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Varieties generally come to life through the maps between them and the modules
(e.g. functions) that live on them. Moduli spaces are no exception to this rule. An
important class of maps on moduli spaces (for compact Kähler manifolds) is that
of period maps, which are substantially the same thing as the modules known as
variations of Hodge structure.

The purpose of this paper is twofold. First, we give a canonical formula for the
variation of Hodge structure associated to the m-th order universal deformation of
an arbitrary compact Kähler manifold without vector fields. Second, we specialize
to the case of a Calabi-Yau manifold X where we give a formula for the m-th
differential of the period map of X and deduce formal defining equations for its
image (Schottky relations); these are (necessarily infinite, in dimension ≥ 3) power
series in the middle cohomology.

We will use the method of canonical infinitesimal deformations, developed by
the author in earlier papers [R1, R2]. This method gives a canonical description
of infinitesimal moduli spaces and, what’s more, natural maps involving them.
While it might be argued that a germ of a smooth space-such as the moduli of
an unobstructed manifold-is a rather rigid featureless object, making a canonical
description of it uninteresting, on the contrary maps involving such germs can
be quite interesting; in the case of moduli, the method of canonical infinitesimal
deformations provides a vehicle for studying such maps. For instance in the case
at hand the m-th derivative of the period map of Calabi-Yau n-fold X is a filtered
map

Tm
X M → Hn

DR(X)/Fn

whose associated gradeds SiH1(TX) → Hn−i,i
X are the so-called Yukawa- Green

forms (cf. [G]). We will develop cohomological formulas for this and other deriva-
tive maps (Theorems 4.1, 4.3 below), which will allow us to determine their image
and derive (Schottky) relations defining this image, essentially in terms of some
generalized Yukawa-Green type forms (Theorem 4.1, Corollary 4.4) . For n = 2 we
recover the celebrated ’period quadric’ of K3 surface theory; for n ≥ 3 the rela-
tions seem to be new. For n = 3 this situation is particularly interesting assuming
the ’mirror conjecture’ because then the higher derivatives of the period map, here
computed, are related -in fact, carry equivalent information to- the ’quantum co-
homology’(esp. numbers of rational curves, etc.) of the mirror of X. We hope to
return to this in greater detail elsewhere.

The present methods should be applicable in other Schottky-type problems: the
case of curves has been developed by G. Liu ( UCR dissertation 1997).

This paper is a revised version of a manuscript entitled ’linear structure on
Calabi-Yau moduli spaces’ (May 1993). We are grateful to Professors P. Deligne
and M. Green for some enlightening comments early on. We are especially grateful
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to the referee, for his dedication above and beyond the call of duty, and for his
detailed and insightful comments which have greatly improved this paper.

1. Modular coalgebra

In [R2] we gave a characterization of the dual vector space of an artin local C-
algebra as a so-called OS (Order-Symbolic) structure. This characterization was
used in constructing the base ring of the universal formal deformation (e.g. of a
compact complex manifold). Now as might be expected, an important role in the
geometry of moduli spaces, both local and global, is played by certain canonical
’modular’ sheaves and modules over them which are naturally associated to the
deformation problem. Thus motivated we now extend the aforementioned dual
characterization from algebras to modules. The latter give rise on the other, ’ coal-
gebra’ side to a so-called Modular Order-Symbolic or MOS structure. An important
guiding principle to keep in mind is that the process of passing from a module E to
the associated MOS structure B(E) should involve no dualising, i.e. be covariant
functorial in E, because we shall want to apply this when E is a cohomology group
and cohomology and dualising don’t mix. Thus while the algebra-OSS correspon-
dence is essentially a matter of brute-force arrow reversal, the same is not true for
module-MOSS.

Now let (Rn,mn) be an artin local C-algebra of exponent n (which to us means
mn+1

n = 0 6= mn
n) and V = V n = m∗

n the associated ( standard) OS structure. It
will be convenient also to consider

V0 = V n
0 = R∗n = V ⊕ V 0

0

where V 0
0 = C1∗ and V i

0 = V i ⊕ V 0
0 , i ≥ 1 ( which might be called an augmented

OSS). Given these data, a V -compatible MOS structure B consists by definition of
a filtered vector space

B0 ⊂ · · · · · · ⊂ Bn = B,

together with a set of symbol maps

σi
B : Bi → Bi/B0 → V i ⊗C Bi−1

satisfying the obvious ’comodule’ rule, which amounts to commutativity of

Bi/B0 σi
B−−−−→ V i ⊗Bi−1

id⊗σi−1
B−−−−−→ V i ⊗ V i−1 ⊗Bi−2

σi⊗id

y
y

S2(V i−1)⊗Bi−1 −−−−→ V i ⊗ V i−1 ⊗Bi−1,

σi = symbol map for V i. A morphism of MOS structures is defined in the obvious
way.

Example Let E be an Rn-module and set

Bi(E) = Bi
Rn

(E) = V i
0 ⊗Rn E, i = 1, · · · n, B(E) = Bn(E)

(note indeed that V i
0 , besides being an OS structure, is also an Rn-module by the

obvious rule (r.f)(x) = f(rx)), with symbol map induced from the comultiplication
map

V i
0 → V i → V i ⊗ V i

0 ,

dual to m⊗C R → m, by tensoring with E. The assignment

E 7−→ B(E)
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is a covariant functor from R-modules to V -compatible MOS structures.
Now it is important to be able to go the other way. To this end define, for an

MOS structure B,

C(B) = Cn(B) = HomMOS(V n
0 , B).

It is easy to check that the Rn-module structure on V0 induces one on C(B), and
that C yields a functor from MOS structures to R-modules.

We summarise some relevant properties of these functors as follows.

Proposition 1.1. (i) B is right exact and C is left exact ;
(ii) there are natural maps

E → C(B(E)), B(C(D)) → D,

which are isomorphisms whenever E is free (resp. D is ’cofree’, i.e. a sum of copies
of V0).

Proof. (i) is clear from the usual exactness properties of Hom and ⊗. As for (ii),
the maps are defined by

e 7−→ (v 7−→ v ⊗ e) ∈ HomMOS(V0, V0 ⊗ E),

v ⊗ φ 7−→ φ(v), φ ∈ HomMOS(V0, D).

