The Bar Construction

Suppose we have an adjunction:

\[
\begin{array}{ccc}
& D & \\
L & \Downarrow & R \\
& C & \\
\end{array}
\]

We get a unit \(\eta \) and counit \(\varepsilon \):

\[
\begin{array}{ccc}
\phantom{\text{R}} & \phantom{\text{L}} & \phantom{\text{R}} \\
\text{R} & \phantom{\text{L}} & \phantom{\text{R}} \\
\phantom{\text{R}} & \phantom{\text{L}} & \phantom{\text{R}} \\
\end{array}
\quad
\begin{array}{ccc}
\phantom{\text{L}} & \phantom{\text{R}} & \phantom{\text{L}} \\
\text{L} & \phantom{\text{R}} & \phantom{\text{L}} \\
\phantom{\text{L}} & \phantom{\text{R}} & \phantom{\text{L}} \\
\end{array}
\]

unit \(\eta : 1_c \Rightarrow RL \)

counit \(\varepsilon : LR \Rightarrow 1_d \)

satisfying zig-zag identities. Last time we saw this gives a monad on \(C \), i.e. a monoid in \(\text{End}(C) \), namely \(RL \in \text{End}(C) \).
This is indeed a monoid:

\[
\begin{align*}
\text{multiplication} \quad RLRL & \Rightarrow RL \\
\text{unit} \quad 1_c & \Rightarrow RL
\end{align*}
\]

Satisfying associativity:

\[
Y = Y
\]

\[
\frac{Y}{r} \text{ unit laws} : \quad Y = 1 = Y
\]

We also get a \underline{comonad} on \(D\), i.e. a comonoid in \(\text{End}(D)\), namely \(LR \in \text{End}(D)\).

A "comonoid" is just like a monoid, but upside down:

\[
\begin{align*}
\text{comultiplication} & \quad LRRLR \\
\text{counit} & \quad LR \Rightarrow 1_D
\end{align*}
\]
These satisfy coassociativity: \(\triangle = \triangle \)

\(\triangleright \) l/r counit laws: \(\triangle = 1 = \Delta \)

More tersely, if \(M \) is a monoidal category, \(M^{\mathsf{op}} \) is also monoidal with same \(\otimes \), and:

Def. A **comonoid** in \(M \) is a monoid in \(M^{\mathsf{op}} \).

E.g. - An **algebra** is a monoid in \(\mathsf{Vect} \),
 a **coalgebra** is a comonoid in \(\mathsf{Vect} \),
 or monoid in \(\mathsf{Vect}^{\mathsf{op}} \).

So: our adjunction gives a comonad \(\Delta \mathsf{R} \),
which is a monoid in \(\mathsf{End}(\Delta)^{\mathsf{op}} \).

Since \(\Delta \) is the free monoidal category
on a monoid, this gives a monoidal functor
\[
\Delta : \Delta \to \mathsf{End}(\Delta)^{\mathsf{op}}
\]
i.e. a monoidal functor

\[\Delta^{op} \xrightarrow{\alpha} \text{End}(D) \]

and thus a simplicial object in \(\text{End}(D) \)!

Taking a specific object \(d \in D \), we get:

\[e_{vd}: \text{End}(D) \rightarrow D \]

\[\begin{array}{c}
F \quad \xrightarrow{1} \quad Fd
\end{array} \]

so we get a simplicial object in \(D \):

\[\Delta^{op} \xrightarrow{\alpha} \text{End}(D) \xrightarrow{e_{vd}} D \]

This simplicial object in \(D \) is called \(d: \Delta^{op} \rightarrow D \); we call this the bar construction.

Moral: given an adjunction \(\text{L} \dashv \text{R} \), any object \(d \in D \) gives a simplicial object \(d \) in \(D \).
Example: The Cohomology of Groups

Here we take a group G, get an adjunction

$$\begin{align*}
G - \text{Set} \\
\downarrow L \\
\downarrow R \\
\text{Set}
\end{align*}$$

where $G - \text{Set}$ is the category of sets w. left G-action.

So, given a G-Set X, we get:

$$X = \cdots \xleftarrow{LRX} \xrightarrow{LRXLX} \cdots$$

a simplicial G-set!

What's a 1-simplex, or 2-simplex, in this simplicial G-set like?
Given our \(G \)-set \(X \), what's \(LRX \)? \(RX \) is usually just called "\(X \)" - the underlying set of our \(G \)-set \(X \). \(LRX \) has elements "\(gx \)" for each \(g \in G \) and \(x \in X \). Really "\(gx \)" is just \((g, x)\), so \(LRX = G \times X \), which is a \(G \)-set with

\[
g \cdot (g_2, x) = (g, g_2 \cdot x).
\]

So

\[
\begin{array}{ccc}
\text{(-1)-simplices} & \text{0-simplices} & \text{1-simplices} \\
\downarrow & \downarrow & \downarrow \\
X & G \times X & G \times G \times X
\end{array}
\]

\[
\varepsilon_x \leftrightarrow (g, x) \leftrightarrow (g, g_2, x) \leftrightarrow \varepsilon_{LRX} \leftrightarrow (g, g_2, x) \leftrightarrow LR(\varepsilon_x) \leftrightarrow (g, g_2, x)
\]

So, a typical 1-simplex in \(X \) looks like:

\[
(g, g_2 x) \rightarrow (g, g_2, x) \rightarrow (g, g_2 x)
\]
Note: both 0-simplices here have as face the \((-1)\)-simplex \(g, g_2 x\). So this 1-simplex is a \underline{proof} that \(g_1(g_2 x) = (g, g_2) x\) — the 2 formal expressions \((g_1, g_2 x)\) and \((g, g_2, x)\) evaluate via \(\varepsilon_x\) to the same element of \(X\), namely \(g, g_2 x\).

How about a 2-simplex in \(X\)?

Here we see 2 proofs that \(g_1(g_2 g_3 x) = (g, g_2 g_3) x\):
using one step or 2. The triangle is a "metaproof" or "syzygy" - a "homotopy between proofs".

The simplicial G-set X is called EG when X = *. In general X has contractible components, one for each element of X - these are the 1-simplicies of X!

So EG has one contractible component. It's like a "puffed-up point" - a contractible space on which G acts freely.