WeBWorK

Go to http://webwork.ucr.edu/webwork2/MATH_046_001_15W/ and do:

- all three problems in “APPLICATIONS PART 2”
- all three problems in “POPULATION PROBLEMS”

To hand in

Suppose the population of fish at time t is $P(t)$ (in millions of fish). Suppose this population obey the logistic equation but with fishing at a rate of 5 million fish per year, so that

$$\frac{dP}{dt} = 6P - P^2 - 5$$

1) What are the equilibrium solutions of this equation: that is, solutions where $\frac{dP}{dt} = 0$?

2) Draw a direction field for this equation and graph three solutions that aren’t equilibrium solutions.

3) If $P(0) = 3$, what does $P(t)$ approach in the far future?

4) For which initial values of the population will the fish go extinct?

If you need more help with direction fields, look at Chapter 18 of the book!