Example: Let $G = \mathbb{R}^4$ (spacetime translations).

Notice:

$$\mathbb{R}^4 \cong SO_0(3,1) \times \mathbb{R}^4 = P$$ (Poincare' group)

If we have two groups, say G and H and we have a rep (ρ, ν) of G and a rep (ρ', ν') of H, we can get a rep $(\rho \otimes \rho', \nu \otimes \nu')$ of $G \times H$:

$$(\rho \otimes \rho')(g, h) = \rho(g) \otimes \rho'(h) \quad g \in G, \ h \in H$$

(We've already talked about how to start w/ 2 reps ρ, ρ' of G so that $\rho \otimes \rho'$ is a rep of G_2, also.)

This is related to, but different from, the trick for taking 2 reps $(\rho, \nu), (\rho', \nu')$ of G and getting the rep $(\rho \otimes \rho', \nu \otimes \nu')$ of G:

$$(\rho \otimes \rho')(g) = \rho(g) \otimes \rho'(g).$$

Knowing reps of \mathbb{R} means we know reps of products of \mathbb{R} w/ itself.

Thm: If (ρ, ν) is a (unitary) irrep of G and (ρ', ν') is a (unitary) irrep of H then $(\rho \otimes \rho', \nu \otimes \nu')$ is a (unitary) irrep of $G \times H$.

Moreover—every (unitary) irrep of $G \times H$ is equivalent to one of this sort.
Note: We saw all irreps of IR were e^{kt}, $k \in \mathbb{C}$ now write as e^{ikt}, $k \in \mathbb{IR}$

Corollary: Every irrep of \mathbb{IR}^4 is of the form

$$\rho_k \otimes \rho_k \otimes \rho_k \otimes \rho_k \quad \text{where} \quad K = (k_0, k_1, k_2, k_3) \in \mathbb{IR}^4$$

and ρ_k is the irrep of IR given by

$$\rho_k(t) = e^{ikt} \quad \text{for} \quad t \in \mathbb{IR}, k \in \mathbb{C}$$

The unitary irreps of \mathbb{IR}^4 are of the form

$$\rho_k \otimes \rho_k \otimes \rho_k \otimes \rho_k \quad \text{where}$$

$$K = (k_0, k_1, k_2, k_3), \quad (k_0, \ldots, k_3) \in \mathbb{IR}^4$$

We call $(k_0, k_1, k_2, k_3) \in \mathbb{IR}^4$ the "energy-momentum vector" E_k of this rep.

There will be a 1-dim'l space of intertwiners iff

$$k + k' + k'' = k''' + k''''$$

conservation of energy-momentum
$SL(2, \mathbb{C})$ acts as itself on \mathbb{C}^2, also the conjugate of this action—give us $(1/2, 0), (0, 1/2)$.

Next examples: not compact?

$$
\begin{array}{ccc}
SU(2) & \longrightarrow & SL(2, \mathbb{C}) & \longrightarrow & \mathbb{P} \\
\downarrow^{2^{-1}} & & \downarrow^{2^{-1}} & & \downarrow^{2^{-1}} \\
SO(3) & \longrightarrow & SO_0(3,1) & \longrightarrow & SO_0(3,1) \times \mathbb{R}^4 = \mathbb{P}
\end{array}
$$

Irreps of $SU(2)$ are classified by "spins":

$$j = 0, 1/2, 1, 3/2, \ldots$$

These are related to angular momentum. Finite-dim'l irreps of $SL(2, \mathbb{C})$ aren't unitary (except for 1-dim'l trivial rep—always unitary) and are classified by pairs of spins (j, k)—left-handed/right-handed spin.

\[
\begin{cases}
(1/2, 0) \text{ is the tautologous rep of } SL(2, \mathbb{C}) \text{ on } V = \mathbb{C}^2, \\
(0, 1/2) \text{ is the conjugate rep of } SL(2, \mathbb{C}) \text{ on } \overline{V}.
\end{cases}
\]

Neutrinos \text{ and } \bar{\text{antineutrinos}}.
fusion: \(e^- + p \rightarrow n + v_e \)
\(\text{electron} + \text{proton} \rightarrow \text{neutron} + v_e \)
\((-) \quad (+) \quad (\text{neutral}) \quad \nu_{\text{neutral}} \)

\(n \rightarrow p + e^- + \bar{v}_e \)
\(\text{antineutrino} \)

Unitary irreps of \(\hat{P} \) are complicated — most of them are classified by:

- \(m \in \mathbb{R}, m > 0 \), mass
- \(\text{spin} \quad j = 0, \frac{1}{2}, 1, \ldots \)

But there are also unitary irreps with \(m = 0 \) and spin either \((j,0)\) or \((0,j)\) — massless particles have a handedness to their spin.

There are also weirder unitary irreps, e.g., "tachyons" with mass being imaginary.