It is easy to check that these are well-defined etc. To complete the proof it suffices
to prove that

HomMOS(V0, V0) ' R.

more precisely that the map R 7−→ HomMOS(V0, V0),r 7−→ rI, is a isomorphism. It
is easy to see that this map is injective. For surjectivity we argue by induction. Take
φ ∈ HomMOS(V0, V0). By induction there exists r ∈ Rn inducing the same map as
φ on V n−1

0 ; using compatibility with comultiplication it is easy to see that r and
φ also induce the same map on V = V0/V 0

0 , and consequently φ− rI is effectively
a map V n

0 /V n−1
0 → V 0

0 , i.e. given by an element of HomC(mn
n
∗,C) = mn

n, say s.
Then φ = (r + s)I. ¤

Remark 1.2 Predictably the category of V− MOS also admits internal Hom
and tensor product. For example if B1, B2 are V− MOS we may define an MOS
C = B1 ⊗V B2 inductively by C0 = B0

1 ⊗ B0
2 (all tensor products over C unless

otherwise mentioned) and setting Ci to be the preimage of V i⊗Ci−1 by the natural
map

Bi
1 ⊗Bi

2 → V i ⊗ V i ⊗Bi−1 ⊗Bi−1

(where inductively V i⊗Ci−1 sits naturally in V i⊗V i⊗Bi−1⊗Bi−1 via (comultiplication)⊗(inclusion)).
Similarly we may define symj

V (B) and sym.
V (B), the ’symmetric coalgebra’ (or

OSS) on B, which naturally admits an OS structure coming from the natural maps

symi
V (B) →

∑

j

symj
V (B)⊗V symi−j

V (B).
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2. Subset spaces and some complexes on them

Recall that , for a (separated) topological space X, the very symmetric product
X < m > introduced in [R1] parametrises nonempty subsets of X of cardinality
≤ m. We now introduce an analogous space parametrising subsets with a distin-
guished sub-subset. Define

X < m, i >= {(S, T ) : T ⊂ S} ⊂ X < m + i > ×X < i >,

with the induced topology as (closed) subset; thus X < m, i > is just the graph of
the tautological or incidence correspondence between X < m + i > and X < i >.
Note the natural continuous surjective map

πm,i : X < m > ×X < i >→ X < m, i >,

(S′, S′′) 7−→ (S′ ∪ S′′, S′′).

For i = 1 is easy to see that via this map X < m, 1 > may be identified topologically
with the quotient of X < m > ×X by the relation identifying (S′, x) ∈ X < m−1 >
×X ⊂ X < m > ×X with πm,1(S′, x) = (S′ ∪ {x}, x) ∈ X < m − 1, 1 >⊂ X <
m > ×X.

For sheaves A, B on X-say of modules over some ring which will typically be
C-we (abusively) denote by λiA £ B, as sheaf on X < i, 1 >, the direct image
πi,1∗(λiA £ B).

Now let g be a sheaf of Lie algebras on X. In [R1] we associated to g a Ja-
cobi complex Jm(g) on X < m >, an OS structure on V m(g) = H0(Jm(g)), and
consequently a (commutative associative) artin local algebra structure on Rm(g) =
C⊕H0(Jm(g))∗. Note that this construction carries over essentially verbatim to the
case where g is a differential graded Lie algebra (DGLA) sheaf ( i.e. a ’Lie object’ is
the category of complexes of sheaves on X-as opposed to ordinary sheaves); in the
DGLA case Jm becomes a double complex, but we shall generally identify it and
other multiple complexes with the associated simple complex. See the Appendix
for an interpretation of Rm(g) in this case.

Now let E be a g-module. We shall associate to E a complex on X < m, 1 >,
called the modular Jacobi complex and denoted by Jm(g, E). The terms are defined
by J i

m(g, E) = λi(g) £ E on X < i, 1 >⊂ X < m, 1 >, 0 ≤ i ≤ m (where natually
X < 0, 1 > is the diagonal X ⊂ X × X = X < 1 > ×X), and the differential
∂i : λi(g) £ E → λi−1(g) £ E is given by the standard formula from Lie algebra
homology:

∂i(v1 × · · · × vi × e) =
1
i!

∑

σ∈Si

(sgnσ)[vσ(j), vσ(k)]vσ(1) × · · · × v̂σ(j) × · · · × v̂σ(k) × · · · × vσ(i) × e

+
1
i

i∑

j=1

(−1)jv1 × · · · × v̂j × · · · × vi × vj(e).

Now we have a natural map

φ : X < m > ×X < m− 1, 1 >→ X < 2m, 1 >

(S, (S′, x)) 7−→ (S ∪ S′, x)

and an evident map of complexes

(Jm/J1)(g, E) → φ∗(Jm(g) £ Jm−1(g,E))
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given by the natural sheaf maps, analogous to the map ∧i(V ) → ⊕(∧i−k(V ) ⊗
∧k(V )) for a vector space V

λi(g) £ E → i⊕
k=0

λi−k(g) £ (λk(g) £ E)

( it is easy to check that this is compatible with differentials). Now let p :
X < m, 1 >→ X be the natural map. Then by the above the sheaf V m(E) :=
R0p∗(Jm(g,E)) on X is endowed with an MOS structure with respect to the (con-
stant) OS structure H0(Jm(g)), whence a sheaf of Rm(g)-modules Cm(V m(E))
which we denote by Mm(g, E). Note that the assignment E → Mm(g,E) is a
covariant functor from g-modules to Rm(g)-modules.

3. Universal variation of Hodge structure

Let X be a compact complex manifold with tangent sheaf T so that H0(T ) = 0.
In [R1] we constructed the universal formal deformation

X̂u/R̂u = lim
m

Xu
m/Ru

m ,

where Ru
m = Rm(T ) is the algebra associated to the OS structure H0(Jm(T )). More

generally if g is a sheaf of C-Lie algebra over a topological space X with H0(g) =
0and E is a sheaf of faithful g-modules, we have constructed the universal m−th
order g-deformation Em of E over Rm(g), the algebra associated to H0(Jm(g)).
A first point to be made is the the MOS viewpoint permits a more ’conceptual’
interpretation of this construction (I am grateful to the referee for his insistence
that this be explained in detail).

Theorem 3.1. Em is canonically isomorphic to Mm(g, E).

Proof. Let (E., ∂) be a soft resolution of E and (g., δ) be a soft resolution of g
where g. is a dgla acting on E. compatibly with the g-action on E. Applying
suitable Schur functors as in [FH], g. induces a soft resolution of λi(g) which we
denote by (g.

−i, δ
.
−i), whence also a soft resolution of Jm(g, E), which may be used

to compute p∗(Jm(g, E)), yielding a complex (K ., d.) on X where

Kr =
∑

i,j

Γ(gi
i+j+r)⊗ Ei, i ≥ −m.

Now note that, because H0(g) = 0, we have Hj(λi(g)) = 0, j < i, hence K . is
acyclic in negative degrees. More precisely, we may ’cancel off’ the negative part
of K . step-by-step as follows. First d−m is a map

Γ(g0
−m)⊗ E0 → Γ(g1

−m)⊗ E0 ⊕ Γ(g0
−m)⊗ E1 ⊕ Γ(g0

−m+1)⊗ E0

whose first component δ0
−m ⊗ idE0 is already injective. Consequently K . is quasi-

isomorphic to a complex K .
(1) where

K−m
(1) = 0,K−m+1

(1) = (Γ(g1
−m)/B1(g.

−m))⊗ E0 ⊕ Γ(g0
−m)⊗ E1 ⊕ Γ(g0

−m+1)⊗ E0,

and Ki
(1) = Ki, i > −m+1. Here B. denotes coboundaries. To be precise Γ(g1

−m)/B1(g.
−m)

is to be thought of as a subspace of Γ(g1
−m) complementary to B1(g.

−m). Now the
map induced by δ1

−m ⊗ idE0 on (Γ(g0
−m)/B1(g.

−m))⊗ E0 is still injective if m ≥ 2
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( again thanks to H0(g) = 0), as are δ0
−m ⊗ idE1 and δ0

−m+1 ⊗ idE0, hence K .
(1) is

in turn quasi-isomorphic to a complex K .
(2) in degrees ≥ −m + 2 with

K−m+2
(2) = (Γ(g2

−m)/B2(g.
−m))⊗ E0 ⊕ (Γ(g1

−m)/B1(G.
−m))⊗ E1

⊕(Γ(g1
−m+1)/B1(g.

