n-CATEGORIES
IN
HOMOLOGY
THEORY

A heuristic introduction...

John Baez
There are many competing approaches to n-category theory. In all, the idea is that an n-category has

objects: \[\bullet \] (or "0-morphisms")
morphisms: \[\begin{array}{c}
\xrightarrow{\bullet}
\end{array} \] (or "1-morphisms")

2-morphisms: \[\begin{array}{c}
\xrightarrow{\bullet \quad \bullet}
\end{array} \]
or \[\begin{array}{c}
\xrightarrow{\bullet \quad \bullet \quad \bullet}
\end{array} \]
or \[\begin{array}{c}
\xrightarrow{\bullet \quad \bullet \quad \bullet}
\end{array} \]
or...

& so on up to n-morphisms, with various ways to compose these, satisfying various geometrically plausible laws: either strictly (as equations) or weakly (up to equivalence).
Batanin's definition of strict & weak n-categories begins with the concept of:

Globular set: a diagram of sets & functions

\[C_0 \xleftarrow{s} C_1 \xleftarrow{s} C_2 \xleftarrow{s} \ldots \]

such that

\[s(s(x)) = s(t(x)) \]
\[t(s(x)) = t(t(x)) \]

Elements of \(C_i \) are called \textit{j-cells}, or in an n-category, \textit{j-morphisms}:

\begin{align*}
\ast & \quad 0\text{-cell} \\
\begin{array}{ccc}
\bullet & \xrightarrow{s} & \bullet \\
\downarrow & \downarrow & \downarrow \\
\bullet & \xrightarrow{t} & \bullet \\
\end{array} & \quad 1\text{-cell} \\
\begin{array}{ccc}
\bullet & \xrightarrow{s} & \bullet \\
\downarrow & \downarrow & \downarrow \\
\bullet & \xrightarrow{t} & \bullet \\
\end{array} & \quad 2\text{-cell} \\
\begin{array}{ccc}
\bullet & \xrightarrow{s} & \bullet \\
\downarrow & \downarrow & \downarrow \\
\bullet & \xrightarrow{t} & \bullet \\
\end{array} & \quad 3\text{-cell} \\
\vdots & \quad \vdots \\
\end{align*}
Composition is defined using the concept of:

Cell colony: a k-dimensional cell colony is a globular set of this sort:

\[
\begin{bmatrix}
1d \\
2d \\
3d
\end{bmatrix}
\begin{bmatrix}
\text{od}
\end{bmatrix}
\]

\[
\cdot \\
\rightarrow \\
\cdot
\]

k-dimensional cell colonies correspond to \(\leq k\)-stage planar trees.
A strict or weak w-category is a globular set C where we can compose cells arranged in any k-dimensional cell colony and get a k-cell:

![Diagram of composition]

which gives

whose source & target are themselves composites in an obvious way.

In a strict w-category these composition operations satisfy "all possible laws"; in a weak one they satisfy "all possible laws up to equivalence", where these equivalences are constructed using extra operations which themselves satisfy "all possible laws up to equivalence", etc. ad infinitum!
More precisely, in a strict \(w \)-category we can compose the cells arranged in some cell colony "all at once", or "a bit at a time", & get the same result:

\[
\begin{align*}
(A \circ C)(B \circ (D \circ E)) \circ (F \circ (G \circ H \circ I))
\end{align*}
\]
Weak w-categories are far more complicated!

Example: In a strict w-category, composition of 1-morphisms is associative:

\[(fg)h = fgh = f(gh)\]

In a weak w-category we instead have operations that produce 2-morphisms:

\[(fg)h \xrightarrow{\alpha_{f,g,h}} fgh \xrightarrow{\beta_{f,g,h}} f(gh)\]

\[\alpha, \bar{\alpha}, \beta, \bar{\beta}\}

not inverses, but there are operations

\[A_{f,g,h}: 1 \Rightarrow \alpha_{f,g,h} \bar{\alpha}_{f,g,h}\]

\[A'_{f,g,h}: 1 \Rightarrow \bar{\alpha}_{f,g,h} \alpha_{f,g,h}\]

\[B_{f,g,h}: 1 \Rightarrow \beta_{f,g,h} \bar{\beta}_{f,g,h}\]

\[\bar{B}_{f,g,h}: 1 \Rightarrow \bar{\beta}_{f,g,h} \beta_{f,g,h}\]

etc.!
In this situation:

\[f \rightarrow g \rightarrow h \rightarrow i \]

we get:

Barycentric subdivision of pentagon!
(& higher-dimensional associahedra)
In either the strict or weak worlds...