In quantum electrodynamics we have 2 kinds of particles — i.e., reps of \(\hat{P} \):

- \(\text{photons} \quad m = 0, \quad \text{spin} \ (1,0) \oplus (0,1) \)
 (approximately)

- \(\text{electron/positrons} \quad m = 0.511 \text{ MeV}/c^2 \quad \text{spin} = \frac{1}{2} \)
We draw these reps as:

\[
\begin{array}{c}
\text{electron} \\
\downarrow
\end{array}
\quad
\begin{array}{c}
\text{photon} \\
\downarrow
\end{array}
\]

\text{Note:}
\text{antiphoton} = \text{photon (self-dual)}

and the basic intertwiner is:

\[
\begin{array}{c}
\downarrow
\end{array}
\]

i.e., goes from electron/position rep \& photon rep to electron/position rep.

\[
? = \downarrow \downarrow + \begin{array}{c}
\text{virtual photon (internal edge)}
\end{array} + \begin{array}{c}
\text{transfer a photon}
\end{array}
\]

\[
\downarrow \downarrow \quad \downarrow \downarrow
\]

\text{Note: Braiding commutes w/ everything, so}
\[
\begin{array}{c}
\text{switch then photon}
\end{array}
\]
\[
\begin{array}{c}
\text{don't know who emits the photon, who absorbs it!}
\end{array}
\]

\[
\begin{array}{c}
\text{photon then switch}
\end{array}
\]

\[
\begin{array}{c}
\text{switch}
\end{array}
\]
The simply-connected ones above (1st four) give well-defined intertwiners, the others "diverge" so we need to invent clever "renormalization" tricks to extract intertwiners from them.
unfortunately—the infinite sum also (probably) diverges.

So—one basic problem is: see if any interacting QFT in 4 dimensions makes rigorous sense!
Irreducible reps of $SU(2)$ and $SL(2, \mathbb{C})$.

$SU(2)$ and $SL(2, \mathbb{C})$ both have a 2-d "defining" rep on \mathbb{C}^2. It's irreducible since there aren't any 1-d subspaces of \mathbb{C}^2 invariant under all $SU(2)$. Let's write

$$V = \mathbb{C}^2$$

w/ this rep of $SU(2)$, $SL(2, \mathbb{C})$ on it.

What about V^*, ∇? V^* is equivalent to V as a rep of $SL(2, \mathbb{C})$ and thus $SU(2) \leq SL(2, \mathbb{C})$ why?

Want an intertwiner:

$$i: V \overset{\sim}{\longrightarrow} V^*$$

(2 ways to take vectors, get a linear functional.)

1) inner product space
2) use symplectic structure.

We can get this by defining

$$\omega: V \otimes V \longrightarrow \mathbb{C}$$

$$v \otimes w \longmapsto \omega(v \otimes w) = \omega(v, w)$$
which is

1) nondegenerate: \(w(v, w) = 0 \quad \forall \quad w \in V \)
 \(\Rightarrow v = 0 \).

2) invariant under \(SL(2, \mathbb{C}) \):

\[
\begin{align*}
 w(gv, gw) &= w(v, w) \quad \text{for } g \in SL(2, \mathbb{C}).
\end{align*}
\]

\(w \) gives a map

\[
\begin{align*}
i : V &\longrightarrow V^* \\
v &\longmapsto w(v, \cdot)
\end{align*}
\]

so since \(w \) is nondegenerate, \(i \) is 1-1.

moreover: since \(\dim V = \dim V^* = 2 \), \(i \) is onto.

\((V = \mathbb{C}^2)\).

The fact that \(i \) is an intertwiner is equivalent to
the invariance of \(w \).

Note: invariance of \(w \) says \(w \) is an intertwiner
from \(V \otimes V \) to \(\mathbb{C} \) (as a trivial rep of \(SL(2, \mathbb{C}) \)).

\[
\begin{align*}
 V \otimes V &\quad \text{input} \quad \text{output} \\
 \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
 V &\quad \text{output}
\end{align*}
\]
\(w \) has 2 inputs, \(i \) has 1 input, 1 output.
So take \(w \) and turn an input into an output:

\[
\begin{array}{c}
\Rightarrow \\
\downarrow \\
\Rightarrow
\end{array}
\]

\[V \xrightarrow{w} V \]

algebraically:

\[
\begin{array}{c}
\Rightarrow \\
\downarrow \\
\Rightarrow
\end{array}
\]

\[V \xrightarrow{SS} V \otimes \mathbb{C} \]

\[\downarrow 1_v \otimes i_v \text{ (unit)} \]

\[V \otimes V \otimes V^* \]

\[\downarrow w \otimes 1_{V^*} \]

\[\mathbb{C} \otimes V^* \]

\[\downarrow SS \]

\[V^* \]

Since \(w \) is an intertwiner and we get \(i \) from \(w \) using diagram tricks, it's an intertwiner.

Moral: If \((\rho, V)\) is a finite-dime rep of \(G \) and we have a nondegenerate invariant \(w : V \otimes V \to \mathbb{C} \) then \((\rho^*, V^*) \cong (\rho, V)\).
(determinant) - tells how volume is changed
of transf.

\[\det = 1 \text{ preserves volume} \]

But - what's \(w \) in our case?

\[w : \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C} \]

Area:

\[\begin{array}{c}
\uparrow y \\
\downarrow x
\end{array} \]

Area - \(dx \, dy = dx \wedge dy \)

so a transformation that preserves \(dx, dy \) preserves area

2-form - eats 2 vectors, gives a number
and that's what \(w \) is!

