Nakajima [6, 3]. Since our
tautological bundles λm(L) are pullbacks of the analogous bundles on X [m]

via the natural inclusion
X

[m]
B ⊂ X [m],

Lehn’s formula yields an analogous one on X
[m]
B . Our purpose here, then, is

to verify that when X is a surface, the push-down from Wm(X/B) to X
[m]
B
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of the formula of [7] coincides with the restriction of Lehn’s formula, at least
when L is a line bundle. Thus, we have compatibility in the natural diagram

Wm(X/B)
wm ↓
X

[m]
B → X [m]

We begin with some formalism. First, we have the operation of exterior
multiplication ? of cohomology classes on various X

[m]
B , defined as follows.

Let
Zm,n ⊂ X

[m]
B ×B X

[n]
B ×B X

[m+n]
B

be the closure of the locus

{(zm, zn, zm

∐
zn) : zm ∩ zn = ∅},

and let
p : Zm,n → X

[m]
B ×B X

[n]
B , q : Zm,n → X

[m+n]
B

be the projections, both generically finite. For α ∈ Hr(X [m]
B ), β ∈ Hs(X [n]

B ),
identifying homology and cohomology, set

α ? β = q∗p∗(α× β) ∈ Hr+s(X [m+n]
B ).

This operation is obviously associative and commutative on even (in partic-
ular, algebraic) classes. In particular, taking β = 1, we get a natural way of
mapping Hr(X [m]

B ) to Hr(X [m+n]
B ) for each n ≥ 0.

Next, consider the small diagonal

Γm
(m)

im
↪→ X

[m]
B .

The restriction of the cycle map yields a birational morphism

βm : Γm
(m) → X.

For any α ∈ Hr(X), we set

qm[α] = im∗(β∗m(α)) ∈ Hr+2m−2(X [m]
B ).

Via ? multiplication, qm[α] may be viewed as with an operator on
∞⊕

s,n=0

Hs(X [n]
B )

which has operator bidegree (r + 2m− 2,m). This is known as Nakajima’s
creation operator (cf. [6, 3]).

Lehn’s formula is as follows

Theorem. (Lehn [4]) For a line bundle L, the total Chern class of λm(L)
is the part in bidegrees (∗,m) of

exp(
∞∑

n=1

(−1)n−1

n
qn[c(L)]).
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Now our formula is the following

Theorem 3.1. For a line bundle L, we have
c(λm(L)) =

∑

I = (1 ≤ i1 < ... < ik)
|I| ≤ m

(−1)|I|−k (i1 − 1)!...(ik − 1)!
|I|!(m− |I|)! qi1 [c(L)]...qik [c(L)].

[The multiplication involved in Theorem 3.1, as well as in Lehn’s Theorem,
is ordinary cup product.] It is elementary to derive Theorem 3.1 from Lehn’s
theorem (whose proof is rather long). Our purpose here, however, is to derive
Theorem 2 from a result in [7], as follows. Let

wm : W = Wm(X/B) → X
[m]
B

be the natural morphism from the flag Hilbert scheme to the ordinary one,
let

pi : W → X

be the ith projection, mapping a filtered scheme z1 < ... < zm to the support
of zi/zi−1, and let

∆ij ⊂ W, i < j

denote the (reduced) locus where the pi and pj coincide; also set, for any
class c ∈ H∗(X),

ci = p∗i (c).

It is shown in [7] that each sum
j−1∑
i=1

∆ij is a Cartier divisor (even though W

is in general singular and each summand individually is not Cartier). It is
also shown there that the following result holds (for a line bundle L):

c(w∗λm(L)) =
m∏

j=1

(1 + Lj −
j−1∑

i=1

∆ij)(4)

Deriving Theorem 3.1 from (4) is a matter of expanding the product as a
sum of monomials, applying w∗ and dividing by m! = deg(w). In doing so,
it is useful to observe the following. Let’s call a connected monomial on an
index set I one which, after a permutation, can be written in the form

qI [c] = ci1∆i1i2∆i2i3 ...∆ik−1ik , I = (i1 < ... < ik)

where c is either 1 or [L]. The intersection implicit in the above product is
transverse, hence well-defined even though the divisors are not Cartier. It
is easy to see by induction that there are (k − 1)! unordered monomials in
the expansion of (4) yielding the same qI [c]. Moreover it is clear that

w∗(qI [c]) = q|I|[c].
16



Now we note that each monomial appearing in the expansion of (4) may
be decomposed uniquely as a product of connected monomials on pairwise
disjoint index sets (its ’connected components’), yielding a term

(−1)

kP
j=1

(|Ij |−1)

qI1 [c1]...qIk
[ck],

with each cj equal to either 1 or [L]; for fixed I = I1
∐

...
∐

Ik, this term
appears (|I1| − 1)!...(|Ik| − 1)! times. Applying w∗, we get, for each choice
of I ⊆ {1, ...,m} and cj , a term in w∗ applied to (4):

(i1 − 1)!...(ik − 1)!(−1)i−kqi1 [c1]...qik [ck],

ij = |Ij |, i =
∑
j

ij . Then multiplying by
(
m
i

)
for the choice of subset I with

|I| = i, and dividing by m! yields the result. ¤
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