A function \(f : (a, b) \to \mathbb{R} \) is **monotonically increasing** if for all \(x, y \in (a, b) \),
\[
x \leq y \ \text{implies} \ f(x) \leq f(y).
\]
A function \(f : (a, b) \to \mathbb{R} \) is **differentiable** if it is differentiable at \(x \) for all \(x \in (a, b) \).

1. Prove that if \(f : (a, b) \to \mathbb{R} \) is differentiable and monotonically increasing, then \(f'(x) \geq 0 \) for all \(x \in (a, b) \).

2. Prove that if \(f : (a, b) \to \mathbb{R} \) is differentiable and \(f'(x) \geq 0 \) for all \(x \in (a, b) \), then \(f \) is monotonically increasing.

Theorem 5.13 of Rudin contains two versions of l’Hôpital’s rule. They’re both important, so make sure to learn them, but I want you to prove this one:

Theorem (L’Hôpital’s Rule.) Suppose that \(f, g : [a, b] \to \mathbb{R} \) are differentiable at all points \(x \in (a, b) \), \(f' \) and \(g' \) are continuous on \((a, b) \), and \(g'(x) \neq 0 \) for all \(x \in (a, b) \). Suppose also that for some \(p \in (a, b) \) we have

\[
\lim_{x \to p} f(x) = 0
\]

and

\[
\lim_{x \to p} g(x) = 0
\]

Then the limit

\[
\lim_{x \to p} \frac{f(x)}{g(x)}
\]

exists and equals

\[
\lim_{x \to p} \frac{f'(x)}{g'(x)}.
\]

3. Prove this theorem.

Hint: First prove that for any \(x \in (a, b) \) we have

\[
f(x) = (x - p)(f'(p) + \epsilon(x))
\]

where \(\epsilon : (a, b) \to \mathbb{R} \) is a function obeying

\[
\lim_{x \to p} \epsilon(x) = 0
\]

Similarly, prove that

\[
g(x) = (x - p)(g'(p) + \delta(x))
\]

where \(\lim_{x \to p} \delta(x) = 0 \). Then use these to prove the theorem.