−m+1))⊗ E0 ⊕ ...

Continuing in this manner, we obtain after m steps a complex (K .
(m), d

.
(m)) in

nonnegative degrees where K0
(m) is of the form

∑
i≥0 Gi ⊗ Ei for certain vector

spaces Gi. Now it is easy to see as above that for i > 0 the map δ ⊗ idEi which
is a component of d0

(m) is injective. For i = 0, G0 will be a certain quotient
of

∑m
0 symj(Γ(g1) and among the components of d0

m on G0 ⊗ E0, one lands in
Γ(g2)⊗∑m

1 symj−1(Γ(g1))⊗E0 (map induced by (δ plus graded bracket)⊗idE0).
By definition, the kernel of this map is precisely V m

0 ⊗E0 = (C⊕H0(Jm(g)))⊗E0

and consequently K .
(m) is quasi isomorphic to a complex K .

(m+1) in nonnegative
degrees with K0

(m+1) = V m
0 ⊗E0 and, say, K1

(m+1) =
∑

Hi ⊗Ei for certain vector
spaces Hi. By similar considerations K .

(m+1) is quasi- isomorphic to a complex
(L., ∆.) which starts

V m
0 ⊗ E0 → V m

0 ⊗ E1 ⊕ L1
0 → ...

and where ∆0 which is induced by id⊗∂0+ (map induced by g-action) clearly goes
into V m

0 ⊗ E1. Thus R0p∗Jm(g,E) is simply given by the kernel of ∆0. In light of
Proposition 1.1 and its proof, Mm(g, E) coincides with the kernel of a map

Rm(g)⊗ E0 → Rm(g)⊗ E1

given by id ⊗ ∂0+ (map induced by action), which is precisely the definition of
Em. ¤

For later use we record a corollary of the construction (which follows easily from
the fact that cocycles are locally coboundaries)

Corollary 3.2. V m(E) is locally isomorphic to V m
0 ⊗ E.

Our purpose now is to extend this construction to the De Rham complex of X and
consequently to obtain, for X Kählerian, a construction of the universal variation
of Hodge structure associated to X, which is a (cohomology) vector bundle over
Spec(R̂u) together with a (Hodge) filtration and a ( Gauss-Manin) trivialization or
flat structure.

Consider the De Rham complex of X

Ω· : OX
d→Ω1

X → · · · → Ωn
X .

As is well known, T acts on this via Lie derivative v×ω 7−→ Lv(ω), an action which
commutes with exterior derivative and is a derivation with respect to wedge prod-
ucts. Consequently, we have an associated modular Jacobi (bi)complex Jm(T, Ω·)
on X < m, 1 > which we call the Jacobi-De Rham complex of X. This gives rise to
a V m- compatible MOS structure R0p∗Jm(T, Ω·) (i.e a complex of sheaves of such),
whence a complex of Ru

m = Rm(T )-modules

Ω·m := Mm(T, Ω·) : Mm(T,O) = Om → Mm(T, Ω1) → · · · .

As remarked above, Om coincide with OXm , the structure sheaf of the m-universal
deformation Xu

m/Ru
m. This identification may be extended as follows.
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Theorem 3.3. In the above situation, Ω·m is canonically isomorphic to the relative
De Rham complex Ω·Xm/Rm

.

Proof. For · = 0 we’re OK, so consider the case · = 1. The T -linear derivation
d : O → Ω1 gives rise by functoriality to an Ru

m-linear derivation Om → Ω1
m,

whence an Om-linear map

φ1
m : Ω1

Xm/Rm
→ Ω1

m .

Clearly φ1
m⊗Rm C = φ1

0 is the identity. Moreover it is easy to see that both sheaves
are locally Om-free: for Ω1

Xm/Rm
this is obvious and for Ω1

m it follows from the
fact that it is Rm-flat by construction (indeed a local basis for Ω1 yields a map
nOm → Ω1

m which is clearly surjective and whose kernel yields 0 when tensored
with C, hence is 0 by Nakayama). Consequently, a suitable n×n matrix representing
φ1

m will have the form In+ (nilpotent), hence is invertible, so φ1
m is an isomorphism.

Now in general, for · = i the derivation property of the Lie derivative action of T
on Ω.

X makes Ω.
m an algebra under wedge products, whence an Om-linear map

φi
m = ∧i(φ1

m) : ∧i
Om

(Ω1
Xm/Rm

) → Ωi
m.

As both sheaves are locally Om-free and φi
0 is the identity, it follows as above

that φi
m is an isomorphism. Compatibility of φ·m with d -i.e, d ◦ φi

m = φi+1
m ◦ d-

follows easily from the fact that this holds for i = 0 (by construction) and the
multiplicativity of φ·m. This completes the proof. ¤

Given Theorem 3.2 it is clear in principle that the De Rham cohomology of
Xm/Rm is readable from the cohomology of the Jacobi-DeRham complex and we
shall now make this explicit. Consider the free Rm-module

Hr
DR(Xm/Rm) = Hr(X, Ω·Xm/Rm

) .

This is endowed with a Hodge filtration F ·, which is induced by the stupid filtration
on the complex Ω·Xm/Rm

, as well as a (Gauss-Manin) isomorphism Hr
DR(Xm/Rm) '

Hr(X, Rm) ' Hr(X,C) ⊗ Rm induced by the (quasi-isomorphic) inclusion Rm →
Ω·Xm/Rm

. When X is Kählerian we have by Deligne [D] that F i/F i+1 ∼= Hn−i(Ωi
Xm/Rm

),
a free Rm-module. The filtered module (Hr

DR(Xm/Rm), F ·) may be called the m-
universal variation of Hodge structure (m-UVHS) associated to X. Our goal is
to give an explicit formula for it, together with the Gauss-Manin isomorphism, in
terms of X itself.

Theorem 3.4. Let Xm/Rm be the m-universal deformation of a compact kähler
manifold X with H0(T ) = 0. Then: (i) the Leray spectral sequence

Ep,q
2 = Hp(X, Rqp∗Jm(T, Ω·)) ⇒ Hp+q(X < m, 1 >, Jm(T, Ω·))

degenerates at E2;
(ii) we have Rm-linear, Hodge filtration-preserving isomorphisms

Er,0
2 = Er,0

∞ = Hr(X,BmΩ·Xm/Rm
) = BmHr(X, Ω·Xm/Rm

) (3.1)

Hr(X, Ω·Xm/Rm
) ∼= CmHr(X,R0p∗Jm(T, Ω·)) (3.2)

⊂ CmHr(X < m, 1 >, Jm(T, Ω·)) ;

(iii) the Jacobi-Hodge-De Rham spectral sequence

Ep,q
1 = Hp(X,R0p∗Jm(T, Ωq)) ⇒ Hp+q(X,R0p∗Jm(T,Ω·))
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degenerates at E1 ;
(iv) the Gauss-Manin isomorphism

GMm : Hr
DR(Xm/Rm) → Hr

DR(X)⊗Rm

is adjoint to a map GMm : BmHr
DR(Xm/Rm) → Hr

DR(X) ⊗ [C ⊕ H0(Jm(T ))]
induced by a map of complexes

Mm : Jm(T, Ω·) → Jm(T, Ω·triv) ,

Ω·triv = Ω· with trivial T -action, which respects the Hodge filtration up to a shift of
m, i.e. Mm(F i) ⊂ F i−m, hence GMm(F i) ⊂ F i−m.

