MATHEMATICS
OF THE ENVIRONMENT

John Baez
October 2, 2012
Global Fossil Carbon Emissions

- Total
- Petroleum
- Coal
- Natural Gas
- Cement Production

Global Warming Art
Atmospheric Carbon Dioxide
Measured at Mauna Loa, Hawaii

The Keeling Experiment — Global Warming Art
Minimum CT Arctic sea ice area through 9/2/2012

Minimum 1-day area, million km²

graph: L Hamilton
data: Cryosphere Today

The Cryosphere Today
Carbon Dioxide Variations

The Industrial Revolution Has Caused A Dramatic Rise in CO₂

Year (AD)

CO₂ Concentration (ppmv)

Thousands of Years Ago

Antarctic ice cores and other data — Global Warming Art
What can mathematicians do?
What can mathematicians do?

Most of us know a bit about how the Industrial Revolution caused and was catalyzed by changes in mathematics.
What can mathematicians do?

Most of us know a bit about how the Industrial Revolution caused and was catalyzed by changes in mathematics.

But let’s go back and see how math played a role in an even bigger revolution: the Agricultural Revolution.
What can mathematicians do?

Most of us know a bit about how the Industrial Revolution caused and was catalyzed by changes in mathematics.

But let’s go back and see how math played a role in an even bigger revolution: the Agricultural Revolution.

During this revolution, from 10,000 to 5,000 BC, we began to systematically exploit solar power by planting crops.
What can mathematicians do?

Most of us know a bit about how the Industrial Revolution caused and was catalyzed by changes in mathematics.

But let’s go back and see how math played a role in an even bigger revolution: the Agricultural Revolution.

During this revolution, from 10,000 to 5,000 BC, we began to systematically exploit solar power by planting crops.

By now we use about 25% of all plant biomass grown worldwide! If this reaches 100% there will be, in some sense, no ‘nature’ separate from humanity.
Starting shortly after the end of the last ice age, the agricultural revolution led to:

- surplus grain production, and thus kingdoms and slavery.
- *astronomical mathematics* for social control and crop planning.
- *geometry* for measuring fields and storage containers.
- *written numbers* for commerce.

Consider the last...
Starting around 8,000 BC, in the Near East, people started using 'tokens' for contracts: little geometric clay figures that represented things like sheep, jars of oil, and amounts of grain.
Eventually groups of tokens were sealed in clay envelopes, so any attempt to tamper with them could be seen.
Eventually groups of tokens were sealed in clay envelopes, so any attempt to tamper with them could be seen.

But it’s annoying to have to break a clay envelope just to see what’s inside! So, after a while, they started marking the envelopes to say what was inside.
Eventually groups of tokens were sealed in clay envelopes, so any attempt to tamper with them could be seen.

But it’s annoying to have to break a clay envelope just to see what’s inside! So, after a while, they started marking the envelopes to say what was inside.

At first, they did this by pressing the tokens into the soft clay of the envelopes.
Eventually groups of tokens were sealed in clay envelopes, so any attempt to tamper with them could be seen.

But it’s annoying to have to break a clay envelope just to see what’s inside! So, after a while, they started marking the envelopes to say what was inside.

At first, they did this by pressing the tokens into the soft clay of the envelopes.

Later these marks were drawn on tablets.
Eventually groups of tokens were sealed in clay envelopes, so any attempt to tamper with them could be seen.

But it’s annoying to have to break a clay envelope just to see what’s inside! So, after a while, they started marking the envelopes to say what was inside.

At first, they did this by pressing the tokens into the soft clay of the envelopes.

Later these marks were drawn on tablets.

Eventually they gave up on the tokens. The marks on tablets then developed into the Babylonian number system! The transformation was complete by 3,000 BC.
J. J. O'Connor and E. F. Robertson, Babylonian Numerals
It may seem like child’s play now, but this 5,000-year process of abstraction—*the invention of a general notation for numbers*—laid the foundations for the math we know.
It may seem like child’s play now, but this 5,000-year process of abstraction—*the invention of a general notation for numbers*—laid the foundations for the math we know.