Note - \(g \in SL(2, \mathbb{C}) \) means \(g : \mathbb{C}^2 \to \mathbb{C}^2 \) has \(\det(g) = 1 \) which means \(g \) preserves volumes, or in 2 dimensions, preserves areas

i.e. preserves the area 2-form \(dx \wedge dy \) where \(x, y \) are coordinates on \(\mathbb{C}^2 \).

\(dx, dy \) are dual basis of \((\mathbb{C}^2)^* \) so \(dx \wedge dy \) is a 2-form i.e. skew-symmetric bilinear map from \(\mathbb{C}^2 \times \mathbb{C}^2 \) to \(\mathbb{C} \), so we let

\[w = dx \wedge dy. \]
or-(alternate explanation)

Let x, y be the standard basis of \mathbb{C}^2 and define

\[
\begin{cases}
 \omega(x, x) = 0 \\
 \omega(x, y) = 1 \\
 \omega(y, x) = -1 \\
 \omega(y, y) = 0
\end{cases}
\]

Check: $\omega(gv, gw) = \text{det} g \cdot \omega(v, w)$ for all $v, w \in \mathbb{C}^2$

so ω is invariant under $SL(2, \mathbb{C})$.

So: $V \cong V^*$ as a rep of $SL(2, \mathbb{C})$ and thus $SU(2)$.

What about \overline{V}?

(Thm: If we have a unitary rep of a group, $V^* \cong \overline{V}$)

So as reps of $SU(2)$, $\overline{V} \cong V^* \cong V$.

But as reps of $SL(2, \mathbb{C})$, $\overline{V} \not\cong V^* \cong V$.

The rep on \(V \) sends any matrix
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{C})
\]
to itself, i.e., a linear transformation of \(V = \mathbb{C}^2 \). The rep on \(\overline{V} \) sends the matrix to
\[
\text{SL}(2, \mathbb{C}) \ni \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix}
\] (this is what the conjugate rep does = just conjugates each entry)
as a linear transf. on \(\overline{V} \).

Saying \(V \neq \overline{V} \) means there's no invertible \(2 \times 2 \) matrix \(T \) s.t.
\[
T \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^T.
\]
\[\forall \ a, b, c, d \in \mathbb{C} \text{ s.t. } ad - bc = 1\]
meaning complex conjugate of a holomorphic function (constant functions are holomorphic) (analytic)

RHS has matrix entries holomorphic in \(a, b, c, d \),
LHS has entries anti-holomorphic (complex conj. of holomorphic) in \(a, b, c, d \). Only func's that are holo, e.g., anti-holom. are constants, so \(T = 0 \).
So— we have two different "spinor reps" of the double cover of Lorentz group:

left-handed spinors: V
right-handed spinors: \(\bar{V} \)

(neutrinos/antineutrinos)

but these become equivalent when restricted to \(SU(2) \), the double cover of the rotation group.

To get bigger reps, irreps of \(SU(2) \) and \(SL(2, \mathbb{C}) \), we'll use a standard trick:

Suppose \((\rho, V)\) is a rep. of \(G \).

We can form the rep \((\rho^{\otimes n}, V^{\otimes n})\) where

\[
\rho^{\otimes n}(g)(v_1 \otimes \ldots \otimes v_n) = \rho(g)v_1 \otimes \ldots \otimes \rho(g)v_n
\]

\[
V^{\otimes n} = V \otimes \ldots \otimes V
\]

\(n \) times

These are never irreducible (if \(n > 1 \)) because we can define projection operators (square them, we get themself back):

\[
\rho_S, \rho_A : V^{\otimes n} \rightarrow V^{\otimes n}
\]
Ps is "symmetrization":

\[p_s(v_1 \otimes \ldots \otimes v_n) = \frac{1}{n!} \sum_{\sigma \in S_n} v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)} \]

and \(p_A \) is "antisymmetrization":

\[p_A(v_1 \otimes \ldots \otimes v_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \text{sgn}(\sigma) v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)} \]

Ex) \(n = 2 \)

\(v \otimes v \) if \(v = w \)

\(0 \) if \(v = w \)

\[p_s(v \otimes w) = \frac{1}{2} (v \otimes w + w \otimes v) / p_A(v \otimes w) = \frac{1}{2} (v \otimes w - w \otimes v) \]

If we have \(n \) identical "bosons" (e.g. photons, mesons, etc) each of which has Hilbert space \(H \), the collection of all the them has Hilbert space:

\[S^n H = \{ p_s \psi : \psi \in H \otimes^n \} \]

for "fermions" (e.g. protons, neutrons, electrons, quarks) we antisymmetrize and instead use:

\[\Lambda^n H = \{ p_A \psi : \psi \in H \otimes^n \} \]

(Note - can't put 2 electrons in the same state.)

Same works for a \(V \), space \(V \).

We'll look at \(V = C^2 \) and get irreps of \(SU(2) \) and \(SL(2, \mathbb{C}) \) by forming:

\[S^n V, \Lambda^n V \]