Proof. To begin with, the inclusion

CX → Ω·

is , by the Poincaré lemma, a T -linear isomorphism (with the trivial action of T on
CX). Now recall the finite-to-one map

π : X < m > ×X → X < m, 1 >

(cf. section 2) and let X be embedded diagonally X ↪→ X ×X = X < 1 > ×X ⊂
X < m > ×X. Then it follows that

Jm(T, Ω·) ∼
qis

Jm(T,C) ∼
qis

π∗(p∗1Jm(T )⊕ p∗2CX) .

This clearly implies the degeneration assertion of (i). As for (ii), we have proven
in Theorem 3.1 that

Ω·Xm/Rm
' Cm(R0p∗Jm(T, Ω·)).

whence a map

R0p∗Jm(T, Ω·) → BmΩ·Xm/Rm
' BmCmR0p∗Jm(T, Ω·).

It is easy to see that this is an isomorphism for m = 0, and both sides are V m-coflat,
locally a sum of copies of V m

0 ⊗ OX , hence this is an isomorphism. On the other
hand Ω·Xm/Rm

being Rm-flat we have

Hr(X,R0p∗Jm(T, Ω·)) = Hr(X, BmΩ·Xm/Rm
) = BmHr(X, Ω·Xm/Rm

).

This proves (3.1). Applying Cm to both side and using Rm-freeness ofHr(X, Ω·Xm/Rm
),

(3.2) follows too. Given (ii), (iii) follows easily from degeneration of the usual (rel-
ative) Hodge-De Rham spectral sequence

Ep,q
1 = Hq(X, Ωp

Xm/Rm
) ⇒ Hp+q

DR (Xm/Rm).

Finally for (iv)-which is really the main point-we shall construct an explicit iso-
morphism based on interior multiplication. For local vector fields v1, · · · , vk we
let

iv1···vk
: Ωi → Ωi−k

denote interior multiplication by v1× · · · × vk ( which coincides with iv1 ◦ · · · ◦ ivk
).

Recall Cartan’s formula for the Lie derivative action of T on Ω·:

Lv(ω) = iv(d(ω)) + d(iv(ω)) .

Now let us define a map M , preserving total degree

M = M ··· : Jm(T, Ω·) → Jm(T, Ω·triv) (3.3)

M i,j,k : λjT £ Ωi → λj−kT £ Ωi−k, k ≥ 0,



UNIVERSAL VARIATIONS OF HODGE STRUCTURE 9

M i,j,k(v1×· · ·×vj×ω) = ±
∑

(−1)r1+···+rkv1×· · ·×v̂r1×· · ·×v̂rk
×· · ·×vj×ivr1 ···vrk

(ω) .

In other words M is the map whose restriction on λjT £Ωi is given by ⊕k≥0M
i,j,k;

note that each M i,j,0 is the ’identity’. The Cartan formula shows that M is a
morphism of complexes, whence a map

tGMm : Hr(X,R0p∗Jm(T, Ω·)) → Hr(X,R0p∗Jm(T, Ω·triv))
= Hr(Ω·X)⊗ [C⊕H0(Jm(T ))].

In view of the commutative triangle

Jm(T,CX)
o ↙ ↘ o

Jm(T, Ω·) M−→ Jm(T, Ω·triv)
tGMm is an isomorphism, and it is obvious that it decreases Hodge level by at most
m. Applying the Cm functor now suffices to conclude. Note that by construction
the inverse of our GM isomorphism is induced by the quasi-isomorphism Rm →
Ω.

Xm/Rm
; the same is obviously true of the ’usual’ Gauss-Manin in any way it is

defined (e.g. [K]). Thus our GM coincides with the usual.
¤

The following discussion concerning cohomology and obstructions was suggested
by some recent work of Clemens [C]. Consider the exact sequence

0 → mm
m ⊗ Ωp → Ωp

m → Ωp
m−1 → 0.

By [D] (assuming X Kählerian) this induces an exact sequence

0 → mm
m ⊗Hq(Ωp) → Hq(Ωp

m) → Hq(Ωp
m−1) → 0,

i.e. the coboundary map ∂m : Hq(Ωp
m−1) → mm

m⊗Hq+1(Ωp) vanishes, and Hq(Ωp
m)

is Ru
m-free. It is easy to see that the vanishing of ∂m−1 implies a priori that ∂m

factors through a map Hq(Ωp) → mm
m⊗Hq+1(Ωp). ’Dually’, let Km ⊂ symmH1(T )

be the kernel of the m-th order obstruction map obm : symmH1(T ) → H1(Jm−1(T )
(cf. [R2],2.3). Alternatively, Km may also be defined inductively as the kernel of
an obstruction map obm : Km−1.H1(T ) → H2(T ), where Km−1.H1(T ) denotes the
intersection of symmH1(T ) and Km−1 ⊗ H1(T ) in ⊗mH1(T ). Then the natural
map

Km ⊗Hq(Ωp) → Hq+1(Ωp),

which represents the obstruction to lifting (p, q)-cohomology over the universal m-
th order deformation, vanishes. Equivalently, the tautological map Jm(T, Ωp) →
λm(T )£Ωp[m] induces a map V m(Ωp) → symmH1(T )⊗Ωp whose image coincides
with Km ⊗ Ωp (cf. Corollary 3.2). Then the induced map on cohomology

Hq(V m(Ωp)) → Km ⊗Hq(Ωp)

is surjective, i.e the coboundary or obstruction map

Km ⊗Hq(Ωp) → Hq+1(V m−1(Ωp))

vanishes (and moreover Hq(V m(Ωp)) is cofree). This follows from [D] together
with a trivial ’Universal coefficient theorem’ which says that Hq(Bm(Ωp

m)) =
Bm(Hq(Ωp

m)) provided Hq−1(Ωp
m) is free; alternatively one can simply mimic Deligne’s

semicontinuity argument for V m(Ωp) in place of Ωp
m.
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Now recall the calculus fact (already used in [R3]):

i([x, y])(ω) = Lx(i(y)ω)− Ly(i(x)ω)− d(i(x ∧ y)ω) + i(x ∧ y)(dω).(∗)
Define a map

i : Jm(T ) £ Ωp → Jm−1(T, Ωp−1)[1]
by the formula

(v1, ..., vk, ω) 7→
∑

(−1)j(v1, ...v̂j , ..., vk, i(vj)ω).

Then (*) shows, assuming X Kähler, that i is a ’weak’ morphism of complexes, in
the sense that the appropriate diagrams commute in the derived category. This is
good enough to induce a map on cohomology

V m ⊗Hq(Ωp) → Hq(V m−1(Ωp−1))

and similarly for m− 1, hence a commutative diagram

symmH1(T )⊗Hq(Ωp) −−−−→ symm−1H1(T )⊗Hq+1(Ωp−1)y
y

H1(Jm−1(T ))⊗Hq(Ωp) −−−−→ Hq+2(V m−2(Ωp−1))
which induces

Km−1.H1(T )⊗Hq(Ωp) −−−−→ Km−1 ⊗Hq+1(Ωp−1)
y

y
H2(T )⊗Hq(Ωp) −−−−→ Hq+2(Ωp−1)

As we have seen, the right vertical map vanishes, and we conclude the following
which was first proven by Clemens [C] by another method:

Corollary 3.5. (Clemens) For X Kählerian, the map H2(T ) → Hom(Hq(Ωp),Hq+2(Ωp−1))
vanishes on the image of the m-th order obstruction map in H2(T ), for all m.

