1. **Homomorphisms as functors.**

 A functor $F : G \to H$ is such that $F(g : x \to y) : F(x) \to F(y)$, compatible with composition

 $$F(g_1 : x \to y) \circ F(g_2 : y \to z) = F(g_1 \circ g_2 : x \to z) : F(x) \to F(z)$$

 If G, H are groupoids with one object,

 $$F(g_1) \circ F(g_2) = F(g_1 \circ g_2)$$

 which means F is a homomorphism from the morphism group of G to that of H. Conversely, any group homomorphism defines a functor.

2. **Conjugation as a natural transformation.**

 A natural transformation α between functors $F_1, F_2 : G \to H$ assigns an endomorphism $\alpha_x : F_1(x) \to F_2(x)$ to each object x of G in such a way that that, for every $g : x \to y$ in G, $\alpha_x F_2(g) = F_1(g) \alpha_y$ in H.

 If G and H are groupoids with a single object, a natural transformation between group homomorphisms F and G is a single group element $\alpha \in H$ such that

 $$\alpha F_2(g) = F_1(g) \alpha \quad \text{for all} \quad g \in G,$$

 that is, $F_1(g)$ is the result of conjugating $F_2(g)$ by $\alpha \in H$.

3. **The center as the natural automorphisms of the unit.**

 If, now, $F_1 = F_2 = 1_G : G \to G$, a natural transformation $\alpha : F_1 \Rightarrow F_2$ is a group element $\alpha \in G$ satisfying

 $$\alpha g = g \alpha \quad \text{for all} \quad g \in G,$$

 that is, α is in the center of the group G.

4. **Group representations as functors.**

 If G is a groupoid with one object, a functor $F : F \to \text{Vect}$ is a choice of a vector space $V = F(\bullet)$ and a group homomorphism $F : G \to \text{End}(V)$. In other words, F is a representation of the group G.

5. **Intertwiners as natural transformations.**

 Suppose that F, F' are two representations of the group G. Then, a natural transformation $\alpha : F \Rightarrow F'$ is a linear map $\alpha : V \to V'$ such that

 $$\alpha F'(g) = F(g) \alpha \quad \text{for all} \quad g \in G.$$

 The map α is called an intertwining operator between the representations F and F'.