A Spring in Imaginary Time

Jeff Morton

1. If we have a spring with fixed ends tracing a curve \(q \) in \(\mathbb{R}^n \) whose energy is \(E \) as given, we find that taking the variation of \(E \) gives:

\[
\delta E = \int_{s_0}^{s_1} \left(\frac{k}{2} \dot{q}(s) \cdot \ddot{q}(s) + V(q(s)) \right) ds
\]

The boundary terms from the integration by parts disappear since we only consider variations which fix the endpoints of the curve traced by the spring (i.e. \(\delta q = 0 \) at \(s_0 \) and \(s_1 \)). Then if we have that \(\delta E = 0 \) for all variations \(\delta q \), then the equation \(q \) must satisfy is

\[
-k\ddot{q}(s) + \nabla V(q(s)) = 0
\]

or

\[
k\ddot{q}(s) = \nabla V(q(s))
\]

2. If \(V = mgz \) in \(\mathbb{R}^3 \), we have that \(\nabla V = (0, 0, mg) \), so that \(\ddot{q}(s) = (0, 0, mg) \). That is, the curve has a constant positive acceleration \(\frac{mg}{k} \) in the \(z \) direction with respect to the parameter \(s \), and constant velocity in the \(x \) and \(y \) directions with respect to \(s \). So we can also think of the curve as having constant acceleration in the \(z \) direction with respect to distance in the \((x, y) \) direction of the particle’s horizontal velocity. So the curve is a parabola with local maxima at the endpoints.

3. Replacing \(s \) by \(t \), we get

\[
E = \int_{s_0}^{s_1} \left(\frac{k}{2} \dot{q}(t) \cdot \ddot{q}(t) + V(q(t)) \right) dt
\]

Indeed, this is just \(-i\) multiplied by the action along a path of a particle moving in a potential \((K - V) \), where \(K = \frac{k}{2} \|q\|^2 \) with \(k \) playing the role of the mass \(m \).

4. We have the analogy:
5. The statics problem in (2) corresponds to the dynamics problem of a particle moving in a potential with constant gradient. The solution to that problem has the particle moving in a parabola with local minima at the endpoints—the acceleration is in the direction opposite to that observed in the statics problem of the spring.

6. Formally replacing t by t in Newton’s equation $F = ma$, where $a(t)$ is $\ddot{x}(t)$, the second derivative of position with respect to t:

$$F = m \frac{d^2}{dt^2} x(t)$$
$$= m \ddot{x}(t)$$
$$= -m \ddot{x}(t)$$

(This equation $F = -m \ddot{x}$ is reminiscent of Hooke’s law for springs, except that “acceleration” \ddot{x} plays the role of displacement.)