Remark. A similar result, also due to Clemens, holds in the ’relative’ situation,
with X replaced by a pair (Y ⊂ X) of manifolds, T by TX/Y (see Appendix) and
Ω.

X by (the mapping cone of) Ω.
X → Ω.

Y . The above proof still applies.

It is instructive to rewrite some of the conclusion of Theorem 3.4 in traditional
geometric language. Thus Hr

m = Hr
DR(Xm/Rm) may be viewed as a geometric

vector bundle-viz. Spec(Sym(Hr∗
m ))-over Spec(Rm) =: Um and the Gauss-Manin

isomorphism yields a commutative triangle:

Hr
m ' Um ×Hr (3.4)

↘ ↙
Um

where Hr = Hr
0 = Hr

DR(X). The geometric vector bundles Hr
m and Um×Hr corre-

spond to OS structures over Vm which are the ’symmetric coalgebra’ over V m (see
Remark 1.2) on the MOS structures Hr(R0p∗Jm(T, Ω·)) and Hr(R0p∗Jm(T, Ω·triv)),
respectively, the latter being evidently isomorphic to V m⊗S·(H), where S·(H), the
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symmmetric coalgebra (= algebra) on H over C is endowed with the evident OS
structure (e.g. via its duality with S·(H∗)). Now the Hodge subbundle F i

m ⊂ Hr
m,

together with the trivialization (3.4), give rise to a morphism to a Grassmannian

pm : Um → Grass(dim F i
0,H

r) ,

which is none other than the m-th order germ of the period map associated to
(X, Hr, T i). Thus Theorem 3.2 yields, in principle, an explicit formula for pm. In
the next section we shall make this concrete in the case of Calabi-Yau manifolds.

4. The Calabi-Yau case

In this section we fix a Calabi-Yau manifold X, i.e. an n-dimensional compact
Kähler manifold admitting a nowhere-vanishing n-form Φ (which is then unique
up to a constant), and such that H0(T ) = 0. We call such a pair (X, Φ) a mea-
sured Calabi-Yau manifold (MCYM). A (local) isomorphism f between MCYM’s
(X, Φ), (X ′, Φ′) is supposed to preserve the n-form, i.e. f∗Φ′ = Φ. Thus the Lie
algebra sheaf of infinitesimal automorphisms of a MCYM (X, Φ) may be identified
as the subset T̂ ⊂ T of divergence-free vector fields v, i.e. those with Lv(Φ) = 0.
The inclusion of Lie algebras T̂ ⊂ T corresponds to an inclusion of rings

Rm = Rm(T ) ⊂ R̂m = Rm(T̂ ).

Indeed it is easy to see that R̂m = Rm[t]/(m, t)m+1. The universal deformation
over R̂m is just Xn

m×Rm R̂m. The advantage of R̂m is that the pullback of the coho-
mology bundle Hn

m = Hn
DR(Xu

m/Rm) over Ûm = Spec(R̂m) admits a ’tautological’
section: namely that corresponding to the map

Jm(Φ) : Jm(T̂ ,C[−n]) → Jm(T̂ , Ω·)

induced by the T̂ -linear (!) map C[−n] Φ→ Ω·. To be precise, there is an inclusion
(of a direct summand)

π∗p∗1Jm(T̂ )[−n] ↪→ Jm(T̂ ,C[−n])

(indeed π∗p∗1Jm(T̂ )[−n] is identical with the part of Jm(T̂ ,C[−n]) in negative de-
grees and this part forms a sub, as well as quotient, complex because the differential
in degree -1, given by the action, vanishes). This inclusion induces

[Φ] : H0(Jm(T̂ )) → Hn(R0p∗Jm(T̂ , Ω·)) ,

which corresponds to Φ as a cross-section of the geometric vector bundle corre-
sponding to Hn

m ⊗ R̂m. On the ring level this corresponds to the R̂m-algebra
homomorphism

S.
R̂m

((Hn
m)∗ ⊗ R̂m) → R̂m

given by the composite (where S. = S.
C)

S.((Hn
m)∗) → S.(R̂m) → R̂m

where the first map is S.[Φ]∗ and the second is R̂m-multiplication. Now we may
follow this by the map induced by the Gauss- Manin isomorphism Hn

m ' Hn⊗Rm

(3.4), then project to the Hn factor. The map thus obtained

p̂m : Ŝm → Hn =: H
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is the m-th order period map associated to the MCYM (X, Φ). This is related to
the usual period map pm by the diagram

Ûm
p̂m−−−−→ H\{0}y

y
Um

pm−−−−→ P(H).

Now p̂m corresponds to a homomorphism p̂∗m : S·(H∗) → R̂m, which is obviously
determined by its restriction p̂1∗

m on H∗, the linear functions on H. Tracing through
the construction of the Gauss-Manin isomorphism in Theorem 3.2, we conclude the
following formula for the dual p̂1

m of p̂1∗
m :

Theorem 4.1. The map p̂1
m : H0(Jm(T̂ )) → Hn

DR(X) is given by H0(jm) where
jm : Jm(T̂ ) → Ω·[n] is defined by jm(v1 × · · · × vk) = iv1···vk

(Φ).

Proof. Our map is given as the composite of three maps. First, embedding Jm(T̂ )
in the negative-degree portion of the n-th column (viz. Jm(T̂ ,Ωn)) of the dou-
ble complex Jm(T̂ , Ω.) through multiplication by Φ. Second, applying our explicit
Gauss-Manin (interior multiplication) operator M constructed in the proof of The-
orem 3.2. Third, projecting to the zeroth row, which is just given by Ω.. From our
formula for M (3.3), is is plain that this map is given by H0(jm). ¤

We shall now use this description of the period map to describe a set of defining
equations for its image (Schottky relations). For convenience, set T̂m = H0(Jm(T̂ )),
mm = T̂m∗, the maximal ideal of R̂m. To mirror the adic filtration on R̂m we define
a slight modification F̂ of the Hodge filtration on H (which we identify with its
dual H∗ by Poincaré duality) by

F̂ iH = H i = 1
= F iH i 6= 1.