By 1700 BC the Babylonians could compute $\sqrt{2}$ to 6 decimals:

$$1 + \frac{24}{60} + \frac{51}{60^2} + \frac{10}{60^3} \approx 1.414213...$$

Yale Babylonian Collection, YBC7289
So: what kind of mathematics will we create when we realize the planet is finite, and no longer think of ourselves as separate from nature?
So: what kind of mathematics will we create when we realize the planet is finite, and no longer think of ourselves as separate from nature?

Let’s optimistically assume civilization survives.
So: what kind of mathematics will we create when we realize the planet is finite, and no longer think of ourselves as separate from nature?

Let’s optimistically assume civilization survives.

Math may undergo a transformation just as big as it did in the Agricultural Revolution.
As an exercise, let’s imagine the ideal machine for removing carbon dioxide from the atmosphere.
As an exercise, let’s imagine the ideal machine for removing carbon dioxide from the atmosphere.

It should turn carbon dioxide into material that is buried somehow.
As an exercise, let’s imagine the ideal machine for removing carbon dioxide from the atmosphere.

It should turn carbon dioxide into material that is buried somehow.

But this takes energy! Making this with fossil fuels would defeat the whole purpose, so let’s say the machine is solar powered.
As an exercise, let’s imagine the ideal machine for removing carbon dioxide from the atmosphere.

It should turn carbon dioxide into material that is buried somehow.

But this takes energy! Making this with fossil fuels would defeat the whole purpose, so let’s say the machine is solar powered.

The big problem is scaling up the operation fast enough.
As an exercise, let’s imagine the ideal machine for removing carbon dioxide from the atmosphere.

It should turn carbon dioxide into material that is buried somehow.

But this takes energy! Making this with fossil fuels would defeat the whole purpose, so let’s say the machine is solar powered.

The big problem is scaling up the operation fast enough.

So, this machine should be self-reproducing. It should turn some of the CO$_2$ into new machines.
As an exercise, let’s imagine the ideal machine for removing carbon dioxide from the atmosphere.

It should turn carbon dioxide into material that is buried somehow.

But this takes energy! Making this with fossil fuels would defeat the whole purpose, so let’s say the machine is solar powered.

The big problem is scaling up the operation fast enough.

So, this machine should be self-reproducing. It should turn some of the CO$_2$ into new machines.

Even better, these machines should spread without human intervention.
If we could ‘tweak’ trees to sequester more CO₂, or simply stop cutting down so many, it would make a big difference for global warming.
If we could ‘tweak’ trees to sequester more CO$_2$, or simply stop cutting down so many, it would make a big difference for global warming.

This is a simple example of **ecotechnology**: technology that works *like* nature and works *with* nature.
If we could ‘tweak’ trees to sequester more CO$_2$, or simply stop cutting down so many, it would make a big difference for global warming.

This is a simple example of ecotechnology: technology that works like nature and works with nature.

For sophisticated ecotechnology we need to pay attention to what’s already known—permaculture, systems ecology and so on. But better mathematics could help.
To understand ecosystems, ultimately will be to understand networks. — B. C. Patten and M. Witkamp
To understand ecosystems, ultimately will be to understand networks. — B. C. Patten and M. Witkamp

My own work on networks is rather abstract: nice math, but you might not see how it’s useful. So let’s look at something more concrete.
To understand ecosystems, ultimately will be to understand networks. — B. C. Patten and M. Witkamp

My own work on networks is rather abstract: nice math, but you might not see how it’s useful. So let’s look at something more concrete.
Water given off by leaves helps cool the air. Increased carbon dioxide tends to close the pores let water out. So, less cooling.

Cao and Caldeira argue that if we double CO$_2$ in the air, 16% of land warming will be caused by this effect!