- An \textit{\(w\)-groupoid} is an \(w\)-category where all \(j\)-morphisms (\(j > 0\)) are invertible (strictly or weakly, as the case may be).
- An \textit{n-category} is an \(w\)-category where all \(j\)-morphisms for \(j > n\) are identities.
- An \textit{n-groupoid} is an \(n\)-category that is an \(w\)-groupoid.
- A \textit{k-tuply monoidal \(n\)-category} is an \((n+k)\)-category with only one \(j\)-morphism for \(j < k\).
- A \textit{k-tuply groupal \(n\)-groupoid} is an \((n+k)\)-groupoid with only one \(j\)-morphism for \(j < k\).
WEAK N-CATEGORIES -
THE DREAM

Let a \textit{k-tuply monoidal n-category} be a weak \((n+k)\)-category with only one \(j\)-morphism for \(j < k\). We expect:

\begin{align*}
\begin{array}{cccc}
\text{n=0} & \text{n=1} & \text{n=2} & \text{ (etc.)} \\
\text{k=0} & \text{sets} & \text{categories} & \text{2-categories} \\
\text{k=1} & \text{monoids} & \text{monoidal categories} & \text{monoidal 2-categories} \\
\text{k=2} & \text{commutative monoids} & \text{braided monoidal categories} & \text{braided 2-categories} \\
\text{k=3} & \text{symmetric monoidal categories} & \text{symplectic monoidal 2-categories} \\
\text{k=4} & \text{symmetric monoidal 2-categories} \\
\text{ (etc.)} & \\
\end{array}
\end{align*}
In the weak world, it is conjectured that:

\[w\text{-groupoids} \cong \text{homotopy types} \]
\[n\text{-groupoids} \cong \text{homotopy types of spaces with } \pi_i = 0 \text{ for } i > n. \]

\[k\text{-tuply groupal } w\text{-groupoids} \cong \text{homotopy types of spaces with } \pi_i = 0 \text{ for } i < k. \]

\[k\text{-tuply groupal } n\text{-groupoids} \cong \text{homotopy } n\text{-types of } k\text{-fold loop spaces} \]

Equivalence of homotopy categories, or more.
Famous operations in homotopy theory have extensions to the world of weak n-categories — extensions from \(n \text{Gpd}_k \) to \(n \text{Cat}_k \):

\[
\begin{array}{c}
n \text{Cat}_k \downarrow \quad \text{Decategorification} \quad \uparrow (n+1) \text{Cat}_k \\
\text{Suspension} \quad \Downarrow \quad \text{Discrete} \quad \uparrow \text{Forgetful} \\
n \text{Cat}_{k+1} \quad \quad \Downarrow \quad \text{Looping} \\
\end{array}
\]

Decategorification identifies isomorphic n-morphisms & discards \((n+1)\)-morphisms:

it's like "killing \(\pi_{n+1} \)."

Stabilization hypothesis: suspension / forgetting form an equivalence for \(k \geq n+2 \).
In the strict world, it is known that:

\[\text{\(\omega\)-groupoids} \simeq \text{homotopy types of spaces with trivial Postnikov } k\text{-invariants} \]

\[\text{groupal } \omega\text{-groupoids} \simeq \text{homotopy types of connected spaces with trivial Postnikov } k\text{-invariants} \]

\[\simeq \prod_{n \geq 2} K(\pi_n, n) \text{-bundles over a } K(\pi_1, 1) \]

\[\simeq \text{crossed complexes} \]

\[\text{doubly groupal } \omega\text{-groupoids} \simeq \text{homotopy types of simply connected spaces with trivial Postnikov } k\text{-invariants} \]

\[\simeq \prod_{n \geq 1} K(\pi_n, n) \text{'s} \]

\[\simeq \text{chain complexes} \]

& then it stabilizes!