F̂ naturally induces a filtration on the symmetric algebra S(H),(= unique filtration
such that the level of ab = (level of a)+ ( level of b)) and we denote by Sm its m-th
quotient S(H)/F̂m+1S(H). Note that e.g. by Theorem 4.1, p̂1∗

m on H takes F̂ into
the adic filtration on R̂m. As F̂ was extended ’multiplicatively’ to S.(H), p̂∗m also
takes F̂ into the adic filtration, yielding a map Sm → R̂m. It is also clear that p̂∗m
induces an isomorphism

gr1
F̂
S(H) = H/F 2H ' gr1(R̂m) = T̂ 1∗ . (4.0)

It follows firstly that p̂∗m is surjective(’local Torelli’) but also, more significantly
that for any a ∈ F̂ iH we may choose b ∈ ⊕n

j=i SjH so that

p̂∗n(a) = p̂∗n(b) ∈ mi
n ⊂ R̂n . (4.1)

Indeed writing b =
∑n

i bj we may firstly choose bi ∈ Si(H) by (4.0) so that p̂∗n(a−
bi) ∈ mi+1, then choose bi+1 ∈ Si+1(H) so that p̂∗n(a− bi − bi+1) ∈ mi+1, etc. We
let Yn denote the set of elements a−b of this kind as a ranges over (a basis of ) F iH,
i = 2, · · · , n. These are our ’Schottky relations’ of order n; they are essentially a
refined version of the well-known Yukawa forms

ηi : Si(Hn−1,1) → Hn−i,i
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in that a defines a linear form on Hn−i,i and a ◦ ηi is ’given’ by (the degree-i part
of ) b as linear form on Si(Hn−1,1). Next we define our Schottky relations of higher
order. For each m ≥ n we define by induction a lift Ym of Yn,

Ym ⊂ Im = ker(Sm → R̂m) ,

as follows. For any y ∈ Im let y′ ∈ Sm+1 be an arbitrary lift of y. Thus p̂∗m+1(y
′) ∈

m̂m+1
m+1 may be expressed as a polynomial of degree m + 1 in T̂ 1∗, which may be

represented by an element z ∈ Sm+1(H) and we clearly have p∗m+1(z) = p∗m+1(y′).
Now set

y′′ = y′ − z ∈ Im+1 ,

Ym+1 = {y′′ : y ∈ Ym} .

Theorem 4.2. For m ≥ n, p∗m induces an isomorphism

Sm/ < Ym >' R̂m .

Proof. We know the induced map is well defined, surjective and takes F̂ into the adic
filtration. To prove injectivity it will suffice to show p∗m induces an isomorphism,
for each i,

gri(p̂∗m) : gri(Sm/ < Ym >) → gri(R̂) = Si(T̂ 1∗) .

Given a ∈ F̂ iSm, it is clear that we may find b ∈ Si(H) with a− b ∈< Ym >. But
note the exact diagram

F̂ i+1Sm −−−−→ Si(H) −−−−→ Si(H/F 2H)yo
Si(T̂ 1∗) .

Thus if gri(p̂∗m)(a) = 0 then gri(p̂∗m(b)) = 0. So b ∈ F̂ i+1(Sm). Hence a = b = 0 in
gri(Sm/ < Ym >). ¤

With more specifically transcendental considerations, we shall next give more
explicit versions of the above results. These involve a certain ’Green-Green’ pairing
#, obtained by combining the Yukawa pairing ∗ with the Green’s operator G on
X. We now proceed to define #.

Let Φ−1 ∈ H0(∧nT ) denote the section dual to the n-form Φ, i.e.

iΦ−1(Φ) = 1 .

For forms αi ∈ Ani(X),i = 1, 2, α1 ⊗ α2 may be considered as a tensor of degree
n1+n2, whence a tensor iΦ−1(α1⊗α2) of degree n1+n2−n and the Yukawa product
α1∗α2 is by definition the alternation (skew-symmetrization) of iΦ−1(α1⊗α2). Note
that

Ai1,j1 ∗Ai2,j2 ⊆ Ai1+i2−n,j1+j2 ,

∂̄(α1 ∗ α2) = ∂̄α1 ∗ α2 ± α1 ∗
−
∂ α2 ,

and in particular α1 ∗ α2 is ∂̄-closed provided α1 and α2 are . Also note that * is
defined by local and holomorphic data, and makes sense for the appropriate sheaves
(both holomorphic and C∞).

Now fixing a Kähler metric on X (e.g. the Ricci-flat one), let G = G∂̄ = G∂ =
1
2Gd be the Green’s operator on X (cf. [GH]). Thus

(∂̄∂̄∗ + ∂̄∗∂̄)G(c) = c
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whenever c is d− or ∂− or ∂̄-exact. In fact in this case we have by the Hodge
identities

c =
√−1∂̄∂ΛG(c)

where Λ is the usual ’dual Lefschetz’ operator. We define

a#b =
√−1∂ΛG∂(a ∗ b) .

It is immediate that

Ai1,j1#Ai2,j2 ⊆ Ai1+i2−n+1, j1+j2−1

∂̄(a#b) = ∂(a ∗ b), ∂(a#b) = 0.

Now let us identify the tangent sheaf T with Ωn−1 via interior multiplication,
by Φ, and note that the subsheaf T̂ ⊂ T thus corresponds to the subsheaf of closed
forms Ω̂n−1 ⊂ Ωn−1. The following identity on T̂ is easy to prove but crucial

[a, b] = ∂(a ∗ b) . (4.2)

Here a, b can be holomorphic sections of T̂ or T̂ -valued (0, k) forms, i.e. ∂-closed
(n− 1, k)-forms. The case k = 1, i.e. a, b ∈ An−1,1, is essentially equivalent to the
’Tian-Todorov Lemma’; note that in this case

a ∗ b = ia∧b(Φ) .

[We prove (4.2) for k = 0 as the general case is similar.Write locally Φ = dz1 ∧ ...∧
dzn, ei = ∂/∂zi, a =

∑
fiei, b =

∑
gjej where

∑
∂fi/∂zi =

∑
∂gj/∂zj = 0(∗)

by divergence- freeness. Then

a ∗ b =
∑

i6=j

(−1)i+jfigjdz1...d̂zi... ˆdzj ...dzn,

so ∂(a ∗ b) corresponds via Φ− multiplication to the vector field (all summations
over i 6= j) ∑

∂fi/∂zigjej −
∑

∂fi/∂zjgjei

−∂gj/∂zjfiei +
∑

∂gj/∂zifiej

which by (*) equals

−
∑

j

∂fj/∂zjgjej −
∑

i 6=j

∂fi/∂zjgjei

+
∑

i

∂gi/∂zifiei −
∑

i 6=j

∂gj/∂zifiej

= [
∑

fiei,
∑

gjej ] = [a, b]

¤]
Now recall the m-th order period map

p̂1
m : T̂m → H

which we describe in Theorem 4.1 as H0(jm). Note that this description implies in
particular that the k-th graded

grk(p̂1
m) : SkT̂ 1 → Hn−k,k(X)
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is induced by projection T̂ 1 = Hn,0 +Hn−1,1 → Hn−1,1 and Yukawa multiplication
(Hn−1,1)k ∗→ Hn−k,k. We refine this observation as follows.

Theorem 4.3. There is a natural splitting

T̂m =
m⊕
1

SkT̂ 1 ,

with respect to which the k-th component p̂1,k
m , i.e. the k-th derivative of the period

map, is given by

p̂1,k
m (a1, · · · , ak) =

1
k!

∑

π∈Pk

k∑

j=max(n−k+1,1)

(−1)j−1(aπ(1)# · · ·#aπ(j)∗aπ(j+1)∗· · ·∗aπ(k)) (4.3)

where the RHS is viewed as a cocycle in (A··, ∂, ∂̄).