But CO$_2$ also helps plants grow leaves. Bounoua et al say this effect would cool the land by 0.6\degreeC with doubled CO$_2$.
Water given off by leaves helps cool the air. Increased carbon dioxide tends to close the pores let water out. So, less cooling.

Cao and Caldeira argue that if we double CO$_2$ in the air, 16% of land warming will be caused by this effect!
Water given off by leaves helps cool the air. Increased carbon dioxide tends to close the pores let water out. So, less cooling.

Cao and Caldeira argue that if we double CO$_2$ in the air, 16% of land warming will be caused by this effect!

But CO$_2$ also helps plants grow leaves. Bounoua et al say this effect would cool the land by 0.6 °C with doubled CO$_2$.
What’s really going on? We need biologists to go out and study leaves... but we *also* need mathematicians to think about leaves.
What’s really going on? We need biologists to go out and study leaves... but we also need mathematicians to think about leaves.

Is there math in a leaf?
What’s really going on? We need biologists to go out and study leaves... but we also need mathematicians to think about leaves.

Is there math in a leaf?

Yes! A mathematician at U.C. Davis, Qinglan Xia, has written a paper called *The Formation of a Tree Leaf*.
He models a leaf as a union of square cells centered on a grid, together with ‘veins’ forming a weighted directed graph from the centers of the cells to the root. The leaf grows new cells at the boundary while minimizing a certain cost function.
The cost function depends on two parameters. Changing these gives different leaf shapes:
Lemma 3.8. Suppose \((\Omega, G)\) is an \((\epsilon, h)\) leaf and \((\mu, \Theta) = \phi_h (\Omega, G)\). Then the total mass of the Radon measure is bounded above by
\[
M(\mu) \leq \pi (R_\epsilon + h)^2
\]
and the total variation of the vector measure \(\Theta\) is bounded by
\[
M(\Theta) \leq \epsilon \pi^{2-\alpha} (R_\epsilon + h)^{4-2\alpha}.
\]

Proof. Since \(\Omega \subset B_{R_\epsilon} (O)\), the mass of \(\mu\) is given by
\[
M(\mu) = ||\Omega|| h^2
\]
\[
= \text{area} \left(\bigcup_{x \in \Omega} \left\{ x + \left[-\frac{h}{2}, \frac{h}{2} \right] \times \left[-\frac{h}{2}, \frac{h}{2} \right] \right\} \right)
\]
\[
\leq \text{area} \left(B_{R_\epsilon + h} (0) \right) = \pi (R_\epsilon + h)^2.
\]
Also, since \(w(e) \leq ||\Omega|| h^2\) for each \(e \in E(G)\), the total variation of \(\Theta\) is given by
\[
M(\Theta) = \sum_{e \in E(G)} w(e) \text{length}(e)
\]
\[
\leq \left(||\Omega|| h^2 \right)^{1-\alpha} \sum m_\beta (e^+) (w(e))^\alpha \text{length}(e)
\]
This is one small part of the growing theory of networks.
This is one small part of the growing theory of networks.

This theory uses computers, because it deals with systems too complex to understand using just pencil and paper.
This is one small part of the growing theory of networks.

This theory uses computers, because it deals with systems too complex to understand using just pencil and paper.

But it also uses much more: analysis, combinatorics, category theory, and many other branches of math.
This is one small part of the growing theory of networks.

This theory uses computers, because it deals with systems too complex to understand using just pencil and paper.

But it also uses much more: analysis, combinatorics, category theory, and many other branches of math.

It draws inspiration from biology, ecology and sociology much as the math of the industrial revolution was inspired by physics.
This is one small part of the growing theory of networks.

This theory uses computers, because it deals with systems too complex to understand using just pencil and paper.

But it also uses much more: analysis, combinatorics, category theory, and many other branches of math.

It draws inspiration from biology, ecology and sociology much as the math of the industrial revolution was inspired by physics.

It’s just beginning to be born. At the Azimuth Project we’re trying to help it along.