Proof. The main thing will be to construct this splitting. The splittings we shall
construct for various m will be mutually compatible, so there is no loss of generality
in assuming k = m ≥ 2. Let a1, ..., am ∈ T̂ 1 = Hn,0 + Hn,1. Note Φ identifies
Hn,0 = C. We shall construct a lifting b of a1 · · · am ∈ Sm((̂T )1) to T̂m . Let a1

i

be the (n − 1, 1) component of ai. Then we may write a1 · · · am = a1
1 · · · a1

m + a′

where a′ ∈ ⊕j<mSi(T̂ ), so the list of a′ is defined by induction. Thus we may
assume ai = a1

i are of type (n − 1, 1) and harmonic, hence both ∂- and ∂̄-closed.
Now the cohomology of Jm(T ) and Jm(T̂ ) may be computed by formally applying
suitable Schur functors to Dolbeault complexes resolving T and T̂ as in the proof
of Theorem 3.1, giving rise in the case of T to a double complex (B··, δ, ∂̄), where
δ is the differential inherited from that of Jm(T ). Now we begin with

b−m,m = a1 · · · am ∈ B−m,m = Sm(An−1,1) ,

whose horizontal differential is

δ(b−m,m) =
1
m!

∑

π∈Σm

[aπ(1), aπ(2)]aπ(3) · · · aπ(m) .

As the ai are ∂-closed, we have

δ(b−m,m) =
1
m!

∑

π∈Σm

∂(aπ(1) ∗ aπ(2))aπ(3) · · · aπ(m)

=
1
m!

∑
π

∂̄(aπ(1)#aπ(2))aπ(3) · · · aπ(m)

Thus a natural choice for the component of b in B−m+1,m−1 is

b−m+1,m−1 =
1
m!

∑
(aπ(1)#aπ(2))aπ(3) · · · aπ(m) .

With this we indeed have

∂̄(b−m+1,m−1) = δ(b−m,m) .

Next we must find a b−m+2,m−2 with

∂̄(b−m+2,m−2) = δ(b−m+1,m−1) .

As above , we may set

b−m+2,m−2 =
1
m!

∑

π∈Σm

((aπ(1)#aπ(2))#aπ(3)) · · · aπ(m) .
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Continuing in this way we obtain a hypercocycle b·· for B··, lifting a1 · · · am, yielding
the required splitting.

Now by theorem (4.1), it follows that (identifying as always T with Ωn−1):

p̂1
m(b) =

m∑

j=1

ib−m+j,m−j (Φ)

=
1
m!

∑
n̄

m∑

j=1

i(aπ(1)#···#aπ(j))∧aπ(j+1)∧···∧aπ(m)
(Φ)

=
1
m!

∑
π

∑

m−j+1≤n

(aπ(1)# · · ·#aπ(j)) ∗ aπ(j+1) ∗ · · · ∗ aπ(m) ,

proving (4.3). ¤
Using (4.3), we can give a more explicit construction of the Schottky relations

Ym. Let
ηi∗ = γi : Ai,n−i = An−i,i∗ → Si(An−1,1)∗ = Si(A1,n−1)

be the ’Yukawa comultiplication’, and likewise

ρj : A1,n−1 → Sj(A1,n−1)

be the Green-Green comultiplication, dual to the # multiplication; we may extend
ρj as a derivation to a map

ρi,j : Si(A1,n−1) → Si+j−1(A1,n−1) .

(i.e. acting on one factor at a time). Then define

νi,j : Ai,n−i → Si+j−1(H1,n−1)

as the harmonic projection of ρi,j ◦ γi. (Note that H1,n−1 = (Hn−1,1)∗). It then
follows directly from (4.3) and the above recipe for Ym that

Corollary 4.4. A complete set of m-th order Schottky relations for X is given by

{a +
m∑

j=1

(−1)jνi,j(a) : a ∈ Hi,n−i.i = 2, · · · , n}

Remark 4.5. Unfortunately the Green’s operator G and its relatives, having to
do with explicit realizations of the cohomology, are notoriously difficult to compute
explictly, except in some special cases, e.g. curves. On the other hand it is possible
to work with C̆ech cohomology where an explicit analogue of G has been constructed
in the work of Toledo and Tong [TT]. This looks like a promising way to write down
period maps fairly explicitly in general cases. We hope to return to this elsewhere.
See [L] for some explicit calculations in the curve case.

Appendix A. the basic construction, DGLA case

Lie algebras are important in deformation theory because the symmetries of
objects to be deformed generally form a continuous group whose tangent space
(={elements infinitely near identity}) is a Lie algebra and it is these symmetries
that are used in regluing pieces of the original object to form the deformation.
Deformation problems of this type may be called ’free’ or ’unconstrained’. There are
however important deformation problems which are on the contrary ’constrained’
or ’semitrivialized’ in that some ’part’ of the object to be deformed is to remain
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undeformed or, more accurately to deform in a trivialized-rather than just trivial-
manner. The most familiar example of a semitrivialized problem is the Hilbert
scheme, i.e. deformations of a submanifold Y ⊂ X, fixing X. The (full) Lie
algebra associated to the embedding Y ⊂ X is TY/X , the sheaf of vector fields on X
tangent to Y along Y , and the corresponding (unconstrained) deformation problem
is that of deformations of the pair (X,Y ). The viewpoint we adopt here is that
deforming Y in a fixed X amounts to deforming the pair (X, Y ) and trivializing the
X part. In the general case this viewpoint leads to a (special kind of ) differential
graded Lie algebra (DGLA), essentially consisting in a Lie algebra g, a g-module
h and a derivation g → h; roughly g will do the deforming and h the trivialising.
In the Hilbert scheme case h = TX , of course, but it is important to observe
that the Lie algebra structure of TX itself plays no role, only the TX/Y -module
structure. A succinct way to describe the situation in this case in terms of the
normal sheaf N = TX/TX/Y is that N [−1] forms a ’Lie algebra in the derived
category’ controlling the deformations of Y in the fixed X.

Now recall that by definition a (0, 1)-DGLA consists of a Lie algebra g, a g-
module h plus a Lie derivation d : g → h; as we shall consider no other kind
of DGLA, we shall for convenience drop the (0,1) tag. Note that the universal
enveloping algebra U(g → h) is a differential graded associative algebra, with ele-
ments of h having degree 1 and the differential being the natural extension of d as
internal derivation of degree +1, Note that the Lie ’inclusion’ g → (g → h) induces
a homomorphism U(g) → U(g → h) and in view of the rule

b.a = a.b− a(b) , a ∈ U(g), b ∈ S·(h) ,

a(b) being the action of a on b, it is easy to see that as U(g)-modules, we have

U(g → h) ' U(g)⊗ S·(h).

Note that to a DGLA sheaf g→d h on X we may associate Jacobi bicomplexes
Jm(g → h) whose jth row is of the form πm−j,j∗Jm−j(g, σjh) where πm−j,j : X <
m− j, j >→ X < m > is the natural (forgetful) map, zeroth row is just Jm(g) and
whose kth column is an Eagon-Northcott type complex of the form

λkg → ...λjg £ σk−jh → ...σkh;

it is the derivation property of d that ensures that these fit together to form a
bicomplex. As in the Lie algebra case, H0(Jm(g → h)) is an OS structure with
a natural OS morphism H0(Jm(g → h)) → H0(Jm(g)), inducing a ring homomor-
phism Rm(g) → Rm(g → h).

Remark A.1. For cohomological purposes we may replace g → h by a C̆ech
bicomplex, thus turning Jm(g → h) into a multicomplex {∧aCb(g) ⊗ ScCd(h)} (
where ∧ and S are to be understood in the graded sense). The contribution to H0

from the ’pure h’ part a = b = 0 may be identified with the kernel of the differential
d̃ induced by d on the enveloping algebra of the DGLA C ·(g) → C ·(h). Moreover,
in cases of interest to us, we have that H0(g) → H0(h) is injective and in this case
it is easy to check that there is no other contribution to H0(J), so in fact

H0(Jm(g → h)) = coker(d̃). (A.1)

Now our purpose is to interpret Rm(g → h) deformation theoretically. To this
end let E be a g-module over X, Rm an artin local C-algebra of exponent m, and
Em a flat g-deformation of E over Rm, i.e. an Rm-module locally isomorphic to
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E ⊗ Rm with gluing maps in Exp(g) ⊗ Rm = Gm. As in [R2], Em comes from a
Kodaira-Spencer homomorphism αm : Rm(g) → Rm, i.e. Em ' α∗mEu

m where Eu
m

is the m-universal object. Now h itself being a g-module, αm similarly gives rise to a
g-deformation hm = α∗mhu

m where hu
m = Mm(g, h) = HomMOS(V m

0 ,R0p∗(Jm(g, h)
(Theorem 3.1)(note objects like hu

m appear there without the ’u’ superscript); note
that mmhu

m = HomMOS(Vm,R0p∗(Jm(g, h). Now the canonical map Jm(g) →
πm,1∗Jm(g, h)[1] , which is nothing but the map from the zeroth to the first row of
Jm(g → h), gives rise to a canonical cohomology class Bm(h) ∈ CmH1(Jm(g, h)) =
H1(hu

m) (in fact this clearly lifts to H1(mmhu
m) and we shall use Bm(h) to denote

the lift as well), whence a class

B(αm, h) = α∗m(Bm(h)) ∈ H1(mmhu
m).

Note incidentally that g itself is a g−module via the 1/2 ad action and for this action
g →id g is a DGLA (the 1/2 factor is needed to make id a derivation),whence a
canonical element B(αm, g) ∈ H1(mmgm). For instance if g = TX then gm =
TXm/Rm

, the relative tangent sheaf.
By a (g → h)-deformation of E we mean the data (αm, A) consisting of a g-

deformation of E given by αm plus a ’trivialization’ of the corresponding canon-
ical cohomology class, given e.g. by a Čech cochain A = (vα) ∈ Č◦(hm), δA =
B(αm, h). These objects can all be represented concretely as in [R2]. Recall to begin
with that αm corresponds to a morphic hypercocycle vm = ε(um) ∈ H0(Jm(g))⊗mm

where u. = um ∈ C̆1(g)⊗mm satisfies the C̆ech integrability condition

δ(um) = −1/2[um, um]; (A.2)

a deformation corresponding to αm, such as Em (or gm or hm) is essentially defined
by the condition that its C̆ech complex (C̆ .(Em), δm) be isomorphic to (C̆ .(E) ⊗
Rm, δ0⊗1+um) (viewing um as an operator of degree +1 on C̆ .(Em)⊗Rm). Then
B(αm, g) is represented by (um) (which by (A.2) is indeed a cocycle for gm and in
fact for mmgm, which is a flat Rm−1-module); similarly, B(αm, h) is represented by
d(um). Put another way, the operator δ0 ⊗ 1 on Č(E)⊗Rm pulled over to Č .(Em)
becomes δ − um, so um is indeed a cocycle for mmgm. Consequently A may be
represented by

a. ∈ C̆0(h)⊗mm,

δ(a.) + u.(a.) = d(u.)

i.e. aα−aβ +1/2uαβ(aα +aβ) = d(uαβ). The following then is the DGLA analogue
of the main result of [R2].

Theorem A.2. Assume H0(g) → H0(h) is injective. Then for any m, there exists
a (g → h) deformation (αuc

m , Auc
m ) over Ruc

m = Rm(g → h) which is constrained
universal in that for any (g → h) deformation (αm, Am) over Rm, there is a fac-
torization of αm

Ru
m

αuc
m→ Ruc

m
βm→Rm

such that Am = β∗mAuc
m .

Proof. Analogous, mutatis mutandis, to that in [R2] (compare Theorem 3.1 above).
To begin with, αuc

m simply corresponds to the natural map qm : Jm(g → h) →
Jm(g), while Auc

m comes from the extra data needed to lift an element of H0(Jm(g))
to one in H0 of the double complex formed from the last 2 rows of Jm(g → h). Now
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given an arbitrary (g → h)-deformation (αm, Am) over Rm, αm corresponds to a
cochain um ∈ C1(g)⊗mm and Am to a ∈ C0(h)⊗mm as above. Then

(um,
1
2
u2

m, · · · ,
1
m!

um
m; a, um×a, · · · ,

1
(m− 1)!

um−1
m ×a;

1
2
a2, um×1

2
a2; · · · ; · · · ;

1
m!

am)

(A.2)

yields a morphic element of mm⊗H0(Jm(g → h)) corresponding to βm as required.
¤

Examples
1. Let X be a compact complex complex manifold and Y ⊂ X a submanifold

with normal bundle N . We have a DGLA

(TX/Y → TX) ∼ N [−1] .

As noted before ([R2],section 5), TX/Y controls deformations (Ym ⊂ Xm/Rm) of the
pair Y ⊂ X and given such a deformation with Kodaira-Spencer homomorphism
αm : Rm(TX/Y ) → Rm, evidently B(αm, TX) is just the class corresponding to the
induced deformation Xm of X alone, so that the data A is simply an identification
of Xm with the trivial deformation X × Spec(Rm).

Remark A.3. The cokernel of d̃ on U(N [−1]) is a certain quotient of S·(TX) which
is essentially the sheaf D·

Y→X of ’normal differential operators’ along Y , considered
by Burchard, Clemens et al [BC]. Note the natural map

H0(Jm(N [−1])) = coker(d̃,H0) → H0(coker(d̃, U(N [−1])))
→ H0(D·

Y→X).

2. (cf.[R3]) Let X be a compact complex Kähler manifold with tangent sheaf T
and η ∈ Hp,q(X). We have a map

T → Ωp−1[q] (A.3)

given by interior multiplication by η. Representing η by a closed form, note the
formula

i[x,y](η) = Lx(iy(η))− Ly(ix(η))− d(ix∧y(η))

for vector fields x,y. Replacing Ωp−1 by, e.g. its Dolbeault resolution we have by
the usual Kähler machinery

d(ix∧y(η)) = ∂̄(jx∧y(η))

for a suitable well-defined jx∧y(η) ∈ Ap−1,q−1, therefore this term vanishes in the
derived category and Lη = (T → Ωp−1[q]) forms a DGLA. As shown in [R3],
Lη controls precisely the deformations of X in which (the GM-constant lift of) η
maintains Hodge level p. In the situation of example 1, we may take η = [Y ] ∈
Hp,p(X), p = codim(Y ) and then we have an exact diagram

N [−1] −−−−→ TX/Y −−−−→ T −−−−→
y

y
∥∥∥

Ωp−1[p− 1] −−−−→ L −−−−→ T −−−−→ .

See [R3] for geometric application of this.
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